Skip to main content

Die Rolle der Meeresorganismen in den Kreisläufen biogener Elemente

  • Chapter
Biologische Meereskunde

Part of the book series: Springer-Lehrbuch ((SLB))

  • 249 Accesses

Zusammenfassung

So gut wie jedes CO2-Molekül, das von einer Pflanze aufgenommen wird, wurde vorher durch die Atmung eines Organismus freigesetzt. Umgekehrt entstammt jedes O2-Molekül, das veratmet wird, der Photosynthese. Ähnliches gilt auch für die mineralischen Nährstoffe, die in ferner Vergangenheit durch die Verwitterung der Gesteine oder aus der Atmosphäre in die biologischen Kreisläufe des Meeres einbezogen wurden, wo sie permanent zwischen der gelösten und der partikulären, in Organismen gebundenen Phase zirkulieren. Dieses Recycling hat zu der populären, beinahe schon mythologisierten Vorstellung vom „Gleichgewicht der Natur“ geführt. Allerdings ist dieses Gleichgewicht gar nicht vollständig: Hätte es ein komplettes Recycling gegeben, hätten sich weder die biogenen Sedimentgesteine und die fossilen Brennstoffe ausbilden können, noch hätte sich der freie Sauerstoff im Wasser und der Atmosphäre angereichert und so unsere heutige, oxidierte Erdoberfläche geschaffen. In ihrer Gesamtheit haben die Organismen über geologische Zeiträume eine gigantische Umverteilung von Substanzen zwischen Lithosphäre, Hydrosphäre und Atmosphäre in Gang gesetzt, ohne die das heutige Erscheinungsbild der Erdoberfläche nicht zu erklären ist. Einen besonders großen Anteil daran hatten die Organismen der Meere, einerseits wegen der großen Ausdehnung der Meere, andererseits, weil die Evolution der Organismen von den Meeren ihren Ausgangspunkt genommen hat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Andreae MO (1990) Ocean-atmosphere interactions in the global sufur cycle. Mar Chem 30: 129

    Article  Google Scholar 

  • Bathmann UV, Peinert R, Noji TT, Bodungen B v (1990) Pelagic origin and fate of sedimenting particles in the Norwegia Sea. Proc Oceanog 24: 117–125

    Article  Google Scholar 

  • Berger WH (1976) Biogenous deep sea sediments: production, preservation and interpretation. In: Riley JP, Chester R (eds) Chemical oceanography. Academic Press, London, vol 5, pp 265–388

    Google Scholar 

  • Berger WH (1989) Global maps of ocean productivity. In: Berger WH, Smetacek V, Wefer D (eds) Productivity of the ocean: past and present. Wiley, Chichester, pp 429–455

    Google Scholar 

  • Berger WH, Smetacek VS, Wefer G (1989) Ocean productivity and paleoproductivity–an over-view. In: Berger WH, Smetacek V, Wefer G (Hrsg) Productivity of the ocean: Past and present. Wiley, Chichester, pp 1–34

    Google Scholar 

  • Betzer PR, Showers WJ, Laws EA, Winn CD, DiTullio GR, Kroopnick PM (1984) Primary productivity and particle fluxes on a transsect of the equator at 153 °W in the Pacific Ocean. Deep Sea Res 31: 1–11

    Article  Google Scholar 

  • Brewer PG, Nozaki Y, Spencer DW, Fleer AP (1980) Sediment trap experiments in the deep North Atlantic: isotopic and elemental fluxes. J Mar Res 38: 703–728

    CAS  Google Scholar 

  • Bunyard P (1996) Gaia in Action. Floris, Edinburgh

    Google Scholar 

  • Cadée GC (1980) Reappraisal of the production and import of organic carbon in the Western Wadden Sea. Neth J Sea Res 14: 305–322

    Article  Google Scholar 

  • Charlson RJ, Lovelock JF, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326: 665–661

    Article  Google Scholar 

  • Chester R (1990) Marine geochemistry. Unwin Hyman, London

    Book  Google Scholar 

  • Chisholm SW, Morel FMM (1991) What controls phytoplankton production in nutrient rich areas of the open ocean? Limnol Oceanogr 36: 1507–1970

    Article  Google Scholar 

  • Cledenning KA (1971) Organic productivity in kelp areas. Nova Hedwigia Suppl 32: 259–263

    Google Scholar 

  • Coale KH et al (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383: 495–501

    Article  PubMed  CAS  Google Scholar 

  • Codispoti LA (1989) Phosphorus vs. nitrogen limitation of new and export production. In: Berger WH, Smetacek V, Wefer G (eds) Productivity of the oceans: Past and present. Wiley, Chichester, pp 377–394

    Google Scholar 

  • Crossland CJ, Hatcher BG, Smith SV (1991) Role of reefs in global ocean production. Coral Reefs 10: 55–64

    Article  Google Scholar 

  • Cushing DH (1971) Upwelling and the production of fish. Adv mar Biol 9: 255–334

    Article  Google Scholar 

  • Davies DA, Gorsline DS (1976) Oceanic sediments and sedimentary processes. In: Riley JP

    Google Scholar 

  • Chester R (Hrsg) Chemical oceanography. Academic Press, London, vol 5, pp 1–80

    Google Scholar 

  • Vooys CGN (1979) Primary production in aquatic environments. In: Bolin B, Degens ET

    Google Scholar 

  • Kempe S, Ketner P (eds) The global carbon cycle. Wiley, Chichester, pp 259–291

    Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12: 196–206

    Article  CAS  Google Scholar 

  • Ehrlich HL (1990) Geomicrobiology. Dekker, New York

    Google Scholar 

  • Gächter R, Mares A (1985) Does settling seston release soluble reactive phosphorus in the bypolimnion of lakes? Limnol Oceanogr 30: 364–372

    Article  Google Scholar 

  • Hecky RE, Campbell B, Hendzel LL (1993) The stoichiometry of carbon, nitrogen, and phosphorus in the particulate matter of lakes and oceans. Limnol Oceanogr 38: 709–724

    Article  CAS  Google Scholar 

  • Kamitani A (1982) Dissolution rates of silica from diatoms decomposing at various tempera-tures. Mar Biol 68: 91–96

    Article  Google Scholar 

  • Kanwisher JW (1966) Photosynthesis and respiration in some seaweeds. In: Barnes H (Hrsg) Some contemporary studies in marine science. Allen Unwin, London, pp 407–420

    Google Scholar 

  • Knauer GA (1993) Productivity and new production of the oceanic system. In: Wollast R (ed) Interactions of C, N, P and S biogeochemical cycles and global change. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Lean DRS, Nalewajko C (1976) Phosphate exchange and organic phosphorus excretion by freshwater algae. J Fish Res Bd Can 33: 1312–1323

    Article  CAS  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17: 1245–1271

    Article  Google Scholar 

  • Lovelock J (1979) Gaia: a new look on life on eart. Oxford Univ Press, Oxford

    Google Scholar 

  • Lovelock J (1991) Das Gaia-Prinzip, Artemis, Zürich

    Google Scholar 

  • Lovstad 0, Wold T (1984) Determination of external concentrations of available phosphorus for phytoplankton growth. Verh Internat Verein Limnol 22: 205–210

    Google Scholar 

  • Lurin B, Rasool SI, Cramer W, Moore B (1994) Global terrestrial primary production. Global Change Newsl (IGBP) 19: 6–8

    Google Scholar 

  • Malin G, Turner SM, Liss PS (1992) Sulfur: the plankton/climate connection. J Phycol 28: 590597

    Google Scholar 

  • Mann KH (1972) Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. II. Productivity of the seaweeds. Mar Biol 14: 199–209

    Google Scholar 

  • Mann KH (1980) The total aquatic system. In: Barnes RSK, Mann KH (eds) Fundamentals of aquatic ecosystems. Blackwell, Oxford, pp 201–220

    Google Scholar 

  • Mansson BA, McGlade JM (1993) Ecology, thermodynamics and H. T. Odums conjectures. 0ecologia 93: 582–596

    Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Brokow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res 34: 323

    Google Scholar 

  • Odum HT (1983) Systems ecology. Wiley, New York

    Google Scholar 

  • Redfield AC, Ketchum BH, Richard FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea. Wiley, New York, pp 26–77

    Google Scholar 

  • Silver MW, Shanks AL, Trent JD (1978) Marine snow: microplankton habitat and source of small-scale patchiness in pelagig populations. Science 201: 371–373

    Article  PubMed  CAS  Google Scholar 

  • Sommer U (1988) Growth and survival strategies of planktonic diatoms. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge Univ Press, Cambridge, pp 227–260

    Google Scholar 

  • Sommer U (1994) Planktologie. Springer, Berlin, Heidelberg, New York, Tokyo Sorokin YI ( 1995 ) Coral reef ecology. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Valiela I, Teal JM, Persson NY (1976) Production dynamics of experimentally enriched salt

    Google Scholar 

  • marsh vegetation: below-ground biomass. Limnol Oceanogr 21: 245–252

    Google Scholar 

  • Vollenweider R, Kerekes J (1982) Eutrophication of waters. Monitoring, assessment, and control. OECD, Paris

    Google Scholar 

  • Vooys CGN de (1979) Primary production in aquatic environments. In: Bolin B, Degens ET, Kempe S, Ketner P (eds) The global carbon cycle. Wiley, Chichester, pp 259–291

    Google Scholar 

  • Westlake DF (1963) Comparisons of plant productivity. Biol Rev 38: 385–425

    Article  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems. MacMillan, New York

    Google Scholar 

  • Whittaker RH, Likens GE (1973) Primary production: the biosphere and man. Human Ecol 1: 357–369

    Article  Google Scholar 

  • Woodwell GM (1980) Aquatic systems as part of the biosphere. In: Barnes RSK, Mann KH (eds) Fundamentals of aquatic ecosystems. Blackwell, Oxford, pp 201–215

    Google Scholar 

  • Woodwell GM, Rich PH, Hall CA (1973) Carbon in estuaries. US Atom Energ Comm Symp Ser 30: 221–239

    CAS  Google Scholar 

  • Zedler JB (1980) Algal mat productivity: comparisons in a salt marsh. Estuaries 3: 122–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommer, U. (1998). Die Rolle der Meeresorganismen in den Kreisläufen biogener Elemente. In: Biologische Meereskunde. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21673-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21673-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63512-3

  • Online ISBN: 978-3-662-21673-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics