Skip to main content

Gas Processes

  • Chapter
Astrophysical Formulae

Abstract

The one particle probability distribution function, f(r, p, t), is defined so that

$$f\left( {r,\,p,\,t} \right)dxdydzd{p_x}d{p_y}d{p_z} = f\left( {r,\,p,\,t} \right)d{V_r}d{V_p}$$
(3-1)

, is the probability that, at the time, t, a particle has momentum, p, in the volume element dV p at p and position, r, in the volume element dV r at r. Similarly, the distribution function f(r, v, t) is defined so that for an average particle density, N,

$$N\,f\left( {r,\,v,\,t} \right)dxdydzd{v_x}d{v_y}d{v_z} = N\,f\left( {r,\,v,\,t} \right)d{V_r}d{V_v}$$
(3-2)

, gives the probable number of particles in the six dimensional phase space dV r dV v around position, r, and velocity, v. Boltzmann’s equation for f(r, p, t) may be written as (Boltzmann, 1872)

$$\frac{{\partial f}}{{\partial t}} + \frac{p}{m} \cdot {\nabla _r}f - {\nabla _r}\varphi \cdot {\nabla _r}f = {\left( {\frac{{df}}{{dt}}} \right)_{coll}}$$
(3-3)

, where φ(r) is the potential energy acting on every particle, p is the momentum, m is the particle mass, ∇ r is the gradient in position space, ∇ p is the gradient in momentum space, and (df /dt)coll is the rate of change in f due to collisions. Noting that \(\dot p = - {\nabla _r}\varphi \), we may write Eq. (3-3) in Cartesian coordinates as

$$\frac{{\partial f}}{{\partial t}} + \dot x\frac{{\partial f}}{{\partial x}} + \dot y\frac{{\partial f}}{{\partial y}} + \dot z\frac{{\partial f}}{{\partial z}} + {\dot p_x}\frac{{\partial f}}{{\partial {p_x}}} + {\dot p_y}\frac{{\partial f}}{{\partial {p_y}}} + {\dot p_z}\frac{{\partial f}}{{\partial {p_z}}} = {\left( {\frac{{df}}{{dt}}} \right)_{coll}}$$

, where · denotes the first derivative with respect to time. The Boltzmann equation for f(r, v,t) is

$$\frac{{\partial f}}{{\partial t}} + v \cdot {\nabla _r}f + \frac{F}{m} \cdot {\nabla _v}f = {\left( {\frac{{df}}{{dt}}} \right)_{coll}}$$
(3-4)

, where v is the velocity, F is the force acting on each particle, m is the particle mass, and ∇ r and ∇ v denote, respectively, gradients in position and velocity space. As an example of astrophysical forces, a particle of charge, q, and mass, m, experiences the force

$$F = q\left( {E + \frac{1}{c}v \times H} \right) - m\,g\,{n_r}$$

, in the presence of an electric field of strength E, a magnetic field of strength H, and a gravitational field of acceleration g. Here n r is a unit vector in the radial direction from the mass, m, to another mass, M, and the acceleration due to gravity is G M/r 2, where the gravitational constant G=6.67 · 10−8 dyn cm2g−2 and r is the distance between the mass, M, and the particle of mass, m.

“This notation may be perhaps further explained by conceiving the air near the earth to be such a heap of little bodies, lying one upon another as may be resembled to a fleece of wool. For this consists of many slender and flexible hairs, each of which may indeed, like a little spring, be easily bent or rolled up; but will also, like a spring, be still endeavouring to stretch itself out again.”

R. Boyle, (1660)

“O dark dark dark. They all go into the dark.

The vacant interstellar spaces, the vacant into the vacant.”

T. S. Eliot in East Coker III (1940)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AlfvÉN, H.: On the existence of electromagnetic-hydrodynamic waves. Arkiv. f. Mat., Astron., Physik. 29, 1 (1942).

    ADS  Google Scholar 

  • AlfvÉN, H.: The existence of electromagnetic-hydrodynamic waves. Nature 150, 405 (1942).

    ADS  Google Scholar 

  • AlfvÉN, H.: Granulation, magneto-hydrodynamic waves, and the heating of the solar corona. M. N. R. A. S. 107, 211 (1947).

    ADS  Google Scholar 

  • AlfvÉN, H., Falthammer, C. G.: Cosmical electrodynamics. Oxford: Oxford at the Clarendon Press 1963.

    Google Scholar 

  • Allen, C. W.: Interpretation of electron densities from corona brightness. M. N. R. A. S. 107, 426 (1947).

    ADS  Google Scholar 

  • Anderson, W. Von: Gewöhnliche Materie und strahlende Energie als verschiedene “Phasen” eines und desselben Grundstoffes (Common matter and radiated energy as different “phases” of the same chemical element). Z. Physik 54, 433 (1929).

    ADS  MATH  Google Scholar 

  • Angel, J. R. P., Landstreet, J. D.: Detection of circular polarization in a second white dwarf. Ap. J. 164, L 15 (1971).

    Google Scholar 

  • Angel, J. R. P., Landstreet, J. D.: Discovery of circular polarization in the red degenerate star G 99–47. Ap. J. 178, L 21 (1972).

    Google Scholar 

  • AstrÖM, E.: On waves in an ionized gas. Arkiv. Physik 2, 443 (1950).

    Google Scholar 

  • Avogadro, A.: Essay on a manner of determining the relative masses of the elementary molecules of bodies and the proportions in which they enter into these compounds. J. de. Physique 73, 58 (1811). Engl. trans. in: Foundations of the molecular theory. Alemic Club. Repr. No. 4. Edinburgh: Bishop 1950.

    Google Scholar 

  • Axford, W. I.: Ionization fronts in interstellar gas: The structure of ionization fronts. Phil. Trans. Roy. Soc. London A 253, 301 (1961).

    MathSciNet  ADS  Google Scholar 

  • Axford, W. I.: The initial development of H II regions. Ap. J. 139, 761 (1964).

    ADS  Google Scholar 

  • Babcock, H. W., Babcock, H. D.: The Sun’s magnetic field, 1952–1954. Ap. J. 121, 349 (1955).

    ADS  Google Scholar 

  • Bailey, S. I.: The periods of the variable stars in the cluster Messier 5. Ap. J. 10, 255 (1899).

    ADS  Google Scholar 

  • Bailey, V. A.: Plane waves in an ionized gas with static electric and magnetic fields present. Austr. J. Sci. Res. A 1, 351 (1948).

    ADS  Google Scholar 

  • Baker, N., Kippenhahn, R.: The pulsation of models of b Cephei stars. Z. Ap. 54, 114 (1962).

    ADS  MATH  Google Scholar 

  • Baker, N., Kippenhahn, R.: The pulsations of models of Delta Cephei stars II. Ap. J. 142, 868 (1965).

    ADS  Google Scholar 

  • Bardeen, J., Cooper, L. N., Schrieffer, J. R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957).

    MathSciNet  ADS  MATH  Google Scholar 

  • Barkat, Z., Buchler, J. R., Ingber, L.: Equation of state of neutron-star matter at subnuclear densities. Ap. J. 176, 723 (1972).

    ADS  Google Scholar 

  • Barnes, A.: Collisionless heating of the solar-wind plasma: I. Theory of the heating of collisionless plasma by hydromagnetic waves. Ap. J. 154, 751 (1968).

    ADS  MATH  Google Scholar 

  • Barnes, A.: Collisionless heating of the solar-wind plasma: II. Application of the theory of plasma heating by hydromagnetic waves. Ap. J. 155, 311 (1969).

    ADS  Google Scholar 

  • Batchelor, G. K., The theory of homogeneous turbulence. Cambridge: Cambridge University Press 1967.

    Google Scholar 

  • Baumbach, S. Von: Strahlung, Ergiebigkeit und Elektronendichte der Sonnenkorona (Radiation, abundance, and electron density of the solar corona). Astron. Nach. 263, 120 (1937).

    ADS  Google Scholar 

  • Baym, G., Bethe, H. A., Pethick, C. J.: Neutron star matter. Nuclear Phys. A 175, 225 (1971).

    ADS  Google Scholar 

  • Baym, G., Pethick, C. J., Sutherland, P.: The ground state of matter at high densities: Equation of state and stellar models. Ap. J. 170, 299 (1971).

    ADS  Google Scholar 

  • Lopolsky, A.: Researches on the spectrum of the variable starry Aquilae. Ap. J. 6, 393 (1897).

    ADS  Google Scholar 

  • Bernoulli, D.: Hydrodynamia Argentorati (Hydrodynamics) 1738.

    Google Scholar 

  • Biermann, L.: Zur Deutung der chromosphärischen Turbulenz und des Exzesses der UV-Strahlung der Sonne (An explanation of chromospheric turbulence and the UV excess of solar radiation). Naturwiss. 33, 118 (1946).

    ADS  Google Scholar 

  • Biermann, L.: Über die Ursache der chromosphärischen Turbulenz und des UV-Exzesses der Sonnenstrahlung (About the cause of the chromospheric turbulence and the UV excess of the solar radiation). Z. Ap. 25, 161 (1947).

    ADS  Google Scholar 

  • Biermann, L.: Kometenschweife und solare Korpuskular-Strahlung (The tails of comets and the solar corpuscular radiation). Z. Ap. 29, 274 (1951).

    ADS  Google Scholar 

  • Biermann, L.: Solar corpuscular radiation and the interplanetary gas. Observatory 77, 109 (1957).

    ADS  Google Scholar 

  • Birkeland, K.: The Norwegian aurora polar expedition 1902–1903: I. On the cause of magnetic storms and the origin of terrestial magnetism. Christiana: H. Aschehong 1908.

    Google Scholar 

  • Bogolyubov, N. N.: Problems of a dynamical theory in statistical physics. State Tech. Press, Moscow 1946.

    Google Scholar 

  • Bouts, D., Gross, E. P.: Theory of plasma oscillations: A. Origin of medium-like behavior; B. Excitation and damping of oscillations. Phys. Rev. 75, 1851, 1854 (1949).

    ADS  Google Scholar 

  • BÖHM-Vitense, E.: Die Wasserstoffkonvektionszone der Sonne (The hydrogen convection zone of the Sun). Z. Ap. 32, 135 (1953).

    ADS  Google Scholar 

  • BÖHM-Vitense, E.: Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte (About the hydrogen convection zone in stars of various effective temperatures and luminosities). Z. Ap. 46, 108 (1958).

    ADS  Google Scholar 

  • Boltzmann, L.: Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten (Studies of the equilibrium and the life force between material points). Wien. Ber. 58, 517 (1868).

    Google Scholar 

  • Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen (Further studies on the thermal equilibrium of gas molecules). Sitz. Acad. Wiss. 66, 275 ( 1872 ). Engl. trans. Brush (1966).

    Google Scholar 

  • Boltzmann, L.: Über die Beziehung eines allgemeinen mechanischen Satzes zum zweiten Hauptsatz der Wärmetheorie (On the relation of a thermal mechanical theorem to the second law of thermodynamics). Sitz. Acad. Wiss. 75, 67 ( 1877 ). Engl. trans. Brush (1966).

    Google Scholar 

  • Boltzmann, L.: Vorlesungen über Gastheorie (Lectures in gas theory). 1896. Eng. trans. by Brush. Berkeley: Univ. of Calif. Press 1967.

    Google Scholar 

  • Bond, J. W., Watson, K. M., Welch, J. A.: Atomic theory of gas dynamics. Reading, Mass.: Addison-Wesley 1965.

    Google Scholar 

  • Bondi, H.: On spherically symmetrical accretion. M.N.R.A.S. 112, 195 (1952).

    MathSciNet  ADS  Google Scholar 

  • Bondi, H., Hoyle, F.: On the mechanism of accretion by stars. M.N.R.A.S. 104, 273 (1944).

    ADS  Google Scholar 

  • Born, M., Green, H. S.: A general kinetic theory of liquids. Cambridge: Cambridge University Press 1949.

    MATH  Google Scholar 

  • Bose, S. N.: Plancks Gesetz und Lichtquantenhypothese (Plancks law and the light quantum hypothesis). Z. Physik 26, 178 (1924).

    ADS  MATH  Google Scholar 

  • BoussInesq, J.: Théorie analytique de la chaleur (Analytic theory of heat). 2, 172. Paris: Gauthier-Villars 1903.

    Google Scholar 

  • Boyle, R.: New experiments physico-mechanical, touching the spring of air and its effects, made for the most part in a new pneumatical engine. Oxford, 1660—reprod. Brush (1965).

    Google Scholar 

  • Boyle, R.: A defense of the doctrine touching the spring and weight of the air,…. Oxford 1662. Repr. in Boyle’s Works (ed. T. Birch ). London 1772.

    Google Scholar 

  • Bracewell, R. N., Preston, G. W.: Radio reflection and refraction phenomena in the high solar corona. Ap. J. 123, 14 (1956).

    ADS  Google Scholar 

  • Brush, S. G.: Kinetic theory, vol. I. New York: Pergamon Press 1965.

    MATH  Google Scholar 

  • Brush, S. G.: Kinetic theory, vol. II. New York: Pergamon Press 1966.

    Google Scholar 

  • Buchler, J. R., Barkat, Z.: Properties of low density neutron star matter. Phys. Rev. Lett. 27, 48 (1971).

    ADS  Google Scholar 

  • Buchler, J. R., Ingber, L.: Properties or the neutron gas and applications to neutron stars. Nucl. Phys. A 170, 1 (1971).

    ADS  Google Scholar 

  • Buneman, O.: Instability, turbulence, and conductivity in current-carrying plasma. Phys. Rev. Lett. 1, 8 (1958).

    ADS  Google Scholar 

  • Buneman, O.: Dissipation of currents in ionized media. Phys. Rev. 115, 503 (1959).

    MathSciNet  ADS  MATH  Google Scholar 

  • Burgess, A.: Dielectronic recombination and the temperature of the solar corona. Ap. J. 139, L 776 (1964).

    Google Scholar 

  • CarathÉOdory, C.: Untersuchungen über die Grundlagen der Thermodynamik (Investigation of the foundations of thermodynamics). Math. Ann. 67, 355 (1909).

    MathSciNet  Google Scholar 

  • Carnot, Par S.: Reflexions sur la puissance motrice du feu et sur les machines (Reflections on the motivating force of fire and the machines). Bachelier, Paris 1824. Eng. trans. in: Reflections on the motive power of fire,… (ed. E. Mendoza). New York: Dover 1960.

    Google Scholar 

  • Cartan, H.: Sur la stabilite ordinare des ellipsoides de Jacobi (On the ordinary stability of Jacobian ellipsoids). Proc. Int. Math. Cong. Toronto 2, 2, 1924 (cf. Lyttleton 1953 ).

    Google Scholar 

  • Chandrasekhar, S.: Stellar configurations with degenerate cores. M.N. R. A. S. 95, 226 (1935).

    ADS  Google Scholar 

  • Chandrasekhar, S.: The highly collapsed configurations of a stellar mass. (2nd paper). M.N. R. A. S. 95, 207 (1935).

    ADS  Google Scholar 

  • Chandrasekhar, S.: An introduction to the study of stellar structure. Chicago, Ill.: University of Chicago Press 1939, and New York: Dover.

    Google Scholar 

  • Chandrasekhar, S.: Dynamical friction: I. General considerations: The coefficient of dynamical friction. Ap. J. 97, 255 (1943).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: On Heisenberg’s elementary theory of turbulence. Proc. Roy. Soc. London A 200, 20 (1949).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: Turbulence—A physical theory of astrophysical interest. Ap. J. 110, 329 (1949).

    ADS  Google Scholar 

  • Chandrasekhar, S.: The fluctuations in density in isotropic turbulence. Proc. Roy. Soc. London A 210, 18 (1951).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: The gravitational instability of an infinite homogeneous turbulent medium. Proc. Roy. Soc. London A 210, 26 (1951).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: On the inhibition of convection by a magnetic field. Phil. Mag. 43, 501 (1952).

    MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S.: The instability Of a layer of fluid heated from below and subject to coriolis force. Proc. Roy. Soc. London A 217, 306 (1953).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: The virial theorem in hydromagnetics. M.N. R. A. S. 113, 667 (1953).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: The gravitational instability of an infinite homogeneous medium when coriolis force is acting and when a magnetic field is present. Ap. J. 119, 7 (1954).

    MathSciNet  ADS  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic turbulence: II. An elementary theory. Proc. Roy. Soc. London A 233, 330 (1955).

    MathSciNet  ADS  Google Scholar 

  • Chandrasekhar, S.: The character of the equilibrium of an incompressible heavy viscous fluid of variable density. Proc. Camb. Phil. Soc. 51, 162 (1955).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: The oscillations of a viscous liquid globe. Proc. London Math. Soc. 9, 141 (1959).

    MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamics and hydromagnetic stability. Oxford: Oxford at the Clarendon Press 1961.

    Google Scholar 

  • Chandrasekhar, S.: A general variational principle governing the radial and non-radial oscillations of gaseous masses. Ap. J. 139, 664 (1964).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity. Ap. J. 140, 417 (1964).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: Ellipsoidal figures of equilibrium. New Haven, Conn.: Yale University Press 1969.

    MATH  Google Scholar 

  • Chandrasekhar, S., Elbert, D. D.: The instability of a layer of fluid heated from below and subject to coriolis force II. Proc. Roy. Soc. London A 231, 198 (1955).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S., Fermi, E.: Problems of gravitational stability in the presence of a magnetic field. Ap. J. 118, 116 (1953).

    MathSciNet  ADS  Google Scholar 

  • Chandrasekhar, S., Kaufman, A. N., Watson, K. M.: The stability of the pinch. Proc. Roy. Soc. London A 245, 435 (1958).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S., Limber, D. N.: On the pulsation of a star in which there is a prevalent magnetic field. Ap. J. 119, 10 (1954).

    MathSciNet  ADS  Google Scholar 

  • Chandrasekhar, S., Lebovitz, N. R.: On the oscillations and the stability of rotating gaseous masses. Ap. J. 135, 248 (1962).

    MathSciNet  ADS  Google Scholar 

  • Chandrasekhar, S., Lebovitz, N. R.: On the oscillations and the stability of rotating gaseous masses: II. The homogeneous compressible model. Ap. J. 136, 1069 (1962).

    ADS  Google Scholar 

  • Chandrasekhar, S., Lebovitz, N. R.: Non-radial oscillations and the convective instability of gaseous masses. Ap. J. 138, 185 (1963).

    ADS  MATH  Google Scholar 

  • Chandrasekhar, S., Lebovitz, N. R.: Non-radial oscillations of gaseous masses. Ap. J. 140, 1517 (1964).

    ADS  Google Scholar 

  • Chao, N. C., Clark, J. W., Yang, C. H.: Proton superfluidity in neutron star matter. Nucl. Phys. 179, 320 (1972).

    Google Scholar 

  • Chapman, S.: On the law of distribution of molecular velocities and the theory of viscosity and thermal conductivity in a non-uniform simple monatomic gas. Phil. Trans. Roy. Soc. London A 216, 279 (1916).

    ADS  Google Scholar 

  • Chapman, S.: On the kinetic theory of a gas: Part. II. A composite monatomic gas, diffusion, viscosity, and thermal conduction. Phil. Trans. Roy. Soc. London A 217, 115 (1917).

    ADS  Google Scholar 

  • Chapman, S.: The energy of magnetic storms. M.N.R. A. S. 79, 70 (1918).

    Google Scholar 

  • Chapman, S.: An outline of a theory of magnetic storms. Proc. Roy. Soc. London A 95, 61 (1919).

    ADS  Google Scholar 

  • Chapman, S.: Noise in the solar corona and the terrestial ionosphere. Smithsonian Contr. Astrophys. 2, 1 (1957).

    Google Scholar 

  • Chapman, S.: Interplanetary space and the earth’s outermost atmosphere. Proc. Roy. Soc. London A 253, 462 (1959).

    ADS  Google Scholar 

  • Chapman, S., Cowling, T. G.: The mathematical theory of non-uniform gases. Cambridge: Cambridge University Press 1953.

    Google Scholar 

  • Christy, R. F.: Pulsation theory. Ann. Rev. Astron. Astrophys. 4, 353 (1966).

    ADS  Google Scholar 

  • Christy, R. F.: A study of pulsation in RR Lyrae models. Ap. J. 144, 108 (1966).

    ADS  Google Scholar 

  • Churns, J., Thackerv, A. D.: Trigonometric parallaxes of LB 3303 and LB 3459. In: White dwarfs—I. A. U. Symp. No. 42 (ed. W. J. Luvten ). Dordrecht, Holland: D. Reidel 1971.

    Google Scholar 

  • Clark, J. W., Heintzmann, H., Hillebrandt, W., Grewing, M.: Nuclear forces, compressibility of neutron matter, and the maximum mass of neutron stars. Astrophys. Lett. 10, 21 (1971).

    ADS  Google Scholar 

  • Clausius, R. Von: Über die bewegende Kraft der Wärme und die Gesetze, die sich daraus für die Wärmelehre selbst ableiten lassen (On the moving force of heat and the laws of thermodynamics that can be deduced from it). Ann. Phys. 79, 368 (1850). Engl. trans. in Phil. Mag. 2, 1 (1851) and in: Reflections on the motive power of fire,… (ed. E. Mendoza ). New York: Dover 1960.

    Google Scholar 

  • Clausius, R. vox: Über die Art der Bewegung, welche wir Wärme nennen (The nature of the motion which we call heat). Ann. Phys. 100, 353 (1857). Eng. trans. in Phil. Mag. 14, 108 (1857) and Brush (1965).

    Google Scholar 

  • Clausius, R. voN: Über die mittlere Länge der Wege, welche bei Molekularbewegung gasförmigen Körper von den einzelnen Molekülen zurückgelegt werden, nebst einigen anderen Bemerkungen über die mechanischen Wärmetheorie (On the mean length of the paths described by the separate molecules of gaseous bodies). Ann. Phys. 105, 239 (1858). Eng. trans. in Phil. Mag. 17, 81 (1859) and Brush (1965).

    Google Scholar 

  • Clausius, R. vox: Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie (On different, convenient to use, forms of the main equations of mechanical heat theory). Ann. Phys. u. Chem. 125, 353 (1865).

    ADS  Google Scholar 

  • Clausius, R. Von: Über einen auf die Wärme anwendbaren mechanischen Satz (On a mechanical theorem applicable to heat). Sitz. Nidd. Ges. 114 (1870). Engl. trans. in Phil. Mag. 40, 122 (1870) and Brush (1965).

    Google Scholar 

  • Colgate, S. A., Johnson, M. H.: Hydrodynamic origin of cosmic rays. Phys. Rev. Lett. 5, 235 (1960).

    ADS  Google Scholar 

  • Colgate, S. A., White, R. H.: The hydrodynamic behavior of supernovae explosions. Ap. J. 143, 626 (1966).

    ADS  Google Scholar 

  • Cowling, T. G.: The electrical conductivity of an ionized gas in a magnetic field, with applications to the solar atmosphere and the ionosphere. Proc. Roy. Soc. London A 183, 453 (1945).

    MathSciNet  ADS  Google Scholar 

  • Cowling, T. G.: On the Sun’s general magnetic field. M.N. R. A. S. 105, 166 (1945).

    ADS  Google Scholar 

  • Cowling, T. G.: The growth and decay of the sunspot magnetic field. M.N. R. A. S. 106, 218 (1946).

    ADS  Google Scholar 

  • Cox, A. N., Stewart, J. N., Eilers, D. D.: Effects of bound-bound absorption on stellar opacities. Ap. J. Suppl. 11, 1 (1965).

    ADS  Google Scholar 

  • Cox, J. P. On second helium ionization as a cause of pulsational instability in stars. Ap. J. 138, 487 (1963).

    ADS  MATH  Google Scholar 

  • Cox, J. P., Whitney, C.: Stellar pulsation: IV. A semitheoretical period-luminosity relation for classical Cepheids. Ap. J. 127, 561 (1958).

    ADS  Google Scholar 

  • Danby, J. M. A., Bray, T. A.: Density of interstellar matter near a star. Astron. J. 72, 219 (1967).

    ADS  Google Scholar 

  • Danby, J. M. A., Camm, G. L.: Statistical dynamics and accretion. M.N.R. A. S. 117, 50 (1957).

    MathSciNet  MATH  Google Scholar 

  • Debye, P. Von, HücKel, E.: Zur Theorie der Elektrolyte: I. Gefrierpunktserniedrigung und verwandte Erscheinungen; II. Das Grenzgesetz für die elektrische Leitfähigkeit (On the theory of electrolytes: I. Lowering of the freezing point and related phenomena; II. The limiting laws for the electrical conductivity). Phys. Z. 24, 185, 305 (1923).

    Google Scholar 

  • Dirac, P. A. M.: On the theory of quantum mechanics. Proc. Roy. Soc. London A 112, 661 (1926).

    ADS  MATH  Google Scholar 

  • Eddington, A. S.: The kinetic energy of a star cluster. M.N. R. A. S. 76, 525 (1916).

    ADS  MATH  Google Scholar 

  • Eddington, A. S.: On the radiative equilibrium of the stars. M.N.R. A. S. 77, 16 (1917).

    MATH  Google Scholar 

  • Eddington, A. S.: On the pulsations of a gaseous star and the problem of the Cepheid variables. M.N. R. A. S. 79, 2 (1918).

    ADS  MATH  Google Scholar 

  • Eddington, A. S.: The pulsations of a gaseous star and the problem of the Cepheid variables. M.N. R. A. S. 79, 177 (1919).

    ADS  Google Scholar 

  • Eddington, A. S.: Internal constitution of the stars. Cambridge: Cambridge University Press 1926.

    MATH  Google Scholar 

  • Eddington, A. S.: On the cause of Cepheid pulsation. M. N. R.A.S. 101, 182 (1941).

    ADS  Google Scholar 

  • Edlen, B.: Die Deutung der Emissionslinien im Spektrum der Sonnenkorona (The interpretation of the emission line spectrum of the solar corona). Z. Ap. 22, 30 (1942).

    ADS  Google Scholar 

  • Eggen, O. J.: Photoelectric studies: V. Magnitudes and colors of classical Cepheid variable stars. Ap. J. 113, 367 (1951).

    ADS  Google Scholar 

  • Eggen, O. J., Greenstein, J. L.: Spectra, colors, luminosities, and motions of the white dwarfs. Ap. J. 141, 83 (1965).

    ADS  Google Scholar 

  • Eggen, O. J., Greenstein, J. L.: Observations of proper-motion stars II. Ap. J. 142, 925 (1965).

    ADS  Google Scholar 

  • Eggen, O. J., Greenstein, J. L.: Observations of proper-motion stars Iii. Ap. J. 150, 927 (1967).

    Google Scholar 

  • Einstein, A. Von: Zum gegenwärtigen Stand des Strahlungsproblems (Additional new opinions on radiation problems). Phys. Z. 10, 185 (1909).

    MATH  Google Scholar 

  • Einstein, A. Von: Quantentheorie des einatomigen idealen Gases (The quantum theory of the monatomic perfect gas). Preuss. Acad. Wiss. Berl. Berlin Sitz. 22, 261 (1924).

    Google Scholar 

  • Einstein, A. vox: Quantentheorie des einatomigen idealen Gases (The quantum theory of the monatomic perfect gas). Preuss. Acad. Wiss. Berl. Berlin Sitz. 1, 3, 18 (1925).

    Google Scholar 

  • Emden, R.: Gaskugeln (Gas spheres). Leipzig: Teuber 1907.

    Google Scholar 

  • Ensxoc, D.: Kinetische Theorie der Vorgänge in Massing verdünnten Gasen (Kinetic theory of processes in massive, dilute gases). Uppsala: Almqvist and Wiksell 1917.

    Google Scholar 

  • Epstein, I.: Pulsation properties of giant-star models. Ap. J. 112, 6 (1950).

    ADS  Google Scholar 

  • Erickson, W. C.: The radio-wave scattering properties of the solar corona. Ap. J. 139, 1290 (1964).

    ADS  Google Scholar 

  • Euler, L.: Principes generaux du movement des fluides ( General principles of the movement of fluids ). Hist. de l’acad. de Berlin 1755.

    Google Scholar 

  • Fabricius, D.: Vierteljahrsschrift (Fourth year book). 4, 290 (1594).

    Google Scholar 

  • Fermi, E. vox: Zur Quantelung des idealen einatomigen Gases (On quantisation of the ideal monatomic gas). Z. Physik 36, 902 (1926).

    ADS  MATH  Google Scholar 

  • Field, G. B.: Thermal instability. Ap. J. 142, 531 (1965).

    ADS  Google Scholar 

  • Field, G. B., Goldsmith, D. W., Habing, H. J.: Cosmic-ray heating in the interstellar gas. Ap. J. 155, L 149 (1969).

    Google Scholar 

  • Fokker, A. D.: Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld (Mean energy of a rotating electric molecule in a radiation field). Ann. Physik 43, 810 (1914).

    ADS  Google Scholar 

  • Forbush, S. E.: Time-variations of cosmic rays. In: Handbuch der Physik, vol. Xlix/1: Geophysics Iii. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • Fowler, R. H.: On dense matter. M. N. R.A.S. 87, 114 (1926).

    ADS  Google Scholar 

  • Frautschi, S., Bahcall, J. N., Steigman, G., Wheeler, J. C.: Ultradense matter. Comm. Ap. and Space Phys. 3, 121 (1971).

    ADS  Google Scholar 

  • Furth, H. P., Killeen, J., Rosenbluth, M. N.: Finite resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459 (1963).

    ADS  Google Scholar 

  • Gay-Lussac, M.: Memoir on the combination of gaseous substances with each other. Mem. de la société d’arcueil 2, 207 (1809). Eng. trans. in: Foundations of the molecular theory. Alemic Club Repr. No. 4. Edinburgh: Bishop 1950.

    Google Scholar 

  • Gibes, J. W.: Elementary principles in statistical mechanics. New York 1902.

    Google Scholar 

  • Giclas, H. L., Burnham, R., Thomas, N. G.: Lowell proper motions Ito XV. Lowell Obs. Bull. 89, 102, 112, 120, 122, 124, 129, 136, 140, 144, 150, 151, 152 (1960 to 1970 ).

    Google Scholar 

  • Giclas, H. L., Burnham, R., Thomas, N. G.: A list of white dwarf suspects I, II, Iii. Lowell Obs. Bull. 125, 141, 153 (1965, 1967, 1970 ).

    Google Scholar 

  • Ginzburg, V. L.: Superfluidity and superconductivity in astrophysics. Comments Astrophys. and Space Phys. 1, 81 (1969).

    ADS  Google Scholar 

  • Gliese, W.: Catalogue of nearby stars. Veroff-Astron. Rechen-Institut Heidelberg: Braun, Karlsruhe 1969.

    Google Scholar 

  • Gold, T., Hoyle, F.: On the origin of solar flares. M. N. R.A.S. 120, 89 (1960).

    ADS  Google Scholar 

  • Goodricke, J.: A series of observations on, and a discovery of, the period of the variation of the light of the bright star in the head of Medufa, called Algol. Phil. Trans. 73, 474 (1783).

    Google Scholar 

  • Green, H. S.: The molecular theory of fluids. New York: Interscience 1952.

    Google Scholar 

  • Greenstein, J. L.: The Lowell suspect white dwarfs. Ap. J. 158, 281 (1969).

    ADS  Google Scholar 

  • Greenstein, J. L.: Some new white dwarfs with peculiar spectra VI. Ap. J. 162, L 55 (1970).

    Google Scholar 

  • Greenstein, J. L., Oke, J. B., Shipman, H. L.: Effective temperature, radius, and gravitational redshift of Sirius B. Ap. J. 169, 563 (1971).

    ADS  Google Scholar 

  • Greenstein, J. L., Trimble, V. L.: The Einstein redshift in white dwarfs. Ap. J. 149, 283 (1967).

    ADS  Google Scholar 

  • Greenstein, J. L., Trimble, V. L.: The gravitational redshift of 40 Eridani B. Ap. J. 175, L 1 (1972).

    Google Scholar 

  • Hack, M.: The evolution of close binary systems. In: Star evolution—Proc. Int. Sch. Phys. Enrico Fermi—Course 38 (ed. L. Gratton ). New York: Academic Press 1963.

    Google Scholar 

  • Hamada, T., Salpeter, E. E.: Models for zero-temperature stars. Ap. J. 134, 683 (1961).

    MathSciNet  ADS  Google Scholar 

  • Harrison, B. K., Thorne, K. S., Wakano, M., Wheeler, J. A.: Gravitation theory and gravitational collapse. Chicago, Ill. University Chicago Press 1964.

    Google Scholar 

  • Hasegawa, A.: Plasma instabilities in the magnetosphere. Rev. of Geophys. and Space Sci. 9, 703 (1971).

    ADS  Google Scholar 

  • Heisenberg, W.: Zur statischen Theorie der Turbulenz (The statistical theory of turbulence). Z. Phys. 124, 628 (1948).

    MathSciNet  ADS  MATH  Google Scholar 

  • Heisenberg, W.: On the theory of statistical and isotropic turbulence. Proc. Roy. Soc. 195, 402 (1949).

    MathSciNet  ADS  Google Scholar 

  • Helmholtz, H. Von: Über die Erhaltung der Kraft (The conservation of force). Berlin: G. Riemer 1847. Engl. trans. in Brush, 1965.

    Google Scholar 

  • Helmholtz, H. Von: Popular lectures (1854).

    Google Scholar 

  • Helmholtz, H.: Über diskontinuierliche Flüssigkeitsbewegungen (On discontinuities in moving fluids). Wiess Abhandlungen 146, J. A. Barth, 1882. Engl. trans. in Phil. Mag. 36, 337 (1868).

    Google Scholar 

  • Henyey, L. Vardya, M. S., Bodenheimer, P.: Studies in stellar evolution: Iii. The calculation of model envelopes. Ap. J. 142 841 (1965).

    Google Scholar 

  • Herlofson, N.: Magneto-hydrodynamic waves in a compressible fluid conductor. Nature 165, 1020 (1950).

    MathSciNet  ADS  MATH  Google Scholar 

  • Hershberg, R. E., Pronik, V. I.: The theory of the Strömgren zone. Astron. Zh. 36, 902 (1959).

    ADS  Google Scholar 

  • Hertzsprung, E.: Zur Strahlung der Sterne (Giants and dwarfs). Z. Wiss. Photog. 3 (1905). Eng. trans. in: Source book in astronomy (ed. H. Shapley). Cambridge, Mass.: Harvard University Press 1960.

    Google Scholar 

  • Hertzsprung, E.: On the relation between period and form of the light curve of variable stars of the S Cephei type. B.A.N. 3, 115 (1926).

    ADS  Google Scholar 

  • Hide, R.: The character of the equilibrium of a heavy, viscous, incompressible fluid of variable density: I. General theory; II. Two special cases. Quart. J. Math. Appl. Math. 9, 22, 35 (1956).

    MathSciNet  Google Scholar 

  • Hines, C. O.: Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 38, 1441 (1960).

    ADS  Google Scholar 

  • Hjellming, R. M.: Physical processes in H II regions. Ap. J. 143, 420 (1966).

    ADS  Google Scholar 

  • Hjellming, R. M.: The effects of star formation and evolution on the evaluation of H II regions, and theoretical determinations of temperatures in H II regions. In: Interstellar ionized hydrogen (ed. Y. Terzian ). New York: W. A. Benjamin 1968.

    Google Scholar 

  • Hjellming, R. M., Gordon, C. P., Gordon, K. J.: Properties of interstellar clouds and the inter-cloud medium. Astron. Astrophys. 2, 202 (1969).

    ADS  Google Scholar 

  • Hoyle, F., Lyttleton, R. A.: The evolution of the stars. Proc. Camb. Phil. Soc. 35, 592 (1939).

    ADS  MATH  Google Scholar 

  • Hugoniot, Par H.: Sur la propagation du mouvement dans les corps et specialement dans les gaz parfarts (On the propagation of the movement of bodies, and especially of the perfect gas). J. de l’Ecole Polytechnique 57, 1 (1887), 59, 1 (1889).

    Google Scholar 

  • Jackson, J. D.: Longitudinal plasma oscillation. J. Nucl. Energy C, 1, 171 (1960).

    ADS  Google Scholar 

  • Jacobi, C. G. J.: Über die Figur des Gleichgewichts (On the figure of objects of the same specific gravity). Ann. Phys. u. Chem. 33, 229 (1834).

    ADS  Google Scholar 

  • DE Jaeger, C.: Structure and dynamics of the solar atmosphere. In: Handbuch der Physik, vol. Lii: Astrophysics IV: The solar system (ed. S. FLÜGge). Berlin-Heidelberg-New York: Springer 1959.

    Google Scholar 

  • Jeans, Sir J. H.: On the stability of a spherical nebula. Phil. Trans. Roy. Soc. London 199, 1 (1902).

    ADS  MATH  Google Scholar 

  • Jeans, Sir J. H.: The motion of tidally-distorted masses, with special reference to theories of cosmogony. Mem. R.A.S. London 62, 1 (1917).

    ADS  Google Scholar 

  • Jeans, Sir J. H.: Problems of cosmogony and stellar dynamics. Cambridge: Cambridge University Press 1919.

    MATH  Google Scholar 

  • Jeans, Sir J. H.: Astronomy and cosmogony. Cambridge: Cambridge University Press 1929.

    MATH  Google Scholar 

  • Jeffreys, H.: The stability of a layer of fluid heated below. Phil. Mag. 2, 833 (1926).

    MATH  Google Scholar 

  • Jeffreys, H.: The instability of a compressible fluid heated below. Proc. Camb. Phil. Soc. 26, 170 (1930).

    ADS  MATH  Google Scholar 

  • Jokipii, J. R.: Turbulence and scintillations in the interplanetary plasma. Ann. Rev. Astron. Astrophys. 11 (1974).

    Google Scholar 

  • Joule, J. P.: On matter, living force, and heat. (1847), lecture repr. in Joule’s scientific papers and Brush (1965).

    Google Scholar 

  • Kaplan, S. A.: A system of spectral equations of magneto-gas-dynamic isotropic turbulence. Dokl. Acad. Nauk. Sssr 94, 33 (1954).

    MATH  Google Scholar 

  • Kaplan, S. A., Pikelner, S. B.: The interstellar medium. Cambridge, Mass.: Harvard University Press 1970.

    Google Scholar 

  • Kardashev, N. S.: Nonstationariness of spectra of young sources of nonthermal radio emission. Sov. Astron. 6, 317 (1962).

    ADS  Google Scholar 

  • Karman, T. Von: On the statistical theory of turbulence. Proc. Nat. Acad. Sci. 23, 98 (1937).

    ADS  MATH  Google Scholar 

  • Karman, T. voN, Howarth, L.: On the statistical theory of isotropic turbulence. Proc. Roy. Soc. London A 164, 192 (1938).

    Google Scholar 

  • Kelvin, Lord (W. Thomson): On an absolute thermometric scale founded on Carnot’s theory of the motive power of heat. Proc. Camb. Phil. Soc. 1, 66 (1848).

    Google Scholar 

  • Kelvin, Lord (W. Thomson): Physical considerations regarding the possible age of the Sun’s heat Phil. Mag. 23, 158 (1862) Brit. Assoc. Rpt. 27 (1861), Math. and Phys. Papers 5, 141 (1861).

    Google Scholar 

  • Kelvin, Lord (W. Thomson): On the convective equilibrium of temperature in the atmosphere. Math. and Phys. Papers 3, 255 (1862).

    Google Scholar 

  • Kelvin, Lord (W. Thomson): Sur le refroidissement seculaire du soleil. De la température actuelle due soleil. De l’origine et de la somme totale de la chaleur solaire (On the age of the Sun’s heat, the actual temperature of the Sun, and the origin of the sum total of the Sun’s heat). Les Mondes, 3, 473 (1863).

    Google Scholar 

  • Kelvin, Lord (W. Thomson): Hydrokinetic solutions and observations, on the motion of free solids through a liquid. Phil. Mag. 42, 362 (1871).

    Google Scholar 

  • Kemp, J. C., Swedlund, J. B., Landstreet, J. D., Angel, J. R. P.: Discovery of circularly polarized light from a white dwarf. Ap. J. 161, L 77 (1970).

    Google Scholar 

  • Kemp, J. C., Swedlund, J. B., Wolstencroft, R. D.: Confirmation of the magnetic white dwarf G 195–19. Ap. J. 164, L 17 (1971).

    Google Scholar 

  • Kirkwood, J. G.: The statistical mechanical theory of transport processes: II. Transport in gases. J. Chem. Phys. 15, 72, 155 (1947).

    ADS  Google Scholar 

  • Kolmogoroff, A. N.: The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers. Compt. Rend. Acad. Sci. (Sssr) 30, 301 (1941).

    MathSciNet  Google Scholar 

  • Kolmogoroff, A. N.: Dissipation of energy in the locally isotropic turbulence. Compt. Rend. Acad. Sci. (Sssr) 32, 16 (1941).

    MathSciNet  Google Scholar 

  • Kotjiari, D. S.: The theory of pressure-ionization and its applications. Proc. Roy. Soc. London A 165, 486 (1938).

    ADS  Google Scholar 

  • Krotscheck, E.: Superfluidity in neutron matter. Z. Phys. 251, 135 (1972).

    ADS  Google Scholar 

  • Kruskal, M., Schwarzschild, M.: Some instabilities of a completely ionized plasma. Proc. Roy. Soc. London A 223, 348 (1954).

    MathSciNet  ADS  MATH  Google Scholar 

  • Kruskal, M., Tuck, J. L.: The instability of a pinched fluid with a longitudinal magnetic field. Proc. Roy. Soc. London A 245, 222 (1958).

    MathSciNet  ADS  MATH  Google Scholar 

  • Kuchowicz, B.: Neutrino gas statistics. Bull. Acad. Pol. Sci. Ser. Sci. Mat. Astr. et Phys. 11, 317 (1963).

    Google Scholar 

  • Kuchowicz, B.: Neutrinos in superdense matter: I. A tentative statistical approach. I.st. Nucl. Res. Warsaw Rpt. 384 (1963).

    Google Scholar 

  • Kukarin, B. V., Parenago, P. P.: General catalogue of variable stars. 3rd ed. Moscow 1969.

    Google Scholar 

  • Kulsrud, R. M.: Plasma instabilites. In: Plasma astrophysics Proc. Int. Sch. Phys. Enrico Fermi—Course 39 (ed. P. A. Sturrock ). New York: Academic Press 1967.

    Google Scholar 

  • Kutsenko, A. B., Stepanov, K. N.: Instability of plasma with anisotropic distributions of ion and electron velocities. Sov. Phys. Jetp 11, 1323 (1960).

    Google Scholar 

  • Laan, H. Van Der: Radio galaxies: I. The interpretation of radio source data. M. N. R. A. S. 126, 519 (1963).

    ADS  Google Scholar 

  • Lamb, H.: On the oscillations of a viscous spheroid. Proc. London Math. Soc. 13, 51 (1881).

    Google Scholar 

  • Lamb, H.: On the theory of waves propagated vertically in the atmosphere. Proc. London Math. Soc. 7, 122 (1909).

    MATH  Google Scholar 

  • Lamb, H.: Hydrodynamics. Cambridge: Cambridge University Press 1916. Republ. New York: Dover.

    Google Scholar 

  • Landau, L. D.: On the theory of stars. Phys. Z. Sowjetunion 1, 285 (1932).

    MATH  Google Scholar 

  • Landau, L. D.: On the vibrations of the electronic plasma. J. Phys. (U. S. S. R.) 10, 25 (1946).

    MATH  Google Scholar 

  • Landau, L. D., Lifshitz, E. M.: Fluid mechanics. New York: Pergamon Press 1959.

    Google Scholar 

  • Landau, L. D., Lifshitz, E. M.: Statistical physics. Reading, Mass.: Addison-Wesley 1969.

    Google Scholar 

  • Landstreet, J. D., Angel, J. R. P.: Discovery of circular polarization in the white dwarf G 99–37. Ap. J. 165, L 67 (1971).

    Google Scholar 

  • Landolt, A. U.: A new short-period blue variable. Ap. J. 153, 151 (1968).

    ADS  Google Scholar 

  • Lane, J. H.: On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases as known to terrestial experiment. Amer. J. Sci. 50, 57 (1870).

    Google Scholar 

  • Lang, K. R.: The small scale, quasi-periodic, disk component of solar radio radiation. To be published Ap. J. Sept. 15 (1974).

    Google Scholar 

  • Laplace, P. S. Marquis DE: Sur la vitesse du son dans l’air et dan l’eau (On the velocity of sound in the air and the water). Ann. Chem. Phys. 3, 238 (1816).

    Google Scholar 

  • Lasker, B. M.: An investigation of the dynamics of old H II regions. Ap. J. 143, 700 (1966).

    ADS  Google Scholar 

  • Lasker, B. M.: Ionization fronts for H II regions with magnetic fields. Ap. J. 146, 471 (1966).

    ADS  Google Scholar 

  • Lasker, B. M.: The energization of the interstellar medium by ionization limited H II regions. Ap. J. 149, 23 (1967).

    ADS  Google Scholar 

  • Lasker, B. M., Hesser, J. E.: High frequency stellar oscillations: II. G44–32 A new short period blue variable star. Ap. J. 158, L 171 (1969).

    Google Scholar 

  • Lasker, B. M., Hesser, J. E.: High frequency stellar oscillations: VI. R 548 A periodically variable white dwarf. Ap. J. 163, L 89 (1971).

    Google Scholar 

  • Leavitt, H. S.: Periods of 25 variable stars in the small Magellanic cloud. Harvard Circular No. 173 (1912). Repr. in: Source book in astronomy (ed. H. Siapley ). Cambridge, Mass.: Harvard University Press 1960.

    Google Scholar 

  • Lebovitz, N. R., Russell, G. W.: The pulsations of polytropic masses in rapid, uniform rotation. Ap. J. 171, 103 (1972).

    ADS  Google Scholar 

  • Ledoux, P.: On the radial pulsation of gaseous stars. Ap. J. 102, 143 (1945).

    MathSciNet  ADS  Google Scholar 

  • Ledoux, P.: Stellar stability and stellar evolution. In: Star evolution—Proc. Int. Sch. Phys. “Enrico Fermi” Course 28. New York: Academic Press 1963.

    Google Scholar 

  • Ledoux, P.: Stellar stability. In: Stellar structure Stars and stellar systems Viii (ed. L. H. Aller and D. B. Mclaughlin ). Chicago, Ill.: University of Chicago Press 1965.

    Google Scholar 

  • Ledoux, P., Pekeris, C. L.: Radial pulsations of stars. Ap. J. 94, 124 (1941).

    ADS  Google Scholar 

  • Ledoux, P., Walraven, T.: Variable stars. In: Handbuch der Physik, vol. LI: Astrophysics II—Stellar structure (ed. S. FLÜGge ). Berlin-Heidelberg-New York: Springer 1958.

    Google Scholar 

  • Leighton, R. B., Noyes, R. W., Simon, G. W.: Velocity fields in the solar atmosphere: I. Preliminary report. Ap. J. 135, 474 (1962).

    ADS  Google Scholar 

  • Leung, Y. C., Wang, C. G.: Properties of hadron matter: II. Dense baryon matter and neutron stars. Ap. J. 170, 499 (1971).

    ADS  Google Scholar 

  • Lighthill, M. J.: On sound generated aerodynamically: I. General theory. Proc. Roy. Soc. London A 211, 564 (1952).

    MathSciNet  ADS  MATH  Google Scholar 

  • Lighthill, M. J.: On sound generated aerodynamically: II. Turbulence as a source of sound. Proc. Roy. Soc. London A 222, 1 (1954).

    MathSciNet  ADS  MATH  Google Scholar 

  • Lindblad, B.: A condensation theory for meteoric matter and its cosmological significance. Nature 135, 133 (1935).

    ADS  Google Scholar 

  • Loschmidt, J.: Zur Größe der Luftmoleküle (The size of atmospheric molecules). Wien. Ber. 52, 395 (1865).

    Google Scholar 

  • Lumley, J., Panofsky, H.: The structure of atmospheric turbulence. New York: Interscience Publ. 1964.

    Google Scholar 

  • Lost, R.: The solar wind. In: Interstellar gas dynamics (ed. H. J. Habing ). Dordrecht, Holland: D. Reidel 1970.

    Google Scholar 

  • Lyttleton, R. A.: The stability of rotating liquid masses. Cambridge: Cambridge University Press 1955.

    Google Scholar 

  • Maclaurin, C.: A treatise on fluxions. (1742. Cf.: History of the mathematical theories of attraction, and the figure of the Earth by I. Todhunter. Macmillan 1873. Repr. New York: Dover 1962.

    Google Scholar 

  • Mathews, W. G.: The time evolution of an H II region. Ap. J. 142, 1120 (1965).

    ADS  Google Scholar 

  • Mathews, W. G., O’Dell, C. R.: Evolution of diffuse nebulae. Ann. Rev. Astron. Astrophys. 1, 67 (1969).

    ADS  Google Scholar 

  • Maxwell, J. C.: Illustrations of the dynamical theory of gases: Part I. On the motions and collisions of perfectly elastic spheres; Part II. On the process of diffusion of two or more kinds of moving particles among one another. Phil. Mag. 19, 19, 20, 21 (1860), repr. Brush (1965).

    Google Scholar 

  • Maxwell, J. C.: Viscosity or internal friction of air and other gases. Phil. Trans. Roy. Soc. London 156, 249 (1866).

    Google Scholar 

  • Mayer, R.: The forces of inorganic nature. Ann. Chem. and Pharm. 42, 233 (1842). Engl. trans. in Phil. Mag. 24, 371 (1862) reprod. Brush (1965).

    Google Scholar 

  • Mccrea, W. H.: The formation of population I stars: Part I. Gravitational contraction. M. N. R. A. S. 117, 562 (1957).

    MathSciNet  ADS  MATH  Google Scholar 

  • McdouGall, J., Stoner, E. C.: The computation of Fermi-Dirac functions. Phil. Trans. Roy. Soc. London 237, 67 (1938).

    ADS  Google Scholar 

  • Mestel, L.: The theory of white dwarfs. In: Stellar structure—Stars and stellar systems Viii (ed. L. H. Aller and D. Mclaughlin ). Chicago, Ill.: University of Chicago Press 1965.

    Google Scholar 

  • Michel, F. C.: Accretion of matter by condensed objects. Astrophys. Space Sci. 15, 153 (1972).

    ADS  Google Scholar 

  • Molseev, S. S., Sagdeev, R. Z.: On the Bohm diffusion coefficient. Soy. Phys. Jetp 17, 515 (1963).

    Google Scholar 

  • Moore, C. E.: Ionization potentials and ionization limits derived from the analysis of optical spectra. Nat. Bur. Stands. (Wash.) rpt. Nsrds-Nbs 34 (1970).

    Google Scholar 

  • Mott-Smith, H. M.: The solution of the Boltzmann equation for a shock wave. Phys. Rev. 82, 885 (1951).

    MathSciNet  ADS  Google Scholar 

  • Navier, C. L. M. H.: Mem. de l’acad. Sci. 6 (1822).

    Google Scholar 

  • Nernst, W.: Über die Beziehungen zwischen Wärmeentwicklung und maximaler Arbeit bei kondensierten Systemen (About the heat and maximum work of a condensed system). Sitz. Berl. 1, 933 (1906).

    Google Scholar 

  • Nernst, W.: The new heat theorem—Its foundations in theory and experiment. 1926. Repr. New York: Dover 1969.

    Google Scholar 

  • Ness, N. F., Scearce, C. S., Seek, J. B.: Initial results of the Imp 1 magnetic field experiment. J. Geophys. Res. 69, 3531 (1964).

    ADS  Google Scholar 

  • Newkirk, G.: Structure of the solar corona. Ann. Rev. Astron. Astrophys. 5, 213 (1967).

    ADS  Google Scholar 

  • Noves, R. W., Hall, D. N. B.: Thermal oscillations in the high solar photosphere. Ap. J. 176, L 89 (1972).

    Google Scholar 

  • Onsager, L.: The distribution of energy in turbulence. Phys. Rev. 68, 286 (1945).

    Google Scholar 

  • Oort, J. H.: Some phenomena connected with interstellar matter. M.N. R. A. S. 106, 159 (1946).

    ADS  Google Scholar 

  • Oort, J. H., Van DE Hulst, H. C.: Gas and smoke in interstellar space. B.A.N. 10, 187 (1946).

    ADS  Google Scholar 

  • Oppenheimer, J. R., Snyder, H.: On continued gravitational contraction. Phys. Rev. 56, 455 (1939).

    ADS  MATH  Google Scholar 

  • Oppenheimer, J. R., Volkoff, G. M.: On massive neutron cores. Phys. Rev. 55, 374 (1939).

    ADS  MATH  Google Scholar 

  • Osterbrock, D. E.: The heating of the solar chromosphere, plages, and corona by magnetohydrodynamic waves. Ap. J. 134, 347 (1961).

    ADS  Google Scholar 

  • Osterbrock, D. E.: Temperature in H II regions and planetary nebulae. Ap. J. 142, 1423 (1965).

    ADS  Google Scholar 

  • Ostriker, J. P., Bodenheimer, P., Lynden-Bell, D.: Equilibrium models of differentially rotating zero-temperature stars. Phys. Rev. Lett. 17, 816 (1966).

    ADS  Google Scholar 

  • Ostriker, J. P., Bodenheimer, P.: Rapidly rotating stars: II. Massive white dwarfs. Ap. J. 151, 1089 (1968).

    ADS  Google Scholar 

  • Ostriker, J. P., Hesser, J. E.: Ultrashort-period stellar oscillations: II. The period and light curve of HZ 29. Ap. J. 153, L 151 (1968).

    Google Scholar 

  • Ozernoy, L. M., Chibisov, G. V.: Galactic parameters as a consequence of cosmological turbulence. Astrophys. Lett. 7, 201 (1971).

    ADS  Google Scholar 

  • Pacholczyk, A. G., StodolkiewIcz, J. S.: On the gravitational instability of some magnetohydrodynamical systems of astrophysical interest. Acta. Astron. (Polska Akad. Nauk) 10, 1 (1960).

    ADS  Google Scholar 

  • Paczynski, B.: Evolutionary processes in close binary systems. Ann. Rev. Astron. Astrophys. 9, 183 (1971).

    ADS  Google Scholar 

  • Panharipande, V. R.: Hyperonic matter. Nucl. Phys. A 178, 123 (1971).

    ADS  Google Scholar 

  • Parker, E. N.: Gravitational instability of a turbulent medium. Nature 170, 1030 (1952).

    ADS  Google Scholar 

  • Parker, E. N.: Dynamics of the interplanetary gas and magnetic fields. Ap. J. 128, 664 (1958).

    ADS  Google Scholar 

  • Parker, E. N.: The solar-flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Ap. J. Suppl. Ser. 77, 8, 177 (1963).

    ADS  Google Scholar 

  • Parker, E. N.: Dynamical theory of the solar wind. Space Sci. Rev. 4, 666 (1965).

    Google Scholar 

  • Pauli, Von W.: Über Gasentartung und Paramagnetismus (Gas degeneration and paramagnetism). Z. Physik 41, 81 (1927).

    ADS  MATH  Google Scholar 

  • Petschek, H. E.: Annihilation of magnetic fields. Proc. Aas-Nasa conference on physics of solar flares (ed. W. N. Hess). Nasa SP-50, Wash. D.C. 1964.

    Google Scholar 

  • Pikelner, S.: Ionization and heating of the interstellar gas by subcosmic rays, and the formation of clouds. Soy. Astron. 11, 737 (1968).

    ADS  Google Scholar 

  • Pierce, J. R.: Possible fluctuations in electron streams due to ions. J. Appl. Phys. 19, 231 (1948).

    ADS  Google Scholar 

  • Pines, D.: Inside neutron stars. In: Proc. 12th int. conf. on low temperature physics. Academic Press Japan 1970.

    Google Scholar 

  • Pines, D., BoHM, D.: A collective description of electron interactions: II. Collective vs. individual particle aspects of the interactions. Phys. Rev. 85, 338 (1952).

    MathSciNet  ADS  MATH  Google Scholar 

  • Planck, M.: Über das Gesetz der Energieverteilung im Normalspektrum (On the theory of thermal radiation). Ann. Phys. 4, 553 (1901).

    MATH  Google Scholar 

  • PoincarÉ, H.: Lecons sur les hypothèses cosmogoniques (Lessons on cosmological hypothesis). Paris: Librarie Scientifique, A. Hermann 1811.

    Google Scholar 

  • PoincarÉ, H.: Lecons l’équilibre d’une masse fluide animeé d’un mouvement de rotation (Lesson on the equilibrium of rotating fluid masses). Acta. Math. 7, 259 (1855).

    Google Scholar 

  • Poisson, S. D.: Remarques sur une equation qui se présente das la theorie des attractions des spheroides (Remarks on an equation which presents itself in the theory of spheroidal attractions) Bull. de la Soc. Philomatique 3, 388 (1813).

    Google Scholar 

  • Power, H.: Experimental philosophy in three books containing new experiments, microscopical, mercurial, magnetical. London (1663), cf. I. B. Cohen. Newton, Hooke, and Boyle’s law. Nature 204, 618 (1964).

    Google Scholar 

  • Prandtl, L.: Verhandlungen des Dulten Internationalen Mathematiker-Kongresses (Transactions of the international mathematical congress). 484 (1905), see also The physics of solids and fluids by P. P. Ewald and L. Prandtl. London: Blakie 1930.

    Google Scholar 

  • Prandtl, L.: Essentials of fluid dynamics. London: Blakie 1952.

    MATH  Google Scholar 

  • Proudman, J.: On the motion of solids in a liquid possesing vorticity. Proc. Roy. Soc. London A 92, 408 (1916).

    ADS  MATH  Google Scholar 

  • Proudman, J.: The generation of noise by isotropic turbulence. Proc. Roy. Soc. London A 214, 119 (1952).

    MathSciNet  ADS  MATH  Google Scholar 

  • Rankine, W. J. M.: On the thermodynamic theory of waves of finite longitudinal disturbance. Phil. Trans. Roy. Soc. London 160, 277 (1870).

    Google Scholar 

  • Ravenhall, D. G., Bennett, C. D., Pethick, C. J.: Nuclear surface energy and neutron star matter. Phys. Rev. Lett. 78, 978 (1972).

    ADS  Google Scholar 

  • Rayleigh, Lord: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc. 14, 170 (1883).

    MATH  Google Scholar 

  • Rayleigh, Lord: On convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag. 32, 529 (1916).

    Google Scholar 

  • Reynolds, O.: On the force caused by the communication of heat between a surface and a gas and on a new photometer. Phil. Mag. 23, 1 (1876).

    Google Scholar 

  • Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. London 174, 935 (1883).

    MATH  Google Scholar 

  • Richardson, R. S., Schwarzschild, M.: On the turbulent velocities of solar granules. Ap. J. 111, 351 (1950).

    ADS  Google Scholar 

  • Riddle, R. K.: First catalogue of trigonometric parallaxes of faint stars. Publ. U. S. Naval Obs. 120, part 3 (1970).

    Google Scholar 

  • Ritter, A. vox: Untersuchungen über die Höhe der Atmosphäre und die Konstitution gasförmiger Weltkörper (Investigations on the height of the atmosphere and the constitution of gaseous celestial bodies). Ann. Phys. u. Chem. 8, 157 (1880).

    Google Scholar 

  • Ritter, A. vox: Untersuchungen über die Höhe der Atmosphäre und die Konstitution gasförmiger Weltkörper (Investigation of the height of the atmosphere and the constitution of gaseous celestial bodies). Ann. Phys. u. Chem. 13, 360 (1881).

    ADS  Google Scholar 

  • Roche, M.: Mémoire sur la figure d’une masse fluide (Soumise à l’attraction d’un point eloigne), Memoir on the figure of a fluid mass (subject to the attraction of a distant point). Acad. des Sci. de Montpellier 1, 243, 333 (1847).

    Google Scholar 

  • Rosenbluth, M., Macdonald, W. M., JuDD, D. L.: Fokker-Planck equation for an inverse square force. Phys. Rev. 107, 1 (1957).

    MathSciNet  ADS  MATH  Google Scholar 

  • Rosseland, S.: Viscosity in the stars. M. N. R. A. S. 89, 49 (1929).

    ADS  MATH  Google Scholar 

  • Routly, P. M.: Second catalogue of trigonometric parallaxes of faint stars. Publ. U. S. Naval Obs. 20, part 6 (1972).

    Google Scholar 

  • Roxburgh, I. W.: On models of nonspherical stars: II. Rotating white dwarfs. Z. Ap. 62, 134 (1965).

    ADS  Google Scholar 

  • Rubin, R. H.: The structure and properties of H II regions. Ap. J. 153, 761 (1968).

    ADS  Google Scholar 

  • Ruderman, M.: Superdense matter in stars. J. Phys. Suppl. 11, 30, 152 (1969).

    Google Scholar 

  • Rutherford, E.: The scattering of a and ß particles by matter and the structure of the atom. Phil. Mag. 21, 669 (1911).

    MATH  Google Scholar 

  • Sackur, O.: Die Anwendung der Kinetischen Theorie der Gase auf chemische Probleme (The application of the kinetic theory of gases to chemical problems). Ann. Phys. 36, 958 (1911).

    MATH  Google Scholar 

  • Sackur, O.: Die universelle Bedeutung des sog. elementaren Wirkungsquantums (Universal significance of the elementary working-quantum). Ann. Phys. 40, 67 (1913).

    MATH  Google Scholar 

  • Saha, M. N.: Ionization in the solar chromosphere. Phil. Mag. 40, 472 (1920).

    Google Scholar 

  • Saha, M. N.: On the physical theory of stellar spectra. Proc. Roy. Soc. London A 99, 135 (1921).

    ADS  Google Scholar 

  • Salpeter, E. E.: Energy and pressure of a zero temperature plasma. Ap. J. 134, 669 (1961).

    MathSciNet  ADS  Google Scholar 

  • Sampson, R. A.: On the rotation and mechanical state of the Sun. Mem. R. A. S. 51, 123 (1894).

    ADS  Google Scholar 

  • Schwarzschild, K.: Über das Gleichgewicht der Sonnenatmosphäre (On the equilibrium of the Sun’s atmosphere). Gott. Nach. 1, 41 (1906).

    Google Scholar 

  • Schwarzschild, M.: Overtone pulsations for the standard model. Ap. J. 94, 245 (1941).

    ADS  MATH  Google Scholar 

  • Schwarzschild, M.: On noise arising from the solar granulation. Ap. J. 107, 1 (1948).

    ADS  Google Scholar 

  • Seaton, M. J.: The chemical composition of the interstellar gas. M. N. R. A.S. 111, 368 (1951).

    ADS  Google Scholar 

  • Seaton, M. J.: Electron temperatures and electron densities in planetary nebulae. M.N. R. A. S. 114, 154 (1954).

    ADS  Google Scholar 

  • Seaton, M. J.: The kinetic temperature of the interstellar gas in regions of neutral hydrogen. Ann. Astrophys. 18, 188 (1955).

    ADS  Google Scholar 

  • Sedov, L. I.: Similarity and dimensional methods in mechanics. New York: Academic Press 1959 and Course in continuum mechanics, vol. 1–4. Groningen: Wolter-Noordhoff 1971.

    Google Scholar 

  • Shatzman, E.: The heating of the solar corona and chromosphere. Ann. Astrophys. 12, 203 (1949).

    ADS  Google Scholar 

  • Shipman, H. L. Masses and radii of white dwarfs. Ap. J. 177, 723 (1972).

    Google Scholar 

  • Shklovsxv, I. S.: Secular variations in the flux and intensity of radio emission from discrete sources. Sov. Astron. 6, 317 (1960).

    Google Scholar 

  • Shklovsky, I. S.: Supernovae. New York: Wiley Interscience 1968.

    Google Scholar 

  • Siemans, P. J., Pandharipande, V. R.: Neutron matter computations in Brueckner and variational theory. Nucl. Phys. A 173, 561 (1971).

    ADS  Google Scholar 

  • Simon, A.: Diffusion of like particles across a magnetic field. Phys. Rev. 100, 1557 (1955).

    ADS  MATH  Google Scholar 

  • Spiegel, E. A.: The gas dynamics of accretion. In: Interstellar gas dynamics (ed. H. J. Habing ). Dordrecht, Holland: D. Reidel 1970.

    Google Scholar 

  • Spiegel, E. A.: Convection in stars: Part. I. Basic Boussinesq convection. Ann. Rev. Astron. Astrophys. 9, 223 (1971).

    ADS  Google Scholar 

  • Spitzer, L.: The temperature of interstellar matter I. Ap. J. 107, 6 (1948).

    ADS  Google Scholar 

  • Spitzer, L.: The temperature of interstellar matter II. Ap. J. 109, 337 (1949).

    ADS  Google Scholar 

  • Spitzer, L.: Behavior of matter in space. Ap. J. 120, 1 (1954).

    ADS  Google Scholar 

  • Spitzer, L.: Physics of fully ionized gases. New York: Wiley 1962.

    Google Scholar 

  • Spitzer, L., Harm, R.: Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977 (1953).

    ADS  MATH  Google Scholar 

  • Spitzer, L., Savedoff, M. P.: The temperature of interstellar matter Iii. Ap. J. 111, 593 (1950).

    ADS  Google Scholar 

  • Spitzer, L., Scott, E. H.: Heating of H I regions by energetic particles: II. Interaction between secondaries and thermal electrons. Ap. J. 158, 161 (1969).

    ADS  Google Scholar 

  • Stefan, A. J.: Beziehung zwischen Wärmestrahlung und Temperatur (Relation between thermal radiation and temperature). Wien. Ber. 79, 397 (1879).

    Google Scholar 

  • Stein, R. F.: Waves in the solar atmosphere: I. The acoustic energy flux. Ap. J. 154, 297 (1968).

    ADS  Google Scholar 

  • Stein, R. F., Schwartz, R. A.: Waves in the solar atmosphere: II. Large amplitude acoustic pulse propagation. Ap. J. 177, 807 (1972).

    ADS  Google Scholar 

  • Stokes, G. G.: On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Phil. Soc. 8, 287 (1845).

    Google Scholar 

  • Stoner, C.: The equilibrium of dense stars. Phil. Mag. 9, 944 (1930).

    MATH  Google Scholar 

  • StrÖMgren, B.: The physical state of interstellar hydrogen. Ap. J. 89, 526 (1939).

    ADS  MATH  Google Scholar 

  • Sturrock, P. A.: Kinematics of growing waves. Phys. Rev. 112, 1488 (1958).

    MathSciNet  ADS  MATH  Google Scholar 

  • Sturrock, P. A.: Model of the high-energy phase of solar flares. Nature 211, 695 (1966).

    ADS  Google Scholar 

  • Sweet, P. A.: The neutral point theory of solar flares. In: Proc. I. A. U. Symp. on electromagnetic phenomenon in cosmical physics (ed. B. Lehnert ). Cambridge: Cambridge Univ. Press 1958.

    Google Scholar 

  • Tassoul, J. L.: Adiabatic pulsations and convective instability of gaseous masses Iii. M. N. R. A. S. 138, 123 (1968).

    ADS  Google Scholar 

  • Tassoul, J. L., Ostriker, J. P.: On the oscillations and stability of rotating stellar modes I. Ap. J. 154, 613 (1968).

    ADS  MATH  Google Scholar 

  • Tassoul, M., Tassoul, J. L.: Adiabatic pulsations and convective instability of gaseous masses I, II. Ap. J. 150, 213, 1031 (1967).

    ADS  Google Scholar 

  • Tayler, R. J.: Hydrodynamic instabilities of an ideally conducting fluid. Proc. Phys. Soc. London B 70, 31 (1957).

    ADS  MATH  Google Scholar 

  • Taylor, G. I.: Experiments with rotating fluids. Proc. Roy. Soc. London A 100, 114 (1921).

    ADS  MATH  Google Scholar 

  • Taylor, G. I.: Statistical theory of turbulence. Proc. Roy. Soc. London A 151, 421 (1935).

    ADS  MATH  Google Scholar 

  • Taylor, G. I.: The spectrum of turbulence. Proc. Roy. Soc. London A 164, 1476 (1938).

    Google Scholar 

  • Taylor, G. I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I. Proc. Roy. Soc. London A 201, 192 (1950).

    ADS  MATH  Google Scholar 

  • Tetrode, H. voN: Die chemische Konstante der Gase und das elementare Wirkungsquantum (Chemical gas constants and the elementary action quantum). Ann. Phys. 38, 434 (1912).

    MATH  Google Scholar 

  • Thompson, W. B.: Thermal convection in a magnetic field. Phil. Mag. 42, 1417 (1951).

    MATH  Google Scholar 

  • Tidman, D. A.: Structure of a shock wave in fully ionized hydrogen. Phys. Rev. 111, 1439 (1958).

    MathSciNet  ADS  MATH  Google Scholar 

  • Toxxs, L., Langmuir, I.: Oscillations in ionized gases. Phys. Rev. 33, 195 (1929).

    ADS  Google Scholar 

  • Townely, R.: (1662), cf. I. B. Cohen. Newton, Hooke, and Boyle’s law. Nature 204, 618 (1964).

    Google Scholar 

  • Trimble, V. L., Greenstein, J. L.: The Einstein redshift in white dwarfs Iii. Ap. J. 177, 441 (1972).

    ADS  Google Scholar 

  • Tsuruta, S., Cameron, A. G. W.: Some effects of nuclear forces on neutron-star models. Can. J. Phys. 44, 1895 (1966).

    ADS  Google Scholar 

  • Voort, P. O.: The formation of H II regions. Ap. J. 137, 381, 138, 426 (1963).

    ADS  Google Scholar 

  • Voort, P. 0.: The stability of ionization fronts and the evolution of H II regions. Ap. J. 138, 599 (1963).

    ADS  Google Scholar 

  • Vlasov, A. A.: The oscillation properties of an electron gas. Zhur. Eksp. Theor. Fiz. 8, 291 (1938).

    MATH  Google Scholar 

  • Vlasov, A. A.: On the kinetic theory of an assembly of particles with collective interaction. J. Phys. (U. S. S. R.) 9, 25 (1945).

    MathSciNet  MATH  Google Scholar 

  • Vogel, H. C.: Spectrographische Beobachtungen an Algol (Spectroscopy of Algol). Astron. Nach. 123, 289 (1889).

    ADS  Google Scholar 

  • Wang, C. G., Rose, W. K., Schlenker, S. L.: Models for neutron-core stars based on realistic nuclear-matter calculations. Ap. J. 160, L 17 (1970).

    Google Scholar 

  • Warner, B.: Observations of rapid blue variables X. G 61–29. M. N. R.A.S. 159, 315 (1972).

    ADS  Google Scholar 

  • Warner, B., Nather, R. E.: Observations of rapid blue variables II—HL Tau 76. M.N.R. A.S. 156, 1 (1972).

    ADS  Google Scholar 

  • Weber, E. J., Davis, L.: The angular momentum of the solar wind. Ap. J. 148, 217 (1967).

    ADS  Google Scholar 

  • WeizsÄCker, C. F. Von: The evolution of galaxies and stars. Ap. J. 114, 165 (1951).

    Google Scholar 

  • Whang, Y. C., Liu, C. K., Chang, C. C.: A viscous model of the solar wind. Ap. J. 145, 255 (1966).

    ADS  Google Scholar 

  • Whittaker, W. A.: Heating of the solar corona by gravity waves. Ap. J. 137, 914 (1963).

    ADS  Google Scholar 

  • Yang, C. H., Clark, J. W.: Superfluid condensation energy of neutron matter. Nucl. Phys. A 174, 49 (1971).

    ADS  Google Scholar 

  • YvoN, J.: La theorie des fluides et l’equation d’état: Actualites scientifiques et industrielles (The theory of fluids and the equation of state: Scientific and industrial actualities). Paris: Hermann and Cie 1935.

    Google Scholar 

  • Zeldovich, Y. B., Novikov, I. D.: Relativistic astrophysics, vol. 1: Stars and relativity. Chicago, Ill.: University of Chicago Press 1971.

    Google Scholar 

  • Zheleznyakov, V. V., Zaitsev, V. V.: Contribution to the theory of type Iii radio bursts I. Soy. Astron. A. J. 14, 47 (1970).

    ADS  Google Scholar 

  • Zhevakin, S. A.: Theory of Cepheids. Astron. J. Soy. Union 30, 161 (1953).

    Google Scholar 

  • Zhevakin, S. A.: Pulsation theory of variable stars. Ann. Rev. Astron. Astrophys. 1, 367 (1963).

    ADS  Google Scholar 

  • Aannestad, P. A., Kenyon, S. J.: Temperature fluctuations and the size distribution of interstellar grains. Ap. J. 230, 771 (1979).

    ADS  Google Scholar 

  • Abramowicz, M. A., Wagoner, R. V.: Variational analysis of rotating neutron stars. Ap. J. 204, 896 (1976).

    ADS  Google Scholar 

  • Aggarwal, H., Oberbeck, V. R.: Roche limit of a solid body. Ap. J. 191, 577 (1974).

    ADS  Google Scholar 

  • Ahmad, A., Cohen, L.: Dynamical friction in gravitational systems. Ap. J. 188, 469 (1974).

    ADS  Google Scholar 

  • Aizenman, M. L., Cox, J. P.: Pulsational stability of stars in thermal imbalance. IV. Direct solution of differential equation. Ap. J. 194, 663 (1974).

    ADS  Google Scholar 

  • Aizenman, M. L., Cox, J. P.: Pulsational stability of stars in thermal imbalance. VI. Physical mechanisms and extension to nonradial oscillations. Ap. J. 195, 175 (1975).

    ADS  Google Scholar 

  • Aizenman, M. L., Cox, J. P.: Vibrational stability of differentially rotating stars. Ap. J. 202, 137 (1975).

    MathSciNet  ADS  Google Scholar 

  • Aizenman, M. L., Hansen, C. J., Ross, R. R.: Pulsation properties of upper-main-sequence stars. Ap. J. 201, 387 (1975).

    ADS  Google Scholar 

  • Angel, J. R. P., Landstreet, J. D.: A determination by the Zeeman effect of the magnetic field strength in the white dwarf G99–37. Ap. J. 191, 457 (1974).

    ADS  Google Scholar 

  • Angel, J. R. P.: Magnetism in white dwarfs. Ap. J. 216, 1 (1977).

    ADS  Google Scholar 

  • Angel, J. R. P.: Magnetic white dwarfs. Ann. Rev. Astron. Ap. 16, 487 (1978).

    ADS  Google Scholar 

  • Apruzese, J. P.: Radiative transfer in spherical circumstellar dust envelopes. Iii. Dust envelope models of some well-known infrared stars. Ap. J. 196, 761 (1975).

    ADS  Google Scholar 

  • Apruzese, J. P.: Radiative transfer in spherical circumstellar dust envelopes. V. Theoretical circumstellar graphite and silicate emission spectra. Ap. J. 207, 799 (1976).

    ADS  Google Scholar 

  • Arnett, W. D.: Neutrino trapping during gravitational collapse of stars. Ap. J. 218, 815 (1977).

    ADS  Google Scholar 

  • Arnett, W. D., Bowers, R. L.: A microscopic interpretation of neutron star structure. Ap. J. Suppl. 33, 415 (1977).

    ADS  Google Scholar 

  • Arons, J., Lea, S. M.: Accretion onto magnetized neutron stars: normal mode analysis of the interchange instability at the magnetopause. Ap. J. 210, 792 (1976).

    ADS  Google Scholar 

  • Assousa, G. E., Herbst, W., Turner, K. C.: Supernova-induced star formation in Cepheus OB3. Ap. J. 218, L 13 (1977).

    Google Scholar 

  • Ahluwalia, D. V., Wu, T. Y.: On the magnetic field of cosmological bodies. Nuovo Cimento Letters 23, 406 (1978).

    ADS  Google Scholar 

  • Bardeen, J. M., et al.: A new criterion for secular instability of rapidly rotating stars. Ap. J. 217, L49 (1977).

    MathSciNet  ADS  Google Scholar 

  • Barkat, Z.: Neutrino processes in stellar interiors. Ann. Rev. Astron. Ap. 13, 45 (1975).

    ADS  Google Scholar 

  • Barkat, Z., REiss, Y., Rakavy, G.: Stars in the mass range 75M/Mo510 as candidates for pulsar progenitors. Ap. J. 193, L21 (1974).

    ADS  Google Scholar 

  • Barlow, M. J., Silk, J.: Graphite grain surface reactions in interstellar and protostellar environments. Ap. J. 215, 800 (1977).

    ADS  Google Scholar 

  • Barnes, A.: Acceleration of the solar wind by the interplanetary mganetic field. Ap. J. 188, 645 (1974).

    ADS  Google Scholar 

  • Bar-Nun, A.: Interstellar molecules: direct formation on graphite grains. Ap. J. 197, 341 (1975).

    ADS  Google Scholar 

  • Bash, F. N., Green, E., Peters, W. L.: The galactic density wave, molecular clouds, and star formation. Ap. J. 217, 464 (1977).

    ADS  Google Scholar 

  • Baym, G., Lamb, D. Q., Lamb, F. K.: Dynamical effects of possible solid cores in neutron stars and degenerate dwarfs. Ap. J. 208, 829 (1976).

    ADS  Google Scholar 

  • Baym, G., Pethick, C.: Physics of neutron stars. Ann. Rev. Astron. Ap. 17, 415 (1979).

    ADS  Google Scholar 

  • Bertin, G., Radicati, L. A.: The bifurcation from the Maclaurin to the Jacobi sequence as a second-order phase transition. Ap. J. 206, 815 (1976).

    MathSciNet  ADS  Google Scholar 

  • Black, D. C., Bodenheimer, P.: Evolution of rotating interstellar clouds. II. The collapse of proto-stars of 1, 2, and 5 M. Ap. J. 206, 138 (1976).

    ADS  Google Scholar 

  • Black, J. H., Dalgarno, A.: Models of interstellar clouds. I. The zeta ophiuchi cloud. Ap. J. Suppl. 34, 405 (1977).

    ADS  Google Scholar 

  • Bludman, S. A., Van Riper, K. A.: Equation of state of an ideal Fermi gas. Ap. J. 212, 859 (1977).

    ADS  Google Scholar 

  • BÖHM, K.-H., et al.: Some properties of very low temperature, pure helium surface layers of degenerate dwarfs. Ap. J. 217, 521 (1977).

    ADS  Google Scholar 

  • Bowers, R. L., et al.: A realistic lower bound for the maximum mass of neutron stars. Ap. J. 196, 639 (1975).

    ADS  Google Scholar 

  • Bowers, R. L., Gleeson, A. M., Pedigo, R. D.: A higher stability limit for neutron stars. Ap. J. 205, 261 (1976).

    ADS  Google Scholar 

  • Brecher, K., Chanmugam, G.: Why do collapsed stars rotate so slowly ? Ap. J. 221, 969 (1978).

    ADS  Google Scholar 

  • Breger, M., Bregman, J. N.: Period-luminosity-color relations and pulsation modes of pulsating variable stars. Ap. J. 200, 343 (1975).

    ADS  Google Scholar 

  • Bruenn, S. W., Marroquin, A.: Structure and properties of detonation waves. I. Detonation waves in dense stellar material. Ap. J. 195, 567 (1975).

    ADS  Google Scholar 

  • Buchler, J. R., Yueh, W. R.: Compton scattering opacities in a partially degenerate electron plasma at high temperatures. Ap. J. 210, 440 (1976).

    ADS  Google Scholar 

  • Buchler, J. R., Coon, S. A.: The interacting neutron gas at high density and temperature. Ap. J. 212, 807 (1977).

    ADS  Google Scholar 

  • Buchler, J. R.: On the vibrational stability of stars in thermal imbulance. Ap. J. 220, 629 (1978).

    MathSciNet  ADS  Google Scholar 

  • Burke, J. R., Silk, J.: Dust grains in a hot gas. I. Basic physics. Ap. J. 190, 1 (1974).

    ADS  Google Scholar 

  • Burke, J. R., Silk, J.: The dynamical interaction of a newly formed protostar with infalling matter: the origin of interstellar grains. Ap. J. 210, 341 (1976).

    ADS  Google Scholar 

  • Burton, W. B., Liszt, H. S.: The gas distribution in the central region of the galaxy. I. Atomic hydrogen. Ap. J. 225, 815 (1978).

    ADS  Google Scholar 

  • Cannon, C. J., Thomas, R. N.: The origin of stellar winds: subatmospheric nonthermal storage modes versus radiation pressure. Ap. J. 211, 910 (1977).

    ADS  Google Scholar 

  • Canuto, V.: Equation of state ultrahigh densities. Ann. Rev. Astron. Ap. 13, 335 (1975).

    ADS  Google Scholar 

  • Canuto, V., Datta, B., Kalman, G.: Superdense neutron matter. Ap. J. 221, 274 (1978).

    ADS  Google Scholar 

  • Carson, T. R.: Stellar opacity. Ann. Rev. Astron. Ap. 14, 95 (1976).

    ADS  Google Scholar 

  • Carter, B., Quintana, H.: Stationary elastic rotational deformation of a relativistic neutron star model. Ap. J. 202, 511 (1975).

    ADS  Google Scholar 

  • Cassen, P., Pettibone, D.: Steady accretion of a rotating fluid. Ap. J. 208, 500 (1976).

    ADS  Google Scholar 

  • Cassinelli, J. P.: Stellar winds. Ann. Rev. Astron. Ap. 17, 275 (1979).

    ADS  Google Scholar 

  • Chanan, G. A., Middleditch, J., Nelson, J. E.: The geometry of the eclipse of a pointlike star by a Roche-lobefilling companion. Ap. J. 208, 512 (1976).

    ADS  Google Scholar 

  • Chandrasekhar, S.: On a criterion for the onset of dynamical instability by a nonaxisymmetric mode of oscillation along a sequence of differentially rotating configurations. Ap. J. 187, 169 (1974).

    MathSciNet  ADS  Google Scholar 

  • Chandrasekhar, S., Elbert, D. D.: The deformed figures of the Dedekind ellipsoids in the postNewtonian approximation to general relativity. Ap. J. 192, 731 (1974).

    MathSciNet  ADS  Google Scholar 

  • Chang, M.-W., Chammugam, G.: Radial oscillations of zero-temperature white dwarfs and neutron stars below nuclear densities. Ap. J. 217, 799 (1977).

    ADS  Google Scholar 

  • Chen, H.-H., Ruderman, M. A., Sutherland, P. G.: Structure of solid iron in superstrong neutron-star magnetic fields. Ap. J. 191, 473 (1974).

    ADS  Google Scholar 

  • Chevalier, R. A.: The interaction of supernovae with the interstellar medium. Ann. Rev. Astron. Ao. 15, 175 (1977).

    ADS  Google Scholar 

  • Clark, F. O., et al.: Upper limits to the ambient magnetic field in several dense molecular clouds. Ap. J. 226, 824 (1978).

    ADS  Google Scholar 

  • Clark, J. P. A., Eardley, D. M.: Evolution of close neutron star binaries. Ap. J. 215, 311 (1977).

    ADS  Google Scholar 

  • Clayton, D. D., Hoyle, F.: Grains of anomalous isotopic composition from novae. Ap. J. 203, 490 (1976).

    ADS  Google Scholar 

  • Clayton, D. D., Dwek, E., Woosley, S. E.: Isotopic anomalies and proton irradiation in the early solar system. Ap. J. 214, 300 (1977).

    ADS  Google Scholar 

  • Cogan, B. C.: The pulsation periods of stars with convection zones. Ap. J. 211, 890 (1977).

    ADS  Google Scholar 

  • Conti, P. S.: Mass loss in early-type stars. Ann. Rev. Astron. Ap. 16, 371 (1978).

    ADS  Google Scholar 

  • Cowan, J. J., Kafatos, M., Rose, W. K.: Sources of excitation of the interstellar gas and galactic structure. Ap. J. 195, 47 (1975).

    ADS  Google Scholar 

  • Cowie, L. L., McKee, C. F.: The evaporation of spherical clouds in a hot gas. I. Classical and saturated mass loss rates. Ap. J. 211, 135 (1977).

    Google Scholar 

  • Cox, A. N., Tabor, J. E.: Radiative opacity tables for 40 stellar mixtures. Ap. J. Suppl. 31, 271 (1976).

    ADS  Google Scholar 

  • Cox, J. P.: Effects of thermal imbalance on the pulsational stability of stars undergoing thermal runaways. Ap. J. 192, L 85 (1974).

    Google Scholar 

  • Cox, J. P., Davey, W. R., Aizenman, M. L.: Pulsational stability of stars in thermal imbalance. Iii. Analysis in terms of absolute variations. Ap. J. 191, 439 (1974).

    ADS  Google Scholar 

  • Cox, J. P.: Nonradial oscillations of stars: theories and observations. Ann. Rev. Astron. Ap. 14, 247 (1976).

    ADS  Google Scholar 

  • Cravens, T. E., Dalgarno, A.: Ionization, dissociation, and heating efficiencies of cosmic rays in a gas of molecular hydrogen. Ap. J. 219, 750 (1978).

    ADS  Google Scholar 

  • Cruddace, R., et al.: On the opacity of the interstellar medium to ultrasoft X-rays and extreme-ultraviolet radiation. Ap. J. 187, 497 (1974).

    ADS  Google Scholar 

  • Crutcher, R. M., et al.: OH Zeeman observations of interstellar dust clouds. Ap. J. 198, 91 (1975).

    ADS  Google Scholar 

  • Czyzak, S. J., Meese, J. M., Santiago, J. J.: Effects of stellar particle irradiation on interstellar grains. Ap. J. 207, 425 (1976).

    ADS  Google Scholar 

  • Dalgarno, A., Oppenheimer, M.: Chemical heating of interstellar clouds. Ap. J. 192, 597 (1974).

    ADS  Google Scholar 

  • Davey, W. R.: Pulsational stability of stars in thermal imbalance. V. Eigensolutions for quasi-adiabatic oscillations. Ap. J. 194, 687 (1974).

    ADS  Google Scholar 

  • Davey, W. R., Cox, J. P.: Pulsational stability of stars in thermal imbalance. II. An energy approach. Ap. J. 189, 113 (1974).

    ADS  Google Scholar 

  • Degregoria, A. J.: Linear radial and nonradial modes of oscillation of hot white dwarfs. Ap. J. 217, 175 (1977).

    ADS  Google Scholar 

  • Detweiler, S. L., Lindblom, L.: On the evolution of the homogeneous ellipsoidal figures. Ap. J. 213, 193 (1977).

    MathSciNet  ADS  Google Scholar 

  • Deutschman, W. A., Davis, R. J., Schild, R. E.: The galactic distribution of interstellar absorption as determined from the celescope catalog of ultraviolet stellar observations and a new catalog of Ubv, h-beta photoelectric observations. Ap. J. Suppl. 30, 97 (1976).

    ADS  Google Scholar 

  • Dopita, M. A., Mason, D. J., Robb, W. D.: Atomic nitrogen as a probe of physical conditions in the interstellar medium. Ap. J. 207, 102 (1976).

    ADS  Google Scholar 

  • Dopita, M. A.: Optical emission from shocks. IV. The Herbig-Haro objects. Ap. J. Suppl. 37, 117 (1978).

    ADS  Google Scholar 

  • Draine, B. T.: Photoelectric heating of interstellar gas. Ap. J. Suppl. 36, 595 (1978).

    ADS  Google Scholar 

  • Draine, B. T., Salpeter, E. E.: On the physics of dust grains in hot gas. Ap. J. 231, 77 (1979).

    ADS  Google Scholar 

  • Draine, B. T., Salpeter, E. E.: Destruction mechanisms for interstellar dust. Ap. J. 231, 438 (1979).

    ADS  Google Scholar 

  • Durisen, R. H.: Upper mass limits for stable rotating white dwarfs. Ap. J. 199, 179 (1975).

    ADS  Google Scholar 

  • Durisen, R. H.: Viscous effects in rapidly rotating stars with application to white-dwarf models. Iii. Further numerical results. Ap. J. 195, 483 (1975).

    ADS  Google Scholar 

  • Easson, I., Pethick, C. J.: Magnetohydrodynamics of neutron star interiors. Ap. J. 227, 995 (1979).

    ADS  Google Scholar 

  • Elmegreen, B. G.: The ionization of a low-density intercloud medium by a single O star. Ap. J. Suppl. 32, 147 (1976).

    ADS  Google Scholar 

  • Elmegreen, B. G.: Gravitational collapse in dust lanes and the appearance of spiral structure in galaxies. Ap. J. 231, 372 (1979).

    ADS  Google Scholar 

  • Elmegreen, B. G., Elmegreen, D. M.: Star formation in shock-compressed layers. Ap. J. 220, 1051 (1978).

    ADS  Google Scholar 

  • Elmegreen, B. G., Lada, C. J.: Sequential formation of subgroups in OB associations. Ap. J. 214, 725 (1977).

    ADS  Google Scholar 

  • Elsner, R. F., Lamb, F. K.: Accretion by magnetic neutron stars. I. Magnetospheric structure and stability. Ap. J. 215, 897 (1977).

    ADS  Google Scholar 

  • Epstein, R. I., Arnett, W. D.: Neutronization and thermal disintegration of dense stellar matter. Ap. J. 201, 202 (1975).

    ADS  Google Scholar 

  • Epstein, R.: Neutrino angular momentum loss in rotating stars. Ap. J. 219, L 39 (1978).

    Google Scholar 

  • Ewart, G. M., Guyer, R. A., Greenstein, G.: Electrical conductivity and magnetic field decay in neutron stars. Ap. J. 202, 238 (1975).

    ADS  Google Scholar 

  • Faulkner, D. J., Freeman, K. C.: Gas in globular clusters. I. Time-independent flow models. Ap. J. 211, 77 (1977).

    ADS  Google Scholar 

  • Field, G. B.: Interstellar abundances: gas and dust. Ap. J. 187, 453 (1974).

    ADS  Google Scholar 

  • Finn, G. D., Simon, T.: Dust shell models for compact infrared sources. Ap. J. 212, 472 (1977).

    ADS  Google Scholar 

  • Fishbone, L. G.: The relativistic Roche problem. II. Stability theory. Ap. J. 195, 499 (1975).

    ADS  Google Scholar 

  • Flowers, E., Itoh, N.: Transport properties of dense matter. Ap. J. 206, 218 (1976).

    ADS  Google Scholar 

  • Flowers, E., Ruderman, M., Sutherland, P.: Neutrino pair emission from finite-temperature neutron superfluid and the cooling of young neutron stars. Ap. J. 205, 541 (1976).

    ADS  Google Scholar 

  • Flowers, E., Ruderman, M. A.: Evolution of pulsar magnetic fields. Ap. J. 215, 302 (1977).

    ADS  Google Scholar 

  • Flowers, E. G., et al.: Variational calculation of groundstate energy of iron atoms and condensed matter in strong magnetic fields. Ap. J. 215, 291 (1977).

    ADS  Google Scholar 

  • Flowers, E., Irox, N.: Transport properties of dense matter. II. Ap. J. 230, 847 (1979).

    ADS  Google Scholar 

  • Fontaine, G., et al.: The effects of differences in composition, equation of state, and mixing length upon the structure of white-dwarf conversion zones. Ap. J. 193, 205 (1974).

    ADS  Google Scholar 

  • Fontaine, G., Van Horn, H. M.: Analytic surface boundary conditions for white dwarf evolutionary calculations. Ap. J. 197, 647 (1975).

    ADS  Google Scholar 

  • Fontaine, G., Van Horn, H. M.: Convective white-dwarf envelope model grids for H-, He-, and C-rich compositions. Ap. J. Suppl. 31, 467 (1976).

    ADS  Google Scholar 

  • Fontaine, G., Graboske, H. C. Jr., Van Horn, H. M.: Equations of state for stellar partial ionization zones. Ap. J. Suppl. 35, 293 (1977).

    ADS  Google Scholar 

  • Forrest, W. J., Gillett, F. C., Stein, W. A.: Circumstellar grains and the intrinsic polarization of starlight. Ap. J. 195, 423 (1975).

    ADS  Google Scholar 

  • Freeman, J., et al.: The local interstellar helium density. Ap. J. 215, L 83 (1977).

    Google Scholar 

  • Friman, B. L., Maxwell, O. V.: Neutrino emissivities of neutron stars. Ap. J. 232, 541 (1979).

    ADS  Google Scholar 

  • Gerola, H., Kafatos, M., Mccray, R.: Statistical time-dependent model for the interstellar gas. Ap. J. 189, 55 (1974).

    ADS  Google Scholar 

  • Ghosh, P., Lamb, F. K., Pethick, C. J.: Accretion by rotating magnetic neutron stars. I. Flow of matter inside the magnetosphere and its implications for spin-up and spin-down of the star. Ap. J. 217, 578 (1977).

    ADS  Google Scholar 

  • Ghosh, P., Lamb, F. K.: Accretion by rotating magnetic neutron stars. II. Radial and vertical structure of the transition zone in disk accretion. Ap. J. 232, 259 (1979).

    ADS  Google Scholar 

  • Ghosh, P., Lamb, F. K.: Accretion by rotating magnetic neutron stars. Iii. Accretion torques and period changes in pulsating X-ray sources. Ap. J. 234, 296 (1979).

    ADS  Google Scholar 

  • Glasser, M. L.: Ground state of electron matter in high magnetic fields. Ap. J. 199, 206 (1975).

    ADS  Google Scholar 

  • Glasser, M. L., Kaplan, J. I.: The surface of a neutron star in superstrong magnetic fields. Ap. J. 199, 208 (1975).

    ADS  Google Scholar 

  • Gough, D. O.: Mixing-length theory for pulsating stars. Ap. J. 214, 196 (1977).

    ADS  Google Scholar 

  • Graboske, H. C. Jr., Olness, R. J., Grossman, A. S.: Thermodynamics of dense hydrogen-helium fluids. Ap. J. 199, 255 (1975).

    ADS  Google Scholar 

  • Greenberg, P. J.: The equations of hydrodynamics for a thermally conducting viscous compressible fluid in a special relativity. Ap. J. 195, 761 (1975).

    ADS  Google Scholar 

  • Greenstein, G.: Superfluidity in neutron stars. I. Steadystate hydrodynamics and frictional heating. Ap. J. 200, 281 (1975).

    ADS  Google Scholar 

  • Greenstein, G.: Superfluidity in neutron stars. II. After a period jump. Ap. J. 208, 836 (1976).

    ADS  Google Scholar 

  • Greenstein, J. L.: A new list of 52 degenerate stars. Vii. Ap. J. 189, L 131 (1974).

    Google Scholar 

  • Greenstein, J. L.: A further list of degenerate stars. Viii. Ap. J. 196, L 117 (1975).

    Google Scholar 

  • Greenstein, J. L.: Degenerate stars with helium atmospheres. Ap. J. 210, 524 (1976).

    ADS  Google Scholar 

  • Greenstein, J. L.: Some further degenerate stars. IX. Ap. J. 207, L 119 (1976).

    Google Scholar 

  • Greisen, E. W.: The small-scale structure of interstellar hydrogen. Ap. J. 203, 371 (1976).

    ADS  Google Scholar 

  • Groth, E. J.: Timing of the crab pulsar. I. Arrival times. II. Method of analysis. Iii. The slowing down and the nature of random process. Ap. J. Suppl. 29, 431 (1975).

    Google Scholar 

  • Hansen, C. J., Aizenman, M. L., Ross, R. R.: The equilibrium and stability of uniformly rotating, isothermal gas cylinders. Ap. J. 207, 736 (1976).

    ADS  Google Scholar 

  • Hansen, C. J., Cox, J. P., Carroll, B. W.: The quasi-adiabatic analysis of nonradial modes of stellar oscillation in the presence of slow rotation. Ap. J. 226, 210 (1978).

    ADS  Google Scholar 

  • Harding, D., Guyer, R. A., Greenstein, G.: Superfluidity in neutron stars. Iii. Relaxation processes between the superfluid and the crust. Ap. J. 222, 991 (1978).

    ADS  Google Scholar 

  • Hartle, J. B., Sawyer, R. F., Scalapino, D. J.: Pion condensed matter at high densities: equation of state and stellar models. Ap. J. 199, 471 (1975).

    ADS  Google Scholar 

  • Hartle, J. B., Munn, M. W.: Slowly rotating relativistic stars. V. Static stability analysis of n=3/2 polytropes. Ap. J. 198, 467 (1975).

    ADS  Google Scholar 

  • Hartle, J. B., Sabbadine, A. G.: The equation of state and bounds on the mass of nonrotating neutron stars. Ap. J. 213, 831 (1977).

    ADS  Google Scholar 

  • Harvel, C. A.: Radiative transfer in circumstellar dust shells. Ap. J. 210, 862 (1976).

    ADS  Google Scholar 

  • Hegyi, D. J., Lee, T.-S. H., Cohen, J. M.: The maximum mass of nonrotating neutron stars. Ap. J. 201, 462 (1975).

    ADS  Google Scholar 

  • Hegyi, D. J.: The upper mass limit for neutron stars including differential rotation. Ap. J. 217, 244 (1977).

    ADS  Google Scholar 

  • Heiles, C.: The interstellar magnetic field. Ann. Rev. Astron. Ap. 14, 1 (1976).

    ADS  Google Scholar 

  • Heiles, C.: An almost complete survey of 21 cm line radiation for Iii. The interdependence of H1, galaxy counts, reddening, and galactic latitude. Ap. J. 204, 379 (1976).

    ADS  Google Scholar 

  • Heiles, C.: An almost complete survey of 21 centimeter line radiation for lb 10°. VI. Energetic expanding H1 shells. Ap. J. 208, L 137 (1976).

    Google Scholar 

  • Henriksen, R. N., Chau, W. Y.: Neutrino angular momentum loss by the Poynting-Robertson effect. Ap. J. 225, 712 (1978).

    ADS  Google Scholar 

  • Herbst, W., Assousa, G. E.: Observational evidence for supernovae-induced star formation: Canis Major R 1. Ap. J. 217, 473 (1977).

    ADS  Google Scholar 

  • Hewish, A.: Pulsars and high density physics. Rev. Mod. Phys. 47, 567 (1975).

    ADS  Google Scholar 

  • Hill, H. A., Caudell, T. P., Rosenwald, R. D.: On the use of spectral lines as a temperature indicator in a pulsating system. Ap. J. 213, L 81 (1977).

    Google Scholar 

  • Hill, J. K., Silk, J.: On the nature of the intercloud medium. Ap. J. 198, 299 (1975).

    ADS  Google Scholar 

  • Hill, J. K., Hollenbach, D. J.: Effects of expanding compact H II regions upon molecular clouds: molecular dissocation waves, shock waves, and carbon ionization. Ap. J. 225, 390 (1978).

    ADS  Google Scholar 

  • Hillebrabdt, W., Moller, E.: Matter in superstrong magnetic fields and the structure of a neutron star’s surface. Ap. J. 207, 589 (1976).

    ADS  Google Scholar 

  • Hills, J. G.: The rate of formation of white dwarfs in stellar systems. Ap. J. 219, 550 (1978).

    ADS  Google Scholar 

  • Hills, J. G.: An upper limit to the rate of formation of neutron stars in the galaxy. Ap. J. 221, 973 (1978).

    ADS  Google Scholar 

  • Hintzen, P., Strittmatter, P. A.: Problems in classifying cool degenerate stars. Ap. J. 201, L 37 (1975).

    Google Scholar 

  • Hobbs, L. M.: On ionization in H I regions. Ap. J. 188,L 107 (1974).

    Google Scholar 

  • Hobbs, L. M.: Statistical properties of interstellar clouds. Ap. J. 191, 395 (1974).

    ADS  Google Scholar 

  • Hsieh, S.-H., Spiegel, E. A.: The equations of photohydrodynamics. Ap. J. 207, 244 (1976).

    MathSciNet  ADS  Google Scholar 

  • Hunter, C.: On secular stability, secular instability, and points of bifurcation of rotating gaseous masses. Ap. J. 213, 497 (1977).

    ADS  Google Scholar 

  • Hunter, C.: The collapse of unstable isothermal spheres. Ap. J. 218, 834 (1977).

    ADS  Google Scholar 

  • Hutchins, J. B.: The thermal effects of H2 molecules in rotating and collapsing spheroidal gas clouds. Ap. J. 205, 103 (1976).

    ADS  Google Scholar 

  • Hwang, A. E., Dykla, J. J.: Can a neutron star be compressed into a black hole ? Ap. J. 192, L 141 (1974).

    Google Scholar 

  • Iben, I. Jr., Truran, J. W.: On the surface composition of thermally pulsing stars of high luminosity and on the contribution of such stars to the element enrichment of the interstellar medium. Ap. J. 220, 980 (1978).

    ADS  Google Scholar 

  • Ingham, W. H., Brecher, K., Wasserman, I.: On the origin of continuum polarization in white dwarfs. Ap. J. 207, 518 (1976).

    ADS  Google Scholar 

  • Ipser, J. R.: On using entropy arguments to study the evolution and secular stability of spherical stellar-dynamical systems. Ap. J. 193, 463 (1974).

    ADS  Google Scholar 

  • Jenkins, E. B., Morton, D. C., York, D. G.: Rocket-ultraviolet spectra of kappa, lambda, tau and upsilon scorpii. Ap. J. 194, 77 (1974).

    ADS  Google Scholar 

  • Jura, M.: Photoelectric heating of the interstellar gas. Ap. J. 204, 12 (1976).

    ADS  Google Scholar 

  • Karp, A. H.: Hydrodynamic models of a cepheid atmosphere. I. Deep envelope calculations. Ap. J. 199, 448 (1975).

    ADS  Google Scholar 

  • Karp, A. H.: Hydrodynamic models of a cepheid atmosphere. II. Continuous spectrum. Ap. J. 200, 354 (1975).

    ADS  Google Scholar 

  • Karp, A. H.: Hydrodynamic models of a cepheid atmosphere. Iii. Line spectrum and radius determinations. Ap. J. 201, 641 (1975).

    ADS  Google Scholar 

  • Katz, J., Horwitz, G., Klapisch, M.: Thermodynamic stability of relativistic stellar clusters. Ap. J. 199, 307 (1975).

    ADS  Google Scholar 

  • Kaufman, M.: Star formation and galactic evolution. I. General expressions and applications to our galaxy. Ap. J. 232, 707 (1979).

    ADS  Google Scholar 

  • Kazanas, D., Schramm, D. N.: Neutrino damping of nonradial pulsations in gravitational collapse. Ap. J. 214, 819 (1977).

    ADS  Google Scholar 

  • Kimmer, E.: Physical conditions in a hydrogen gas heated by suprathermal protons. Ap. J. 203, 674 (1976).

    ADS  Google Scholar 

  • King, D., et al.: Applications of linear pulsation theory to the cepheid mass problem and the double-mode cepheids. Ap. J. 195, 467 (1975).

    ADS  Google Scholar 

  • Kislinger, M. B., Morley, P. D.: Asymptotic freedom and dense stellar matter. II. The equation of state for neutron stars. Ap. J. 219, 1017 (1978).

    ADS  Google Scholar 

  • Kraft, R. P.: On the nonhomogeneity of metal abundances in stars of globular clusters and satellite subsystems of the galaxy. Ann. Rev. Astron. Ap. 17, 309 (1979).

    ADS  Google Scholar 

  • Kruskal, M., Schwarzschild, M., Harm, R.: An instability due to the local mixing-length approximation. Ap. J. 214, 498 (1977).

    ADS  Google Scholar 

  • Lamb, D. Q., Van Horn, H. M.: Evolution of crystallizing pure 12C white dwarfs. Ap. J. 200, 306 (1975).

    ADS  Google Scholar 

  • Lamb, D. Q., et al.: Hot dense matter and stellar collapse. Phys. Rev. Lett. 41, 1623 (1978).

    ADS  Google Scholar 

  • Landstreet, J. D., Angel, J. R. P.: The wavelength dependence of circular polarization in GD 229. Ap. J. 190, L 25 (1974).

    Google Scholar 

  • Landstreet, J. D., Angel, J. R. P.: The polarization spectrum and magnetic field strength of the white dwarf Grw+70°82–47. Ap. J. 196, 819 (1975).

    ADS  Google Scholar 

  • Langer, W. D.: Interstellar cloud evolution and the abundance of formaldehyde. Ap. J. 210, 328 (1976).

    ADS  Google Scholar 

  • Langer, W. D.: The stability of interstellar clouds containing magnetic fields. Ap. J. 225, 95 (1978).

    ADS  Google Scholar 

  • Lattimer, J. M., et al.: The decompression of cold neutron star matter. Ap. J. 213, 225 (1977).

    ADS  Google Scholar 

  • Lebovitz, N. R.: The fission theory of binary stars. II. Stability to third-harmonics disturbances. Ap. J. 190, 121 (1974).

    ADS  Google Scholar 

  • Lee, L. C., JgkiptI, J. R.: The irregularity spectrum in interstellar space. Ap. J. 206, 735 (1976).

    ADS  Google Scholar 

  • Lerche, I., Schramm, D. N.: Magnetic fields greater than 1020 Gauss? Ap. J. 216, 881 (1977).

    ADS  Google Scholar 

  • Levine, R. H.: Acceleration of thermal particles in collapsing magnetic regions. Ap. J. 190, 447 (1974).

    ADS  Google Scholar 

  • Levine, R. H.: A new theory of control heating. Ap. J. 190, 457 (1974).

    ADS  Google Scholar 

  • Lichtenstadt, I., et al.: Effects of neutrino degeneracy and of downscatter on neutrino radiation from dense stellar cores. Ap. J. 226, 222 (1978).

    ADS  Google Scholar 

  • Liebert, J., Angel, J. R. P., Landstreet, J. D.: The detection of an Ha Zeeman pattern in the cool magnetic white dwarf G 99–47. Ap. J. 202, L 139 (1975).

    Google Scholar 

  • Liebert, J., et al.: A hot rotating magnetic white dwarf. Ap. J. 214, 457 (1977).

    ADS  Google Scholar 

  • Lightman, A. P., Press, W. H., Odenwald, S. F.: Present and past death rates for globular clusters. Ap. J. 219, 629 (1978).

    ADS  Google Scholar 

  • Lightman, A. P., Shapiro, S. L.: The dynamical evolution of globular clusters. Rev. Mod. Phys. 50, 437 (1978).

    ADS  Google Scholar 

  • Lillie, C. F., Witt, A. N.: Ultraviolet photometry from the orbiting astronomical observatory. Xxv. Diffuse galactic light in the 1500–4200A region and the scattering properties of interstellar dust grains. Ap. J. 208, 64 (1976).

    ADS  Google Scholar 

  • Lindblom, L., Detweiler, S. L.: On the secular instabilities of the Maclaurin spheroids. Ap. J. 211, 565 (1977).

    ADS  Google Scholar 

  • Lindblom, L., Detweiler, S.: The role of neutrino dissipation in gravitational collapse. Ap. J. 232, L 101 (1979).

    Google Scholar 

  • Liszt, H. S., Burton, W. B.: The gas distribution in the central region of the galaxy. II. Carbon monoxide. Ap. J. 226, 790 (1978).

    ADS  Google Scholar 

  • Lodenquai, J., et al.: Photon opacity in surfaces of magnetic neutron stars. Ap. J. 190, 141 (1974).

    ADS  Google Scholar 

  • Loren, R. B.: Colliding clouds and star formation in Ngc 1333. Ap. J. 209, 466 (1976).

    ADS  Google Scholar 

  • Loren, R. B.: The Monoceros R2 cloud: near-infrared and molecular observations of a rotating collapsing cloud. Ap. J. 215, 129 (1977).

    ADS  Google Scholar 

  • Low, B. C.: Resistive diffusion of force-free magnetic fields in a passive medium. IV. The dynamical theory. Ap. J. 193, 243 (1974).

    ADS  Google Scholar 

  • Mcclintock, W., et al.: Ultraviolet observations of cool stars. V. The local density of interstellar matter. Ap. J. 204, L 103 (1976).

    Google Scholar 

  • Mccray, R., Snow, T. P. Jr.: The violet interstellar medium. Ann. Rev. Astron. Ap. 17, 213 (1979).

    ADS  Google Scholar 

  • Mckee, C. F., Cowie, L. L.: The evaporation of spherical clouds in a hot gas. II. Effects of radiation. Ap. J. 215, 213 (1977).

    ADS  Google Scholar 

  • McKee, C. F., Ostriker, J. P.: A theory of the interstellar medium: three components regulated by supernova explosions in a inhomogeneous substrate. Ap. J. 218, 148 (1977).

    ADS  Google Scholar 

  • Madore, B. F., Van Den Bergh, S., Rogstad, D. H.: Gas density and the rate of star formation in M 33. Ap. J. 191, 317 (1974).

    ADS  Google Scholar 

  • Malone, R. C., Johnson, M. B., Bethe, H. A.: Neutron star models with realistic high-density equations of state. Ap. J. 199, 741 (1975).

    ADS  Google Scholar 

  • Manchester, R. N.: Structure of the local galactic magnetic field. Ap. J. 188, 637 (1974).

    ADS  Google Scholar 

  • Marcus, P. S., Press, W. H., Teukolsky, S. A.: Stablest shapes for an axisymmetric body of gravitating, incompressible fluid. Ap. J. 214, 584 (1977).

    MathSciNet  ADS  Google Scholar 

  • Martin, P. G.: Interstellar polarization from a medium with changing grain alignment. Ap. J. 187, 461 (1974).

    ADS  Google Scholar 

  • Martin, P. G., Angel, J. R. P.: Systematic variations in the wavelength dependence of interstellar circular polarization. Ap. J. 207, 126 (1976).

    ADS  Google Scholar 

  • Martin, P. G., Campbell, B.: Circular polarization observations of the interstellar magnetic field. Ap. J. 208, 727 (1976).

    ADS  Google Scholar 

  • Mashhoon, B.: On tidal phenomena in a strong gravitational field. Ap. J. 197, 705 (1975).

    ADS  Google Scholar 

  • Mathews, W. G.: Stability of gas clouds near quasi-stellar objects. Ap. J. 207, 351 (1976).

    ADS  Google Scholar 

  • Mathews, W. G., Blumenthal, G. R.: Rayleigh-Taylor stability of compressible and incompressible radiation-supported surfaces and slabs: application to Qso clouds. Ap. J. 214, 10 (1977).

    ADS  Google Scholar 

  • Mathis, J. S., Rumpl, W., Nordsieck, K. H.: The size distribution of interstellar grains. Ap. J. 217, 425 (1977).

    ADS  Google Scholar 

  • Mavko, G. E., et al.: Observations of structure in the interstellar polarization curve: preliminary results. Ap. J. 187, L 117 (1974).

    Google Scholar 

  • Maxwell, O., et al.: Beta decay of pion condensates as a cooling mechanism for neutron stars. Ap. J. 216, 77 (1977).

    ADS  Google Scholar 

  • Mazurek, T. J., Lattimer, J. M., Brown, G. E.: Nuclear forces, partition functions, and dissociation in stellar collapse. Ap. J. 229, 713 (1979).

    ADS  Google Scholar 

  • Meier, D. L., et al.: Magnetohydrodynamic phenomena in collapsing stellar cores. Ap. J. 204, 869 (1976).

    ADS  Google Scholar 

  • Szaros, P.: Ionization mechanisms of the intercloud medium. Ap. J. 191, 79 (1974).

    ADS  Google Scholar 

  • Mihalas, D., Hummer, D. G.: Theory of extended stellar atmospheres. I. Computational method and first results for static spherical models. Ap. J. Suppl. 28, 343 (1974).

    Google Scholar 

  • Mikaelian, K. O.: New mechanism for slowing down the rotation of dense stars. Ap. J. 214, L 23 (1977).

    Google Scholar 

  • Milton, R. L.: The effects of rapid, differential rotation on the spectra of white dwarfs. Ap. J. 189, 543 (1974).

    ADS  Google Scholar 

  • Morton, D. C., Smith, A. M., Stecher, T. P.: A new limit on the interstellar abundance of boron. Ap. J. 189, L 109 (1974).

    Google Scholar 

  • MouscHovlAS, T. Ch.: Static equilibria of the interstellar gas in the presence of magnetic and gravitational fields. Ap. J. 192, 37 (1974).

    ADS  Google Scholar 

  • Mouschovias, T. Ch.: Nonhomologous contraction and equilibria of self-gravitating, magnetic interstellar clouds embedded in an intercloud medium: star formation. I. formulation of the problem and method of solution. Ap. J. 206, 753 (1976).

    ADS  Google Scholar 

  • MouscuovlAS, T. Ch.: Nonhomologous contraction and equilibria of self-gravitating, magnetic interstellar clouds embedded in an intercloud medium: star formation. II. Results. Ap. J. 207, 141 (1976).

    ADS  Google Scholar 

  • MouscHovlAS, T. Ch., Spitzer, L. Jr.: Note on the collapse of magnetic interstellar clouds. Ap. J. 210, 326 (1976).

    ADS  Google Scholar 

  • MouscHovlAS, T. Ch.: A connection between the rate of rotation of interstellar clouds, magnetic fields, ambipolar diffusion and the periods of binary stars. Ap. J. 211, 147 (1977).

    ADS  Google Scholar 

  • MouscHovlAS, T. Ch.: Magnetic braking of self-gravitating, oblate interstellar clouds. Ap. J. 228, 159 (1979).

    ADS  Google Scholar 

  • Mouschovias, T. Ch., Paleologou, E. V.: The angular momentum problem and magnetic braking: an exact, time-dependent solution. Ap. J. 230, 204 (1979).

    ADS  Google Scholar 

  • Mufson, S. L.: The structure and stability of shock waves in a multiphase interstellar medium. Ap. J. 193, 561 (1974).

    ADS  Google Scholar 

  • Myers, P. C.: A compilation of interstellar gas properties. Ap. J. 225, 380 (1978).

    ADS  Google Scholar 

  • Nandy, A.: Correlation effects on the energy shifts of excited nucleous in neutron-star matter. Ap. J. 190, 385 (1974).

    ADS  Google Scholar 

  • NI, W.-T.: Relativistic stellar stability: preferred-frame effects. Ap. J. 190, 131 (1974).

    ADS  Google Scholar 

  • O’Connell, R. F.: Internal magnetic fields of pulsars, white dwarfs, and other stars. Ap. J. 195, 751 (1975).

    ADS  Google Scholar 

  • Oke, J. B.: Absolute spectral energy distributions for white dwarfs. Ap. J. 188, 443 (1974).

    Google Scholar 

  • Oke, J. B.: Absolute spectral energy distributions for white dwarfs. Ap. J. Suppl. 27, 21 (1974).

    ADS  Google Scholar 

  • Oppenheimer, M., Dalgarno, A.: The chemistry of sulfur in interstellar clouds. Ap. J. 187, 231 (1974).

    ADS  Google Scholar 

  • Osaki, J.: An excitation mechanism for pulsation in beta cephei stars. Ap. J. 189, 469 (1974).

    ADS  Google Scholar 

  • Pandharipande, V. R., Pines, D., Smith, R. A.: Neutron star structure: theory, observation, and speculation. Ap. J. 208, 550 (1976).

    ADS  Google Scholar 

  • Parker, E. N.: Hydraulic concentration of magnetic fields in the solar photosphere. I. Turbulent pumping. Ap. J. 189, 563 (1974).

    ADS  Google Scholar 

  • Parker, E. N.: Hydraulic concentration of magnetic fields in the solar photosphere. II. Bernoulli effect. Ap. J. 190, 429 (1974).

    ADS  Google Scholar 

  • Parker, E. N.: The relative diffusion of strong magnetic fields and tenuous gases. Ap. J. 215, 374 (1977).

    ADS  Google Scholar 

  • Piran, T.: The role of viscosity and cooling mechanisms in the stability of accretion disks. Ap. J. 221, 652 (1978).

    ADS  Google Scholar 

  • Press, W. H., Wiita, P. J., Smarr, L. L.: Mechanism for inducing synchronous rotation and small eccentricity in close binary systems. Ap. J. 202, L 135 (1975).

    Google Scholar 

  • Press, W. H., Teukolsky, S. A.: On formation of close binaries by two-body tidal capture. Ap. J. 213, 183 (1977).

    ADS  Google Scholar 

  • Purcell, E. M.: Temperature fluctuations in very small interstellar grains. Ap. J. 206, 685 (1976).

    ADS  Google Scholar 

  • Purcell, E. M., Shapiro, P. R.: A model for the optical behavior of grains and resonant impurities. Ap. J. 214, 92 (1977).

    ADS  Google Scholar 

  • Purcell, E. M.: Suprathermal rotation of interstellar grains. Ap. J. 231, 404 (1979).

    ADS  Google Scholar 

  • Rastall, P.: The maximum mass of a neutron star. Ap. J. 213, 234 (1977).

    ADS  Google Scholar 

  • Raymond, J. C.: Shock waves in the interstellar medium. Ap. J. Suppl. 39, 1 (1979).

    ADS  Google Scholar 

  • Richer, H. B., Ulrych, T. J.: High-frequency optical variables. II.-Luminosity-variable white dwarfs and maximum entropy spectral analysis. Ap. J. 192, 719 (1974).

    ADS  Google Scholar 

  • Richstone, D. O.: The occurrence of a nonspherical thermal instability in red giant stars. Ap. J. 188, 327 (1974).

    ADS  Google Scholar 

  • Roberts, W. J.: Electromagnetic multipole fields of neutron stars. Ap. J. Suppl. 41, 75 (1979).

    ADS  Google Scholar 

  • Rosen, J., Rosen, N.: The maximum mass of a cold neutron star. Ap. J. 202, 782 (1975).

    ADS  Google Scholar 

  • Rosi, L. A., Zimmerman, R. L., Kemp, J. C.: Polarized radiation in magnetic white dwarfs. Ap. J. 209, 868 (1976).

    ADS  Google Scholar 

  • Ruderman, M.: Crust-breaking by neutron superfluids and the vela pulsar glitches. Ap. J. 203, 213 (1976).

    ADS  Google Scholar 

  • Ruderman, M. A., Sutherland, P. G.: Rotating superfluid in neutron stars. Ap. J. 190, 137 (1974).

    ADS  Google Scholar 

  • Ruiz, M. T., Schwarzschild, M.: An approximate dynamical model for spheroidal stellar systems. Ap. J. 207, 376 (1976).

    ADS  Google Scholar 

  • Rutz, M. T.: A dynamical model for the central region of M 31. Ap. J. 207, 382 (1976).

    ADS  Google Scholar 

  • Rydgren, A. E., Strom, S. E., Strom, K. M.: The nature of the objects of Joy: a study of the t tauri phenomenon. Ap. J. Suppl. 30, 307 (1976).

    ADS  Google Scholar 

  • Ryter, C., Cesarsky, C. J., Audouze, J.: X-ray absorption, interstellar reddening and elemental abundances in the interstellar medium. Ap. J. 198, 103 (1975).

    ADS  Google Scholar 

  • Saenz, R. A.: Maximum mass of neutron stars: dependence on the assumptions. Ap. J. 212, 816 (1977).

    ADS  Google Scholar 

  • Saenz, R. A., Shapiro, S. L.: Gravitational and neutrino radiation from stellar core collapse: improved ellipsoidal model calculations. Ap. J. 229, 1107 (1979).

    ADS  Google Scholar 

  • Sagdeev, R. Z.: The 1976 Oppenheimer lectures: critical problems in plasma astrophysics. I. Turbulence and nonlinear waves. Rev. Mod. Phys. 51, 1 (1979).

    Google Scholar 

  • Sagdeev, R. Z.: The 1976 Oppenheimer lectures: critical problems in plasma astrophysics. II. Singular layers and reconnection. Rev. Mod. Phys. 51, 11 (1979).

    ADS  Google Scholar 

  • Salpeter, E. E.: Formation and flow of dust grains in cool stellar atmospheres. Ap. J. 193, 585 (1974).

    ADS  Google Scholar 

  • Salpeter, E. E.: Nucleation and growth of dust grains. Ap. J. 193, 579 (1974).

    ADS  Google Scholar 

  • Salpeter, E. E.: Dying stars and reborn dust. Rev. Mod. Phys. 46, 433 (1974).

    ADS  Google Scholar 

  • Salpeter, E. E.: Planetary nebulae, supernova remnants, and the interstellar medium. Ap. J. 206, 673 (1976).

    ADS  Google Scholar 

  • Salpeter, E. E.: Formation and destruction of dust grains. Ann. Rev. Astron. Ap. 15, 267 (1977).

    ADS  Google Scholar 

  • Saslaw, W. C.: Motion around a source whose luminosity changes. Ap. J. 226, 240 (1978).

    ADS  Google Scholar 

  • Sastri, V. K., Stothers, R.: Influence of opacity on the pulsational stability of massive stars with uniform chemical composition. II. Modified Kramers opacity. Ap. J. 193, 677 (1974).

    ADS  Google Scholar 

  • Sato, H.: Slowly braked, rotating neutron stars. Ap. J. 195, 743 (1975).

    ADS  Google Scholar 

  • Savage, B. D., Mathis, J. S.: Observed properties of interstellar dust. Ann. Rev. Astron. Ap. 17, 73 (1979).

    ADS  Google Scholar 

  • Sawyer, R. F., Soni, A.: Neutrino transport in pion-condensed neutron stars. Ap. J. 216, 73 (1977).

    ADS  Google Scholar 

  • Sawyer, R. F., Soni, A.: Transport of neutrinos in hot neutron-star matter. Ap. J. 230, 859 (1979).

    ADS  Google Scholar 

  • Scalo, J. M.: On the limiting mass of carbon-oxygen white dwarfs. Ap. J. 206, 215 (1976).

    ADS  Google Scholar 

  • Scharleman, E. T.: The fate of matter and angular momentum in disk accretion onto a magnetized neutron star. Ap. J. 219, 617 (1978).

    ADS  Google Scholar 

  • Schramm, D. N., Arnett, W. D.: The weak interaction and gravitational collapse. Ap. J. 198, 629 (1975).

    ADS  Google Scholar 

  • Schwarzt, R. A., Stein, R. F.: Waves in the solar atmosphere. IV. Magneto-gravity and acoustic-gravity modes. Ap. J. 200, 499 (1975).

    ADS  Google Scholar 

  • ScHwartz, R. D.: Evidence of star formation triggered by expansion of the Gum nebula. Ap. J. 212, L 25 (1977).

    Google Scholar 

  • Serkowski, K., Mathewson, D. S., Ford, V. L.: Wavelength dependence of interstellar polarization and ratio of total to selective extinction. Ap. J. 196, 261 (1975).

    ADS  Google Scholar 

  • Service, A. T.: Concise approximation formulae for the Lane-Emden functions. Ap. J. 211, 908 (1977).

    ADS  Google Scholar 

  • Shapiro, P. R.: Interstellar polarization: magnetite dust. Ap. J. 201, 151 (1975).

    ADS  Google Scholar 

  • Shapiro, P. R., Field, G. B.: Consequences of a new hot component of the interstellar medium. Ap. J. 205, 762 (1976).

    ADS  Google Scholar 

  • Shapiro, S. L., Teukolsky, S. A.: On the maximum gravitational redshift of white dwarfs. Ap. J. 203, 697 (1976).

    ADS  Google Scholar 

  • Shore, S. N., Adelman, S. J.: Magnetic fields and diffusion processes in peculiar A stars. Ap. J. 191, 165 (1974).

    ADS  Google Scholar 

  • Shipman, H. L.: Masses, radii, and model atmospheres for cool white-dwarf stars. Ap. J. 213, 138 (1977).

    ADS  Google Scholar 

  • Shipman, H. L.: Masses and radii of white-dwarf stars. Iii. Results for 110 hydrogen-rich and 28 helium-rich stars. Ap. J. 228, 240 (1979).

    ADS  Google Scholar 

  • Shoub, E. C.: Departures of the electron energy distribution from a Maxwellian in hydrogen. I. Formation and solution of the electron kinetic equation. Ap. J. Suppl. 34, 259 (1977).

    Google Scholar 

  • Shoub, E. C.: Departures of the electron energy distribution from a Maxwellian in hydrogen. II. Consequences. Ap. J. Suppl. 34, 277 (1977).

    ADS  Google Scholar 

  • Shull, J. M.: Grain disruption in interstellar hydromagnetic shocks. Ap. J. 215, 805 (1977).

    ADS  Google Scholar 

  • Shull, J. M.: Disruption and sputtering of grains in intermediate-velocity interstellar clouds. Ap. J. 226, 858 (1978).

    ADS  Google Scholar 

  • Silk, J., Burke, J. R.: Dust grains in a hot gas. II. Astrophysical applications. Ap. J. 190, 11 (1974).

    ADS  Google Scholar 

  • Silk, J.: Hydromagnetic waves and shock waves as an interstellar heat source. Ap. J. 198, L 77 (1975).

    Google Scholar 

  • Silk, J.: On the fragmentation of cosmic gas clouds. II. Opacity-limited star formation. Ap. J. 214, 152 (1977).

    ADS  Google Scholar 

  • Silk, J.: On the fragmentation of cosmic gas clouds. Iii. The initial stellar mass function. Ap. J. 214, 918 (1977).

    ADS  Google Scholar 

  • Silk, J., Norman, C.: Gas-rich dwarfs and accretion phenomena in early-type galaxies. Ap. J. 234, 86 (1979).

    ADS  Google Scholar 

  • Sion, E. M., Liebert, J.: The space motions and luminosity function of white dwarfs. Ap. J. 213, 468 (1977).

    ADS  Google Scholar 

  • Sion, E. M., Acierno, M. J., Tomczyk, S.: Hydrogen shell flashes in massive accreting white dwarfs. Ap. J. 230, 832 (1979).

    ADS  Google Scholar 

  • Snow, T. P. Jr.: The depletion of interstellar elements and the interaction between gas and dust in space. Ap. J. 202, L 87 (1975).

    Google Scholar 

  • Snow, T. P. Jr., Morton, D. C.: Copernicus ultraviolet observations of mass-low effects O and R stars. Ap. J. Suppl. 32 429 (1976).

    Google Scholar 

  • Spitzer, L. Jr., Jenkins, E. B.: Ultraviolet studies of the interstellar gas. Ann. Rev. Astron. Ap. 13, 133 (1975).

    ADS  Google Scholar 

  • Spitzer, L. Jr., Shull, J. M.: Random gravitational encounters and the evolution of spherical systems. VI. Plummer’s model. Ap. J. 200, 339 (1975).

    ADS  Google Scholar 

  • Spitzer, L. Jr., Shull, J. M.: Random gravitational encounters and the evolution of spherical systems. Vii. Systems with several mass groups. Ap. J. 201, 773 (1975).

    ADS  Google Scholar 

  • Spitzer, L. Jr., Mcglynn, T. A.: Disorientation of interstellar grains in suprathermal rotation. Ap. J. 231, 417 (1979).

    ADS  Google Scholar 

  • Srnka, L. J., Bibhas, R. De: Spin-related magnetism of interstellar grains. Ap. J. 225, 422 (1978).

    ADS  Google Scholar 

  • Steigman, G.: Ion-atom charge-transfer reactions and a hot intercloud medium. Ap. J. 195, L 39 (1975).

    Google Scholar 

  • Steigman, G.: Carbon-helium charge transfers and the ionization of carbon in the intercloud medium. Ap. J. 199, 336 (1975).

    ADS  Google Scholar 

  • Steigman, G.: Charge transfer reactions in multiply charged ion-atom collisions. Ap. J. 199, 642 (1975).

    ADS  Google Scholar 

  • Stellingwerf, R. F.: The calculation of periodic pulsations of stellar models. Ap. J. 192, 139 (1974).

    ADS  Google Scholar 

  • Stevenson, D. J., Salpeter, E. E.: The phase diagram and transport properties for hydrogen-helium fluid planets. Ap. J. Suppl. 35, 221 (1977).

    ADS  Google Scholar 

  • Stevenson, D. J., Salpeter, E. E.: The dynamics and helium distribution in hydrogen-helium fluid planets. Ap. J. Suppl. 35, 239 (1977).

    ADS  Google Scholar 

  • Stothers, R.: Influence of rotation on the maximum mass of pulsationally stable stars. Ap. J. 192, 145 (1974).

    ADS  Google Scholar 

  • Surmelian, G. I., O’Connell, R. F.: Quadratic Zeeman effect in the hydrogen Balmer lines from magnetic white dwarfs. Ap. J. 193, 705 (1974).

    ADS  Google Scholar 

  • Swedlund, J. B., et al.: Discovery of time-varying circular and linear polarization in the white-dwarf suspect GD 229. Ap. J. 187, L 121 (1974).

    Google Scholar 

  • Taam, R. E., Faulkner, J.: Ultrashort-period binaries. Iii. The accretion of hydrogen-rich matter onto a white dwarf of one solar mass. Ap. J. 198, 435 (1975).

    ADS  Google Scholar 

  • Taam, R. E., Schwartz, R. D.: Radiative transport in circumstellar dust shells. Ap. J. 204, 842 (1976).

    ADS  Google Scholar 

  • Taam, R. E., Picklum, R. E.: Thermonuclear runaways on neutron stars. Ap. J. 233, 327 (1979).

    ADS  Google Scholar 

  • Talbot, R. J. Jr.: Sensitivity of the star formation rate to the interstellar gas abundance of heavy elements. Ap. J. 188, 209 (1974).

    ADS  Google Scholar 

  • Talbot, R. J. Jr., Newman, M. J.: Encounters between stars and dense interstellar clouds. Ap. J. Suppl. 34, 295 (1977).

    ADS  Google Scholar 

  • Tassoul, M.: On the stability of congruent Darwin ellipsoids. Ap. J. 202, 803 (1975).

    ADS  Google Scholar 

  • Thorne, K. S.: The relativistic equations of stellar structure and evolution. Ap. J. 212, 825 (1977).

    ADS  Google Scholar 

  • Thorne, K. S., Zytkow, A. N.: Stars with degenerate neutron cores. I. Structure of equilibrium models. Ap. J. 212, 832 (1977).

    ADS  Google Scholar 

  • Thuan, T. X.: On the ionization of the intercloud medium by runaway O-B stars. Ap. J. 198, 307 (1975).

    ADS  Google Scholar 

  • Torres-Peimbert, S., Lazcano-Araujo, A., Peimbert, M.: Ionization of the low-density interstellar medium. Ap. J. 191, 401 (1974).

    ADS  Google Scholar 

  • Tubbs, D. L.: Direct-simulation neutrino transport: aspects of equilibrium. Ap. J. Suppl. 37, 287 (1978).

    ADS  Google Scholar 

  • Tubbs, D. L.: Conservative scattering, electron scattering, and neutrino thermalization. Ap. J. 231, 846 (1979).

    ADS  Google Scholar 

  • Tuchman, Y., Sack, N., Barkat, Z.: Mass loss from dynamically unstable stellar envelopes. Ap. J. 219, 183 (1978).

    ADS  Google Scholar 

  • Ulrich, R. K.: A nonlocal mixing-length theory of convection for use in numerical calculations. Ap. J. 207, 564 (1976).

    ADS  Google Scholar 

  • Ulrich, R. K., Burger, H. L.: The accreting component of mass-exchange binaries. Ap. J. 206, 509 (1976).

    ADS  Google Scholar 

  • Van Den Heuvel, E. P. J.: The upper mass limit for white dwarf formation as derived from the stellar content of the Hyades cluster. Ap. J. 196, L 121 (1975).

    Google Scholar 

  • Vandervoort, P. 0.: New applications of the equations of stellar hydrodynamics. Ap. J. 195, 333 (1975).

    ADS  Google Scholar 

  • Van Riper, K. A., Bludman, S. A.: Composition and equation of state of thermally dissociated matter. Ap. J. 213, 239 (1977).

    ADS  Google Scholar 

  • Van Riper, K. A.: The hydrodynamics of stellar collapse. Ap. J. 221, 304 (1978).

    ADS  Google Scholar 

  • Van Riper, K. A.: General relativistic hydrodynamics and the adiabatic collapse of stellar cores. Ap. J. 232, 558 (1979).

    ADS  Google Scholar 

  • Vauclair, G., Fontaine, G.: Convective mixing in helium white dwarfs. Ap. J. 230, 563 (1979).

    ADS  Google Scholar 

  • Vila, S. C., Sion, E. M.: The pulsational properties of high-luminosity degenerate stars with hydrogen burning near the surface. Ap. J. 207, 820 (1976).

    ADS  Google Scholar 

  • Von Hoerner, S., Saslaw, W. C.: The evolution of massive collapsing gas clouds. Ap. J. 206, 917 (1976).

    ADS  Google Scholar 

  • Watson, W. D., Kunz, A. B.: Multiple electron ejection by X-ray photoionization and the abundance of interstellar ions. Ap. J. 201, 165 (1975).

    ADS  Google Scholar 

  • Watson, W. D.: Multiple ionization by low-energy cosmic rays and the abundace of highly ionized interstellar atoms. Ap. J. 204, 47 (1976).

    ADS  Google Scholar 

  • Weber, S. V.: Oscillation and collapse of interstellar clouds. Ap. J. 208, 113 (1976).

    ADS  Google Scholar 

  • Westbrook, C. K., Tarter, C. B.: On protostellar evolution. Ap. J. 200, 48 (1975).

    ADS  Google Scholar 

  • Whipple, F. L., Huebner, W. F.: Physical processes in comets. Ann. Rev. Astron. Ap. 14, 143 (1976).

    ADS  Google Scholar 

  • White, R. E.: Depletion of interstellar sodium and calcium. Ap. J. 187, 449 (1974).

    ADS  Google Scholar 

  • Wiita, P. J., Press, W. H.: Mass-angular-momentum regimes for certain instabilities of a compact, rotating stellar core. Ap. J. 208, 525 (1976).

    ADS  Google Scholar 

  • Wilson, J. R.: Coherent neutrino scattering and stellar collapse. Phys. Rev. Lett. 32, 849 (1974).

    ADS  Google Scholar 

  • Withbroe, G. L., Noyes, R. W.: Mass and energy flow in the solar chromosphere and corona. Ann. Rev. Astron. Ap. 15, 363 (1977).

    ADS  Google Scholar 

  • Witten, T. A. Jr.: Compounds in neutron-star crusts. Ap. J. 188, 615 (1974).

    ADS  Google Scholar 

  • Wolff, C. L.: Rigid and differential rotation driven by oscillations within the sun. Ap. J. 194, 489 (1974).

    ADS  Google Scholar 

  • Wolff, C. L.: White-dwarf variability and the rotation of g-modes. Ap. J. 216, 784 (1977).

    ADS  Google Scholar 

  • Wolfson, R.: Energy considerations in axisymmetric accretion. Ap. J. 213, 208 (1977).

    ADS  Google Scholar 

  • Wolfson, R.: Axisymmetric accretion near compact objects. Ap. J. 213, 200 (1977).

    ADS  Google Scholar 

  • Wong, C.-Y.: Toroidal figures of equilibrium. Ap. J. 190, 675 (1974).

    ADS  Google Scholar 

  • Wood, P. R., Cahn, J. H.: Mira variables, mass loss, and the fate of red giant stars. Ap. J. 211, 499 (1977).

    ADS  Google Scholar 

  • Woodward, P. R.: Shock-driven implosion of interstellar gas clouds and star formation. Ap. J. 207, 484 (1976).

    ADS  Google Scholar 

  • Woodward, P. R.: Theoretical models of star formation. Ann. Rev. Astron. Ap. 16, 555 (1978).

    ADS  Google Scholar 

  • York, D. G., Rogerson, J. B. Jr.: The abundance of deuterium relative to hydrogen in interstellar space. Ap. J. 203, 378 (1976).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, K.R. (1980). Gas Processes. In: Astrophysical Formulae. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21642-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21642-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55040-2

  • Online ISBN: 978-3-662-21642-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics