Skip to main content

Continuum Radiation

  • Chapter
Book cover Astrophysical Formulae
  • 347 Accesses

Abstract

The experimentally determined Coulomb force, F, between two static point charges, q 1 and q 2 is (Coulomb, 1785)

$$F = \frac{{{q_1}{q_2}}}{{{R^2}}}{n_r}$$
(1-1)

where R is the distance between the charges, and n r is a unit vector directed from one charge to the other. The static electric field, E, of a point charge q 1 is defined so that

$$F = {q_2}E,\,where\,E = \frac{{{q_1}}}{{{R^2}}}{n_r}$$
(1-2)

and R is the distance from q 1. Integrating equation (1-2) over a closed spherical surface we, obtain Gauss’s law

$$\oint\limits_S {E \cdot nds} = 4\pi q = 4\pi \int\limits_V {\rho dv} $$
(1-3)

where ρ is the charge density,\(\oint\limits_S {} \) denotes the closed surface integral, E·n is the component of E which is normal to the surface element d s, and \(\int\limits_V {\rho dv} \) is the amount of charge within the closed surface. Using the equations of vector analysis, Eq. (1-3) may be expressed as Poisson’s equation (Poisson, 1813)

$$\nabla \cdot E = - {\nabla ^2}\varphi = 4\pi \rho $$
(1-4)

where

$$E = - \nabla \varphi $$
(1-5)

and φ is called the scalar electric potential. For one static point charge, q, we have

$$\varphi = {q \mathord{\left/ {\vphantom {q R}} \right. \kern-\nulldelimiterspace} R}$$
(1-6)

where R is the radial distance from the charge. For an electrostatic dipole consisting of two charges, +q and −q separated by a distance a along the z axis

$$\varphi = a\,q\,\cos {\theta \mathord{\left/ {\vphantom {\theta {{R^2}}}} \right. \kern-\nulldelimiterspace} {{R^2}}}$$
(1-7)

so that

$$\begin{gathered} {E_r} = \frac{{2d}}{{{R^3}}}\cos \theta \,{n_r} \hfill \\ {E_\theta } = \frac{{d\,\sin \theta }}{{{R^3}}}\,{n_\theta } \hfill \\ \end{gathered} $$
(1-8)

and

$${E_\varphi } = 0$$

where the dipole moment d = a q, the angle θ is the angle between the z axis and the radial direction, R is the radial distance from the dipole, and n θ and n r are unit vectors in the θ and the radial direction.

“What is light? Since the time of Young and Fresnel we know that it is wave motion. We know the velocity of the waves, we know their lengths, and we know that they are transverse; in short, our knowledge of the geometrical conditions of the motion is complete. A doubt about these things is no longer possible; a refutation of these views is inconceivable to the physicist. The wave theory of light is, from the point of view of human beings, certainty.”

Hertz, 1889

“It is now, I believe, generally admitted that the light which we receive from the clear sky is due in one way or another to small suspended particles which divert the light from its regular course... There seems to be no reason why the color of the compound light thus scattered should not agree with that of the sky... Suppose for distinctness of statement, that the primary ray is vertical, and that the plane of vibration is that of the meridian. The intensity of the light scattered by a small particle is constant, and a maximum for rays which lie in the vertical plane running east and west, while there is no scattered ray along the north and south line. If the primary ray is unpolarized, the light scattered north and south is entirely due to that component which vibrates east and west, and is therefore perfectly polarized.”

Lord Rayleigh, 1871

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarons, J., Whitney, H. E., Allen, R. S.: Global morphology of ionospheric scintillations. Proc. I. E.E.E. 59 (2), 159 (1971).

    Article  Google Scholar 

  • Airy, G. B.: On the diffraction of an object-glass with circular aperture. Trans. Camb. Phil. Soc. 5, 283 (1835).

    ADS  Google Scholar 

  • AlfvÉn, H., Herlofson, N.: Cosmic radiation and radio stars. Phys. Rev. 78, 616 (1950).

    Article  ADS  Google Scholar 

  • Altenhoff, W., Mezger, P. G., Strassl, H., Wendker, H., Westerhout, G.: Radio astronomical measurements at 2.7 Kmhz. Veroff Sternwarte, Bonn 59, 48 (1960).

    Google Scholar 

  • AmpÈre, A. M.: Sur l’action mutuelle d’un aiment et d’un conduct. voltaique. Ann. Chim. Phys. 37 (1827).

    Google Scholar 

  • Appleton, E. V.: Wireless studies of the ionosphere. J. Inst. Elec. Engrs. (London) 71, 642 (1932).

    Google Scholar 

  • Beaujardière, O. DE LA: L’évolution du spectre de rayonnement synchrotron. Ann. Astrophys. 29, 345 (1966).

    ADS  Google Scholar 

  • Bekefi, G.: Radiation processes in plasmas. New York: Wiley 1966.

    Google Scholar 

  • Berge, G. L., Greisen, E. W.: High-resolution interferometry of Venus at 3.12-cm wavelength. Ap. J. 156, 1125 (1969).

    Article  ADS  Google Scholar 

  • Bethe, H. A.: The influence of screening on the creation and stopping of electrons. Proc. Camb. Phil. Soc. 30, 524 (1930).

    Article  ADS  Google Scholar 

  • Bethe, H. A., Heitler, W.: On the stopping of fast particles and on the creation of positive electrons. Proc. Roy. Soc. London A 146, 83 (1934).

    Article  ADS  Google Scholar 

  • Bur, J. B., Savart, F.: Sur le magnétisme de la pile de Volta. Ann. Chimie 15, 222 (1820).

    Google Scholar 

  • Blumenthal, G. R., Gould, R. J.: Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases: Rev. Mod. Phys. 42 (2), 237 (1970).

    Article  ADS  Google Scholar 

  • Bohm, D., Gross, E. P.: Theory of plasma oscillations: A. Origin of medium-like behavior; B. Excitation and damping of oscillations. Phys. Rev. 75, 1851, 1854 (1949).

    ADS  Google Scholar 

  • Bohr, N.: On the decrease of velocity of swiftly moving electrified particles in passing through matter. Phil. Mag. 30, 581 (1915).

    Google Scholar 

  • Boltzmann, L. voN: Über eine von Hrn. Bartoli entdeckte Beziehung der Wärmestrahlung zum zweiten Hauptsatze (On a relation between thermal radiation and the second law of thermodynamics, discovered by Bartoli). Ann. Phys. 22, 31 (1884).

    Article  Google Scholar 

  • Bond, G. P.: Light of the moon and of Jupiter. Mem. Amer. Ac. 8, 221 (1863).

    Google Scholar 

  • Booker, H. G.: A theory of scattering by nonisotropic irregularities with application to radar reflections from the aurora. J. Atmos. Terr. Phys. 8, 204 (1956).

    Article  Google Scholar 

  • Booker, H. G., Gordon, W. E.: A theory of radio scattering in the troposphere. Proc. I. R. E. 38, 401 (1950).

    Article  Google Scholar 

  • Booker, H. G., Ratcliffe, J. A., Shinn, D. H.: Diffraction from an irregular screen with applications to ionospheric problems. Phil. Trans. Roy. Soc. London A 242, 75 (1950).

    MathSciNet  Google Scholar 

  • Born, M., Wolf, E.: Principles of optics. New York: Pergamon Press 1970.

    Google Scholar 

  • Brewster, D.: On the laws which regulate the polarization of light by reflection from transparent bodies. Phil. Trans. 15, 125 (1815).

    Article  Google Scholar 

  • Briggs, B. H., Phillips, G. J., Shinn, D. H.: The analysis of observations on spaced receivers of the fading of radio signals. Proc. Roy. Soc. London B 63, 106 (1950).

    Google Scholar 

  • Brown, R. L., Mathews, W. G.: Theoretical continuous spectra from gaseous nebulae. Ap. J. 160, 939 (1970).

    Article  ADS  Google Scholar 

  • Brussard, P. J., HuLSr, H. C. Van DE: Approximation formulas for non-relativistic bremsstrahlung and average Gaunt factors for a Maxwellian electron gas. Rev. Mod. Phys. 34 (3), 507 (1962).

    Article  ADS  Google Scholar 

  • Buneman, O.: Scattering of radiation by the fluctuations in a nonequilibrium plasma. J. Geophys. Res. 67 (5), 2050 (1962).

    Article  ADS  Google Scholar 

  • Burbidge, G. R.: Estimates of the total energy in particles and magnetic field in the non-thermal radio sources. Ap. J. 129, 849 (1959).

    Article  ADS  Google Scholar 

  • Burgess, A.: The hydrogen recombination spectrum. M.N. R. A. S. 118, 477 (1958).

    ADS  Google Scholar 

  • Canuto, V., Chic, H. Y., Fassio-Canuto, L.: Electron bremsstrahlung in intense magnetic fields. Phys. Rev. 185, 1607 (1969).

    Article  ADS  Google Scholar 

  • Canuto, V., Chiu, H. Y.: Nonrelativistic electron bremsstrahlung in a strongly magnetized plasma. Phys. Rev. A 2, 518 (1970).

    Article  ADS  MATH  Google Scholar 

  • Canuto, V., Chid, H. Y.: Intense magnetic fields in astrophysics. Space Sci. Rev. 12, 3 (1971).

    Google Scholar 

  • Canuto, V., Lodenquai, J., Ruderman, M.: Thomson scattering in a strong magnetic field. Phys. Rev. D 3, 2303 (1971).

    Article  ADS  Google Scholar 

  • Cerenkov, P. A.: Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52 378 (1937). (Cf. J. V. Jelley: Cerenkov Radiation and its Applications. New York: Pergamon Press 1958.)

    Google Scholar 

  • Chandrasekhar, S.: A statistical basis for the theory of stellar scintillation. M. N. R. A.S. 112, 475 (1952).

    MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S., Breen, F. H.: On the continuous absorption coefficient of the negative hydrogen ion. Ap. J. 104, 430 (1946).

    Article  ADS  Google Scholar 

  • Chic, H. Y., Canuto, V., Fassio-Canuto, L.: Nature of radio and optical emissions from pulsars. Nature 221, 529 (1969).

    Article  ADS  Google Scholar 

  • Chiu, H. Y., Fassio-Canuto, L.: Quantized synchrotron radiation in intense magnetic fields. Phys. Rev. 185, 1614 (1969).

    Article  ADS  Google Scholar 

  • Clark, B. G., KuzMin, A. D.: The measurement of the polarization and brightness distribution of Venus at 10.6-cm wavelength. Ap. J. 142, 23 (1965).

    Article  ADS  Google Scholar 

  • Clarke, R. W., Broten, N. W., Legg, T. H., Locke, J. L., Yen, J. L.: Long baseline interferometer observations at 408 and 448 MHz II—The interpretation of the observations. M. N. R. A.S. 146, 381 (1969).

    ADS  Google Scholar 

  • Cohen, M. H.: Radiation in a plasma. I. Cerenkov effect. Phys. Rev. 123 (3), 711 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cohen, M. H., Gundermann, E. J., Hardebeck, H. E. Sharp, L. E.: Interplanetary scintillations, H. Observations. Ap. J. 147, 449 (1967).

    Google Scholar 

  • Compton, A. H.: A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 207, 483 (1923).

    Article  ADS  Google Scholar 

  • Compton, A. H.: The spectrum of scattered X-rays. Phys. Rev. 22 (5), 409 (1923).

    Article  ADS  Google Scholar 

  • Cooper, J.: Plasma spectroscopy. Rpt. Prog. Phys. 29, 2 (1966).

    Google Scholar 

  • Coulomb, C. A.: Sur l’électricité et le magnétisme. Mem. l’Acad. (1785).

    Google Scholar 

  • Culhane, J. L.: Thermal continuum radiation from coronal plasmas at soft X-ray wavelengths. M. N. R. A. S. 144, 375 (1969).

    ADS  Google Scholar 

  • Davy, Sir H.: Further researches on the magnetic phenomena produced by electricity. Phil. Trans. 111, 425 (1821).

    Article  Google Scholar 

  • Debye, P. Von: Der Lichtdruck auf Kugeln von beliebigem Material (The light pressure on spheres of arbitrary material). Ann. Phys. 30, 57 (1909).

    Article  MATH  Google Scholar 

  • Debye, P. Von, Huckel, E.: Zur Theorie der Elektrolyte: I. Gefrierpunktserniedrigung und verwandte Erscheinungen; II. Das Grenzgesetz für die elektrische Leitfähigkeit (On the theory of electrolytes: I. Lowering of the freezing point and related phenomena; II. The limiting laws for the electrical conductivity). Phys. Z. 24, 185 (1923).

    MATH  Google Scholar 

  • Dennison, P. A., Hewish, A.: The solar wind outside the plane of the ecliptic. Nature 213, 343 (1967).

    Article  ADS  Google Scholar 

  • Dickel, J. R., Decioanni, J. J., Goodman, G. C.: The microwave spectrum of Jupiter. Radio Science 5 (2), 517 (1970).

    Article  ADS  Google Scholar 

  • Ditchburn, R. W., Opik, U.: Photoionization processes. In: Atomic and molecular processes (ed. D. R. Bates ). New York: Academic Press 1962.

    Google Scholar 

  • Dombrovski, V. A.: On the nature of the radiation from the Crab nebula. Dokl. Acad. Nauk. S. S. S. R. 94, 1021 (1954).

    Google Scholar 

  • Donahue, T. M.: The significance of the absence of primary electrons for theories of the origin of the cosmic radiation. Phys. Rev. 84 (5), 972 (1951).

    Article  ADS  Google Scholar 

  • Doppler, C.: Über das Farbige Licht der Doppelsterne u. s. w. (On the colored light of double stars, etc.). Abhandlungen d.k. Böhmischen Gesell. d. Wiss. 2, 467 (1843).

    Google Scholar 

  • Dougherty, J. P., Farley, D. T.: A theory of incoherent scattering of radio waves by a plasma. Proc. Roy. Soc. London A 259, 79 (1960).

    Article  ADS  MATH  Google Scholar 

  • Eidman, V. YA.: Investigation of the radiation of an electron moving in a magnetoactive medium. Soy. Phys. J. E. T. P. 7 91 (1958). (Corrections in Sov. Phys. J. E. T. P. 9 947 (1959)).

    Google Scholar 

  • Einstein, A. Von: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (On a heuristic point of view concerning the generation and transformation of light). Ann. Physik 17, 132 (1905).

    Article  ADS  MATH  Google Scholar 

  • Elwert, G. Von: Die weiche Röntgenstrahlung der ungestörten Sonnenkorona (The soft X-ray radiation of the undisturbed solar corona). Z. Naturforschung, 9, 637 (1954).

    ADS  Google Scholar 

  • Epstein, R. I., Feldman, P. A.: Synchrotron radiation from electrons in helical orbits. Ap. J. 150, L 109 (1967).

    Google Scholar 

  • Erber, T.: High-energy electromagnetic conversion processes in intense magnetic fields. Rev. Mod. Phys. 38, 626 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  • Evans, J. V.: Radar studies of planetary surfaces. Ann. Rev. Astron. Astrophys. 7, 201 (1969).

    Article  ADS  Google Scholar 

  • Faraday, M.: On static electrical inductive action. Phil. Mag. 22, 200 (1843).

    Google Scholar 

  • Faraday, M.: Experimental researches in electricity. London: R. Taylor 1844. Repr. New York: Dover 1952.

    Google Scholar 

  • Farley, D. T.: A theory of incoherent scattering of radio waves by a plasma: 4. The effect of unequal ion and electron temperatures. J. Geophys. Res. 17, 4091 (1966).

    Article  ADS  Google Scholar 

  • Feenberg, E.: The scattering of slow electrons by neutral atoms. Phys. Rev. 40, 40 (1932).

    Article  ADS  Google Scholar 

  • Feenberg, E., Primakoff, H.: Interaction of cosmic-ray primaries with sunlight and starlight. Phys. Rev. 73 (5), 449 (1948).

    Article  ADS  MATH  Google Scholar 

  • Feier, J. A.: The diffraction of waves in passing through an irregular refracting medium. Proc. Roy. Soc. London A 220, 455 (1953).

    Article  ADS  Google Scholar 

  • Feier, J. A.: Scattering of radio waves by an ionized gas in thermal equilibrium. Can. J. Phys. 38, 1114 (1960).

    Article  ADS  Google Scholar 

  • Feier, J. A.: Radio-wave scattering by an ionized gas in thermal equilibrium. J. Geophys. Res. 65, 2635 (1960).

    Article  ADS  Google Scholar 

  • Felten, J. E., Morrison, P.: Recoil photons from scattering of starlight by relativistic electrons. Phys. Rev. Lett. 10 (10), 453 (1963).

    Article  ADS  Google Scholar 

  • Felten, J. E., Morrison, P.: Omnidirectional inverse Compton and synchrotron radiation from cosmic distributions of fast electrons and thermal photons. Ap. J. 146, 686 (1966).

    Article  ADS  Google Scholar 

  • Fermat, P.: Oeuvres de Fermat. Paris 2, 354 (1891).

    Google Scholar 

  • Fermi, E.: The ionization loss of energy in gases and in condensed materials. Phys. Rev. 57, 485 (1940).

    Article  ADS  Google Scholar 

  • Fresnel, A. J.: Explication de la réfraction dans le système des ondes. Mem. de l’Acad. 11, 893 (1822).

    Google Scholar 

  • Gaunt, J. A.: Continuous absorption. Phil. Trans. Roy. Soc. London A 229, 163 (1930).

    Article  ADS  MATH  Google Scholar 

  • Ginzburg, V. L.: The origin of cosmic rays and radio astronomy. Usp. Fiz. Nauk. 51, 343 (1953).

    Google Scholar 

  • Ginzburg, V. L.: Propagation of electromagnetic waves in a plasma. New York: Gordon and Breach 1961.

    Google Scholar 

  • Ginzburg, V. L.: Elementary processes for cosmic ray astrophysics. New York: Gordon and Breach 1969.

    Google Scholar 

  • Ginzburg, V. L., SY Ron,Atskii, S. I.: The origin of cosmic rays. New York: Macmillan 1964.

    Google Scholar 

  • Ginzburg, V. L., Syrovatsxn, S. I. Cosmic magnetobremsstrahlung (Synchrotron radiation). Ann. Rev. Astron. Astrophys. 3, 297 (1965).

    Article  ADS  Google Scholar 

  • Ginzburg, V. L.: Elementary processes for cosmic ray astrophysics. New York: Gordon and Breach 1969.

    Google Scholar 

  • Ginzburg, V. L., Syrovatsxa, S. I.: The origin of cosmic rays. New York: Macmillan 1964.

    Google Scholar 

  • Ginzburg, V. L., Syrovatskli, S. I.: Cosmic magnetobremsstrahlung (Synchrotron radiation). Ann. Rev. Astron. Astrophys. 3, 297 (1965).

    Article  ADS  Google Scholar 

  • Ginzburg, V. L., Zhelezniakov, V. V.: On the possible mechanisms of sporadic solar radio emission (Radiation in an isotropic plasma). Soviet Astron. 2, 653 (1958).

    ADS  Google Scholar 

  • Ginzburg, V. L., Zhelezniakov, V. V.: On the mechanisms of sporadic solar radio emission. In: Paris symposium on radio astronomy (ed. R. N. Bracewell ). Stanford, Calif.: Stanford Univ. Press 1959.

    Google Scholar 

  • Goldreich, P., Morrison, P.: On the absorption of gamma rays in intergalactic space. Sov. Phys. J. E. T. P. 18, 239 (1964).

    Google Scholar 

  • Gordon, Doklady Akad. Nauk. 94, 413 (1954).

    Google Scholar 

  • Gould, R. J., ScurÉDer, G.: Opacity of the universe to high-energy photons. Phys. Rev. Lett. 16 (6), 252 (1966).

    Article  ADS  Google Scholar 

  • Green, P. E.: Radar measurements of target scattering properties. In: Radar astronomy (ed. J. V. Evans, T. Hagfors ). New York: McGraw-Hill 1968.

    Google Scholar 

  • Hagfors, T.: Some properties of radio waves reflected from the moon and their relation to the lunar surface. J. Geophys. Res. 66 (3), 777 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  • Hagfors, T.: Density fluctuations in a plasma in a magnetic field, with applications to the ionosphere. J. Geophys. Res. 66 (6), 1699 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  • Hagfors, T.: Backscattering from an undulating surface with applications to radar returns from the moon. J. Geophys. Res. 69 (18), 3779 (1964).

    Article  ADS  Google Scholar 

  • Hagfors, T.: Remote probing of the moon by infrared and microwave emissions and by radar. Radio Science 5, 189 (1970).

    Article  ADS  Google Scholar 

  • Harris, D. E., Zeissig, G. A., Lovelace, R. V.: The minimum observable diameter of radio sources. Astron. Astrophys. 8, 98 (1970).

    ADS  Google Scholar 

  • Hartree, D. R.: The propagation of electromagnetic waves in a refracting medium in a magnetic field. Proc. Camb. Phil. Soc. 27, 143 (1931).

    Article  ADS  Google Scholar 

  • Heaviside, O.: On the electromagnetic effects due to the motion of electrification through a dielectric. Phil. Mag. 27, 324 (1889).

    MATH  Google Scholar 

  • Heaviside, O.: The waste of energy from a moving electron. Nature 67, 6 (1902).

    Article  ADS  Google Scholar 

  • Heaviside, O.: The radiation from an electron moving in an elliptic, or any other orbit. Nature 69, 342 (1904).

    Article  ADS  Google Scholar 

  • Heiles, C. E., Drake, F. D.: The polarization and intensity of thermal radiation from a planetary surface. Icarus 2, 291 (1963).

    ADS  Google Scholar 

  • Heitler, W.: The quantum theory of radiation. Oxford: Oxford University Press 1954.

    Google Scholar 

  • Hertz, H., Über die Beziehungen zwischen Licht und Elektrizität (On the relations between light and electricity). Gesammelte Werke 1, 340 (1889).

    Google Scholar 

  • Hertz, H.: Die Kräfte elektrischer Schwingungen, behandelt nach der Maxwell’schen Theorie (The force of electrical oscillations treated with the Maxwell theory). Ann. Phys. 36, 1 (1889).

    Article  Google Scholar 

  • Hewish, A.: The diffraction of radio waves in passing through a phase-changing ionosphere. Proc. Roy. Soc. London A 209, 81 (1951).

    Article  ADS  Google Scholar 

  • Hjellming, R. M., Churchwell, E.: An analysis of radio recombination lines emitted by the Orion nebula. Astrophys. Lett. 4, 165 (1969).

    ADS  Google Scholar 

  • Hoyle, F., Burbidge, G. R., Sargent, W. L. W.: On the nature of the quasi-stellar sources. Nature 209, 751 (1966).

    Article  ADS  Google Scholar 

  • Hulst, H. C. Van DE: On the attenuation of plane waves by obstacles of arbitrary size and form. Physica 15, 740 (1949).

    Article  ADS  MATH  Google Scholar 

  • Hulst, H. C. Van DE: Light scattering by small particles. New York: Wiley 1957.

    Google Scholar 

  • Jackson, J. D.: Classical electrodynamics. New York: Wiley 1962.

    Google Scholar 

  • Jauch, J. M., Rohrlich, F.: The theory of protons and electrons. Reading, Mass.: Addison-Wesley 1955.

    Google Scholar 

  • Jeans, Sir J. H.: On the partition of energy between matter and aether. Phil. Mag. 10, 91 (1905).

    MATH  Google Scholar 

  • Jeans, Sir J. H.: Temperature-radiation and the partition of energy in continuous media. Phil. Mag. 17, 229 (1909).

    MATH  Google Scholar 

  • Jokipu, J. R., Hollweg, J. V.: Interplanetary scintillations and the structure of solar-wind fluctuations. Ap. J. 160, 745 (1970).

    Article  ADS  Google Scholar 

  • Kardashev, N. S.: Nonstationariness of spectra of young sources of nonthermal radio emission. Soviet Astron. 6, 317 (1962).

    ADS  Google Scholar 

  • Karzas, W. J., Latter, R.: Electron radiative transitions in a Coulomb field. Ap. J. Suppl. 6, 167 (1961).

    Article  ADS  Google Scholar 

  • Kellermann, K. I.: The radio source 1934–63. Austr. J. Phys. 19, 195 (1966).

    ADS  Google Scholar 

  • Kellermann, K. I.: Thermal radio emission from the major planets. Radio Science 5 (2), 487 (1970).

    Article  ADS  Google Scholar 

  • Kellermann, K. I., Pauliny-Toth, I. I. K.: The spectra of opaque radio sources. Ap. J. 155, L 71 (1969).

    Google Scholar 

  • Kellermann, K. I., Pauliny-Toth, I. I. K., Williams, P. J. S.: The spectra of radio sources in the revised 3 C catalogue. Ap. J. 157, 1 (1969).

    Google Scholar 

  • Kelvin, Lord (W. Thomson): A mathematical theory of magnetism. Phil. Mag. 37, 241 (1850).

    Google Scholar 

  • Kelvin, Lord (W. Thomson): Transient electric currents. Proc. Glascow Phil. Soc. 3, 281 (1835).

    Google Scholar 

  • Kirchhoff, H.: On the simultaneous emission and absorption of rays of the same definite refrangibility. Phil. Mag. 19, 193 (1860).

    Google Scholar 

  • Kirchhoff, H.: On a new proposition in the theory of heat. Phil. Mag. 21, 240 (1860). See also: Gesammelte Abhandlungen. Leipzig: J. A. Barth 1882.

    Google Scholar 

  • Klein, O., Nishina, Y.: Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac (On the scattering of radiation by free electrons

    Google Scholar 

  • according to the new relativistic quantum dynamics by Dirac). Z. Physik 52, 853 (1929).

    Article  Google Scholar 

  • Kramers, H. A.: On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag. 46, 836 (1923).

    Google Scholar 

  • Kramers, H. A.: The law of dispersion and Bohr’s theory of spectra. Nature 113, 673 (1924).

    Article  ADS  Google Scholar 

  • Kronig, R. DE L., Kramers, H. A.: Zur Theorie der Absorption und Dispersion in den Röntgenspektren (Theory of absorption and dispersion in X-ray spectra). Z. Physik 48, 174 (1928).

    Article  ADS  MATH  Google Scholar 

  • Ladenburg, R. voN: Die Quantentheoretische Deutung der Zahl der Dispersionselektronen (The quantum theory interpretation of the number of scattering electrons). Z. Physik 4, 451 (1921).

    Article  ADS  Google Scholar 

  • Lambert, J. H.: Photometria, sive de mensura et gradibus luminis, colorum et umbrae. Augsburg 1760.

    Google Scholar 

  • Landau, L. D.: On the vibrations of the electronic plasma. J. Phys. (U. S. S. R.) 10, 25 (1946).

    MATH  Google Scholar 

  • Landau, L. D., Lifshitz, E. M.: The classical theory of fields. Reading, Mass.: Addison-Wesley 1962.

    MATH  Google Scholar 

  • Lang, K. R.: Interstellar scintillation of pulsar radiation. Ap. J. 164, 249 (1971).

    Article  ADS  Google Scholar 

  • Lang, K. R., Rickett, B. J.: Size and motion of the interstellar scintillation pattern from observations of CP 1133. Nature 225, 528 (1970).

    Article  ADS  Google Scholar 

  • Larmor, Sir J.: On the theory of the magnetic influence on spectra; ana n the radiation from moving ions. Phil. Mag. 44, 503 (1897).

    MATH  Google Scholar 

  • Legg, M. P. C., Westfold, K. C.: Elliptic polarization of synchrotron raa arion. Ap. J. 154, 499 (1968).

    Article  ADS  Google Scholar 

  • LE Roux, E.: Étude théorique de rayonnement synchrotron des radiosources. Ann. Astrophys. 24, 71 (1961).

    ADS  Google Scholar 

  • Liemohn, H. B.: Radiation from electrons in a magnetoplasma. J. Res. Nat. Bur. Stands. Usnc-Ursi Radio Science 69D, 741 (1965).

    Article  Google Scholar 

  • Lienard, A. M.: Théorie de Lorentz, Théorie de Larmor et celle de Lorentz. Éclairage électr. 14, 16 (1898).

    Google Scholar 

  • Lorentz, H. A.: Über die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte (Concerning the relation between the velocity of propagation of light and the density and composition of media). Ann. Phys. 9, 641 (1880).

    Article  MATH  Google Scholar 

  • Lorentz, H. A.: La théorie électromagnétique de Maxwell et son application aux corps mouvants. Archives Neerl, 25, 363 (1892).

    Google Scholar 

  • Lorentz, H. A.: Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. Amst. Acad. Sci. 6, 809 (1904). Reprod. in H. A.

    Google Scholar 

  • Lorentz, A. Einstein, H. Minkowski, H. Weyl: The principle of relativity. New York: Dover 1952.

    MATH  Google Scholar 

  • Lorentz, H. A.: The theory of electrons. 1909. Republ. New York: Dover 1952.

    Google Scholar 

  • Lorenz, L.: Über die Refractionsconstante (On the constant of refraction). Wiedem. Ann. 11, 70 (1881).

    MATH  Google Scholar 

  • Lovelace, R. V. E., Salpeter, E. E., Sharp, L. E., Harris, D. E.: Analysis of observations of interplanetary scintillations. Ap. J. 159, 1047 (1971).

    Article  ADS  Google Scholar 

  • Margenau, H.: Conduction and dispersion of ionized gases at high frequencies. Phys. Rev. 69, 508 (1946).

    Article  ADS  Google Scholar 

  • Maxwell, J. C.: Illustrations of the dynamical theory of gases: Part I. On the motions and collisions of perfectly elastic spheres. Phil. Mag. 19, 19 (1860). Part. I, On the process of diffusion of two or more kinds of moving particles among one another. Phil. Mag. 20, 21 (1860).

    Google Scholar 

  • Maxwell, J. C.: On physical lines of force: Part. I. The theory of molecular vortices applied to magnetic phenomena; Part II. The theory of molecular vortices applied to electric currents. Phil. Mag. 21, 161, 281 (1861).

    Google Scholar 

  • Maxwell, J. C.: The theory of anomalous dispersion. Phil. Mag. 48, 151 (1899).

    Google Scholar 

  • Maxwell, J. C.: A treatise on electricity and magnetism. 1873. Republ. New York: Dover 1954.

    Google Scholar 

  • Mayer, C. H.: Thermal radio emission of the planets and moon. In: Surfaces and interiors of planets and satellites (ed. A. Dollfuss ). New York: Academic Press 1970.

    Google Scholar 

  • Mayer, C. H., Mccullough, T. P.: Microwave radiation of Uranus and Neptune. Icarus 14, 187 (1971).

    Article  ADS  Google Scholar 

  • Mccray, R.: Synchrotron radiation losses in self-absorbed radio sources. Ap. J. 156, 329 (1969).

    Article  ADS  Google Scholar 

  • Melrose, D. B.: On the degree of circular polarization of synchrotron radiation. Astrophys. and Space Sci. 12, 172 (1971).

    Article  ADS  Google Scholar 

  • Menzel, D. H., Pekeris, C. L.: Absorption coefficients and hydrogen line intensities. M.N. R.A.S. 96, 77 (1935). Reproduced in: Selected papers on physical processes in ionized plasmas (ed. D. H. Menzel ). New York: Dover 1962.

    Google Scholar 

  • Mercier, R. P.: Diffraction by a screen causing large random phase fluctuations. Proc. Camb. Phil. Soc. 58, 382 (1962).

    Article  ADS  MATH  Google Scholar 

  • Mercier, R. P.: The radio-frequency emission coefficient of a hot plasma. Proc. Phys. Soc. 83, 819 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  • Mezger, P. G., Henderson, A. P.: Galactic H II regions I. Observations of their continuum radiation at the frequency 5 GHz. Ap. J. 147, 471 (1967).

    Article  ADS  Google Scholar 

  • Mie, G. Von: Beiträge zur Optik trüber Medien, speziell Kolloidaler Metallösungen (Contributions to the optics of opaque media, especially colloide metal solutions). Ann. Physik 25, 377 (1908).

    Article  ADS  MATH  Google Scholar 

  • Milne, E. A.: Radiative equilibrium in the outer layers of a star: the temperature distribution and the law of darkening. M.N. R. A. S. 81, 361 (1921).

    ADS  Google Scholar 

  • Milne, E. A.: Thermodynamics of the stars. Handbuch der Astrophysik 3, 80 (1930). Reproduced in: Selected papers on the transfer of radiation (ed. D. H. Menzel ). New York: Dover 1966.

    Google Scholar 

  • Morrison, D.: Thermophysics of the planet Mercury. Space Sci. Rev. 11, 271 (1970).

    Google Scholar 

  • Mosengeil, K.: Theorie der stationären Strahlung in einem gleichförmig bewegten Hohlraum (Theory of stationary radiation in a uniformly moving cavity). Ann. Phys. 22, 867 (1907).

    Article  MATH  Google Scholar 

  • Mott, N. F., Massey, H. S. W.: The theory of atomic collisions. Oxford: Oxford at the Clarendon Press 1965.

    Google Scholar 

  • Muhleman, D. O.: Microwave opacity of the Venus atmosphere. Astron. J. 74, 57 (1969).

    Article  ADS  Google Scholar 

  • O’Dell, S. L., Sartori, L.: Limitation on synchrotron models with small pitch angles. Ap. J. 161, L 63 (1970).

    Google Scholar 

  • Ohm, G. S.: Versuch einer Theorie der durch galvanische Kräfte hervorgebrachten elektroskopischen Erscheinungen (An attempt to a theory of the galvanic forces generated through electroscopic phenomena). Ann. Phys. 6, 459; 7, 45 (1826).

    Article  Google Scholar 

  • OoRT, J. H., Walraven, T.: Polarization and composition of the Crab nebula. B.A.N. 12, 285 (1956).

    ADS  Google Scholar 

  • Oster, L.: Effects of collisions on the cyclotron radiation from relativistic particles. Phys. Rev. 119, 1444 (1960).

    Article  ADS  Google Scholar 

  • Oster, L.: Emission, absorption, and conductivity of a fully-ionized gas at radio frequencies. Rev. Mod. Phys. 33 (4), 525 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Oster, L.: The free-free emission and absorption coefficients in the radio frequency range at very low temperatures. Astron. Astrophys. 9, 318 (1970).

    ADS  Google Scholar 

  • Planck, M.: Über das Gesetz der Energieverteilung im Normalspectrum (On the theory of thermal radiation). Ann. Physik 4, 553 (1901).

    Article  ADS  MATH  Google Scholar 

  • Planck, M.: The theory of heat radiation. 1913. Reprod. New York: Dovér 1959.

    Google Scholar 

  • PoincarÉ, H.: Électricité—sur la dynamique de l’électron. Comptes Rendus Acad. Sci. Paris 140, 1504 (1905).

    MATH  Google Scholar 

  • Poisson, S. D.: Remarques sur une équation qui se présente dans la théorie des attractions des spéroides. Bull. de la Soc. Philomathique 3, 388 (1813).

    Google Scholar 

  • Pollack, J. B., Morrison, D.: Venus: Determination of atmospheric parameters from the microwave spectrum. Icarus 12, 376 (1970).

    Article  ADS  Google Scholar 

  • Poynting, J. H.: On the transfer of energy in the electromagnetic field. Phil. Trans. 175, 343 (1884).

    Article  MATH  Google Scholar 

  • Rabi, I. I. Von: Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie (The free electron in a homogeneous magnetic field according to the Dirac theory). Z. Physik 49, 507 (1928).

    Article  ADS  MATH  Google Scholar 

  • Ramaty, R.: Gyrosynchrotron emission and absorption in a magnetoactive plasma. Ap. J. 158, 753 (1969).

    Article  ADS  Google Scholar 

  • Ratcliffe, J. A.: The magneto-ionic theory and its applications to the ionosphere. Cambridge: Cambridge Univ. Press 1959.

    MATH  Google Scholar 

  • Rayleigh, Lord: On the light from the sky, its polarization and colour. Phil. Mag. 41, 107, 274 (1871).

    Google Scholar 

  • Rayleigh, Lord: Investigations in optics, with special reference to the spectroscope. Phil. Mag. 8, 403 (1879).

    Google Scholar 

  • Rayleigh, Lord: On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Phil. Mag. 47, 375 (1899).

    MATH  Google Scholar 

  • Rayleigh, Lord: Remarks upon the law of complete radiation. Phil. Mag. 49, 539 (1900).

    MATH  Google Scholar 

  • Rayleigh, Lord: The dynamical theory of gases and of radiation. Nature, 72, 54 (1905).

    Article  ADS  Google Scholar 

  • Razin, V. A.: The spectrum of nonthermal cosmic radio emission. Radiophysica 3, 584, 921 (1960).

    Google Scholar 

  • Rees, M. J.: Appearance of relativistically expanding radio sources. Nature 211, 468 (1966).

    Article  ADS  Google Scholar 

  • Rickett, B. J.: Interstellar scintillation and pulsar intensity variations. M. N. R.A.S. 150, 67 (1970).

    ADS  Google Scholar 

  • Russell, H. N.: On the albedo of the planets and their satellites. Ap. J. 43, 173 (1916).

    Article  ADS  Google Scholar 

  • Rutherford, E.: The scattering of a and ß particles by matter and the structure of the atom. Phil. Mag. 21, 669 (1911).

    MATH  Google Scholar 

  • Salpeter, E. E.: Electron density fluctuations in a plasma. Phys. Rev. 120, 1528 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  • Salpeter, E. E.: Interplanetary scintillations I. Theory. Ap. J. 147, 433 (1967).

    ADS  Google Scholar 

  • Sauter, F. Von: Zur unrelativistischen Theorie des kontinuierlichen Röntgenspektrums (On the non-relativistic theory of the continuous X-ray spectrum). Ann. Physik 18, 486 (1933).

    Article  ADS  Google Scholar 

  • Scheuer, P. A. G.: The absorption coefficient of a plasma at radio frequencies. M. N. R. A. S. 120, 231 (1960).

    MathSciNet  ADS  Google Scholar 

  • Scheuer, P. A. G.: Synchrotron radiation formulae. Ap. J. 151, L 139 (1968).

    Google Scholar 

  • Schott, G. A.: Electromagnetic radiation: Cambridge: Cambridge University Press 1912.

    MATH  Google Scholar 

  • Schwinger, J.: On the classical radiation of accelerated electrons. Phys. Rev. 75, 1912 (1949).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shapiro, I. I.: Theory of the radar determination of planetary rotations. Astron. J. 72, 1309 (1967).

    Article  ADS  Google Scholar 

  • Shklovski, I. S.: On the nature of the radiation from the Crab nebula. Dokl. Akad. Nauk. S. S. S. R. 90, 983 (1953).

    Google Scholar 

  • Simon, M.: Asymptotic form for synchrotron spectra below Razin cutoff. Ap. J. 156, 341 (1969).

    Article  ADS  Google Scholar 

  • Sitenko, A. G., Stepanov, K. N.: On the oscillations of an electron plasma in a magnetic field. Sov. Phys. J. E. T. P. 4, 512 (1957).

    MathSciNet  MATH  Google Scholar 

  • Slish, V. I.: Angular size of radio stars. Nature 199, 682 (1963).

    Article  ADS  Google Scholar 

  • Smerd, S. F., Westfold, K. C.: The characteristics of radio-frequency radiation in an ionized gas, with applications to the transfer of radiation in the solar atmosphere. Phil. Mag. 40, 831 (1949).

    Google Scholar 

  • Smerd, S. F., Wild, J. P., Sheridan, K. V.: On the relative position and origin of harmonics in the spectra of solar radio bursts of spectral types II and Iii. Austr. J. Phys. 15 180 (1962). Snell, W.: 1621, unpubl.

    Google Scholar 

  • Sommerfeld, A.: Über die Beugung und Bremsung der Elektronen (On the deflection and deceleration of electrons). Ann. Phys. 11, 257 (1931).

    Article  Google Scholar 

  • Stefan, A. J.: Beziehung zwischen Wärmestrahlung und Temperatur (Relation between thermal radiation and temperature). Wien. Ber. 79, 397 (1879).

    Google Scholar 

  • Stokes, G. G.: On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Phil. Soc. 9, 399 (1852).

    ADS  Google Scholar 

  • Takakura, T.: Synchrotron radiation from intermediate energy electrons and solar radio outbursts at microwave frequencies. Publ. Astron. Soc. Japan 12, 325, 352 (1960).

    ADS  Google Scholar 

  • Terzian, Y., Parrish, A.: Observations of the Orion nebula at low radio frequencies. Astrophys. Lett. 5, 261 (1970).

    ADS  Google Scholar 

  • Thomson, J. J.: Conduction of electricity through gases. Cambridge: Cambridge University Press 1903. Republ. New York: Dover 1969.

    Google Scholar 

  • Tonks, L., Langmuir, I.: Oscillations in ionized gases. Phys. Rev. 33, 195 (1929).

    Article  ADS  MATH  Google Scholar 

  • Troitskii, V. S.: On the possibility of determining the nature of the surface material of Mars from its radio emission. Radio Science 5 (2), 481 (1970).

    Article  ADS  Google Scholar 

  • Trubnikov, B. A.: Plasma radiation in a magnetic field. Soy. Phys. “Doklady” 3, 136 (1958).

    ADS  MATH  Google Scholar 

  • Trubnikov, B. A.: Particle interactions in a fully ionized plasma. Rev. Plasma Phys. 1, 105 (1965).

    ADS  Google Scholar 

  • Trumpler, R. J.: Absorption of light in the galactic system. P. A. S. P. 42, 214 (1930).

    Article  ADS  Google Scholar 

  • Tsytovich, V. N.: The problem of radiation by fast electrons in a magnetic field in the presence of a medium. Vestn. Mosk. Univ. 11, 27 (1951).

    Google Scholar 

  • Twiss, R. Q.: On the nature of discrete radio sources. Phil. Mag. 45, 249 (1954).

    Google Scholar 

  • Vladimirski, V. V.: Influence of the terrestial magnetic field on large Auger showers. Zh. Exp. Teor. Fiz. 18, 392 (1948).

    Google Scholar 

  • Vlasov, A. A.: On the kinetic theory of an assembly of particles with collective interaction. J. Phys. (U. S. S. R.) 9, 25 (1945).

    MathSciNet  MATH  Google Scholar 

  • Westfold, K. C.: The polarization of synchrotron radiation. Ap. J. 130, 241 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  • Wheeler, J. A., Lamb, W. E.: Influence of atomic electrons on radiation and pair production. Phys. Rev. 55, 858 (1939).

    Article  ADS  MATH  Google Scholar 

  • Whitford, A. E.: The law of interstellar reddening. Astron. J. 63, 201 (1958).

    Article  ADS  Google Scholar 

  • Wiechert, J. E.: Elektrodynam. Elementargesetze (Fundamental electrodynamic laws). Arch. Néerl 5, 1 (1901).

    Google Scholar 

  • Wien, W.: Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Hauptsatz der Wärmetheorie (One new relation between the radiation of blackbodies and the second law of thermodynamics). Sitz. Acad. Wiss. Berlin 1, 55 (1893).

    Google Scholar 

  • Wien, W.: On the division of energy in the emission-spectrum of a black body. Phil. Mag. 43, 214 (1894).

    Google Scholar 

  • Wild, J. P., Hill, E. R.: Approximation of the general formulae for gyro and synchrotron radiation in a vacuum and isotropic plasma. Austr. J. Phys. 24, 43 (1971).

    ADS  Google Scholar 

  • Wild, J. P., Smerd, S. F., Weiss, A. A.: Solar bursts. Ann. Rev. Astron. Astrophys. 1, 291 (1963).

    Article  ADS  Google Scholar 

  • Williams, P. J. S.: Absorption in radio sources of high brightness temperature. Nature 200, 56 (1963).

    Article  ADS  Google Scholar 

  • Zheleznyakov, V. V.: Radio emission of the sun and planets. New York: Pergamon Press 1970.

    Google Scholar 

  • Acquista, C., Anderson, J. L.: Radiative transfer of partially polarized light. Ap. J. 191, 567 (1974).

    Article  ADS  Google Scholar 

  • Adams, R. C., et al.: Analytic pulsar models. Ap. J. 192, 525 (1974).

    Article  ADS  Google Scholar 

  • Adams, T. F.: The mean photon path length in extremely opaque media. Ap. J. 201, 350 (1975).

    Article  ADS  Google Scholar 

  • Anderson, J. L., Spiegel, E. A.: Radiative transfer through a flowing refractive medium. Ap. J. 202, 454 (1975).

    Article  ADS  Google Scholar 

  • Arons, J., et al.: A multiple pulsar model for quasi-stellar objects and active galactic nuclei. Ap. J. 198, 687 (1975).

    Article  ADS  Google Scholar 

  • Atlee Jackson, E.: A new pulsar atmospheric model I. aligned magnetic and rotational axes. Ap. J. 206, 831 (1976).

    Article  ADS  Google Scholar 

  • Barkstrom, B. R.: An exact expression for the temperature structure of a homogeneous planetary atmosphere containing isotropic scatters. Ap. J. 190, 225 (1974).

    Article  ADS  Google Scholar 

  • Blumenthal, G. R.: The Poynting-Robertson effect and Eddington limit for electrons scattering with hard photons. Ap. J. 188, 121 (1974).

    Article  ADS  Google Scholar 

  • Burbidge, G. R., Jones, T. W., O’Dell, S. L.: Physics of compact nonthermal sources. Iii. energetic considerations. Ap. J. 193, 43 (1974).

    Article  ADS  Google Scholar 

  • Cheng, A., Ruderman, M., Sutherland, P.: Current flow in pulsar magnetospheres. Ap. J. 203, 209 (1976).

    Article  ADS  Google Scholar 

  • Cheng, A., Ruderman, M. A.: A crab pulsar model: X-ray optical, and radio energy. Ap. J. 216, 865 (1977).

    Article  ADS  Google Scholar 

  • Christiansen, W. A., Scott, J. S.: Formation of double radio source structures and superluminal expansion. Ap. J. 216, L1 (1977).

    Article  ADS  Google Scholar 

  • CocKE, W. J.: On the production of power-law spectra and the evolution of cosmic synchrotron sources: a model for the Crab Nebula. Ap. J. 202, 773 (1975).

    Article  ADS  Google Scholar 

  • Cocke, W. J., Pacholczyk, A. G.: Coherent curvature radiation and low-frequency variable radio sources. Ap. J. 195, 279 (1975).

    Article  ADS  Google Scholar 

  • Cocke, W. J., Pacholczyk, A. G.: Theory of the polarization of pulsar radio radiation. Ap. J. 204, L 13 (1976).

    Google Scholar 

  • Condon, J. J., Backer, D. C.: Interstellar Scintillation of extragalactic radio sources. Ap. J. 197, 31 (1975).

    Article  ADS  Google Scholar 

  • Dent, W. A., Aller, H. D., Olsen, E. T.: The evolution of the radio spectrum of Cassiopeia A. A.. J. 188, L 11 (1974).

    Google Scholar 

  • DE Young, D. S.: Extended extragalactic radio sources. Ann. Rev. Astron. Ap. 14, 447 (1976).

    Article  ADS  Google Scholar 

  • DE Young, D. S.: The internal dynamics and brightness distributions of a class of extended radio source models. Ap. J. 211, 329 (1977).

    Article  ADS  Google Scholar 

  • Earl, J. A.: The diffusive idealization of charged-particle transport in random magnetic fields. Ap. J. 193, 231 (1974).

    Article  ADS  Google Scholar 

  • Elliot, J. L., Shapiro, S. L.: On the variability of the compact nonthermal sources. Ap. J. 192, L3 (1974).

    Article  ADS  Google Scholar 

  • Gilman, R. C.: Free-free and free-bound emission in low-surface-gravity stars. Ap. J. 188, 87 (1974).

    Article  ADS  Google Scholar 

  • Ginzburg, V. L., Zheleznyakov, V. V.: On the pulsar emission mechanisms. Ann. Rev. Astron. Ap. 13, 511 (1975).

    Article  ADS  Google Scholar 

  • Hardee, P. E.: Production of pulsed emission from the crab and vela pulsars by the synchrotron mechanism. Ap. J. 227, 958 (1979).

    Article  ADS  Google Scholar 

  • Hardee, P. E., Rose, W. K.: A mechanism for the production of pulsar radio radiation. Ap. J. 210, 533 (1976).

    Article  ADS  Google Scholar 

  • Harris, D. E., Romanishin, W.: Inverse Compton radiation and the magnetic field in clusters of galaxies. Ap. J. 188, 209 (1974).

    Article  ADS  Google Scholar 

  • Harrison, E. R., Tademaru, E.: Acceleration of pulsars by asymmetric radiation. Ap. J. 201, 447 (1975).

    Article  ADS  Google Scholar 

  • Helfand, D. J., Taylor, J. H., Manchester, R. N.: Pulsar proper motions. Ap. J. 213, L 1 (1977).

    Google Scholar 

  • Helfand, D. J., Tademaru, E.: Pulsar velocity observations: correlations, interpretations, and discussion. Ap. J. 216, 842 (1977).

    Article  ADS  Google Scholar 

  • Henriksen, R. N., Norton, J. A.: Oblique rotating pulsar magnetospheres with wave zones. Ap. J. 201, 719 (1975).

    Article  ADS  Google Scholar 

  • Hinata, S.: Relativistic plasma turbulence and its application to pulsar phenomena. Ap. J. 206, 282 (1976).

    Article  ADS  Google Scholar 

  • House, L. L., Stemitz, R.: The non Lte transport equation for polarized radiation in the presence of magnetic fields. Ap. J. 195, 235 (1975).

    Article  ADS  Google Scholar 

  • Jokipii, J. R.: Pitch-angle scattering of charged particles in a random field. Ap. J. 194, 465 (1974).

    Article  ADS  Google Scholar 

  • Jones, P. B.: Pulsar magnetic alignment: the critical period and integrated pulse width. Ap. J. 209, 602 (1976).

    Article  ADS  Google Scholar 

  • Jones, W., O’Dell, S. L.: Transfer of polarized radiation in self-absorbed synchrotron sources. Ap. J. 214, 522 (1977).

    Article  ADS  Google Scholar 

  • Jones, T. W., O’Dell, S. L.: Transfer of polarized radiation in self-absorbed synchrotron sources. II. Treatment of inhomogeneous media and calculation of emergent polarization. Ap. J. 215, 236 (1977).

    Google Scholar 

  • Jones, T. W., Tobin, W.: Restrictions on models for supertight flux variations in radio sources. Ap. J. 215, 474 (1977).

    Article  ADS  Google Scholar 

  • Jones, T. W., O’Dell, S. L., Stein, W. A.: Physics of compact nonthermal sources. I. Theory of radiation processes. Ap. J. 188, 353 (1974).

    Google Scholar 

  • Jones, T. W., O’Dell, S. L., Stein, W. A.: Physics of compact nonthermal sources. II. Determination of physical parameters. Ap. J. 192, 261 (1974).

    Google Scholar 

  • Katz, J. I.: Nonrelativistic Compton scattering and models of quasars. Ap. J. 206, 910 (1976).

    Article  ADS  Google Scholar 

  • Kemp, J. C.: Magnetobremsstrahlung and optical polarization: an understanding and a correction. Ap. J. 213, 794 (1977).

    Article  ADS  Google Scholar 

  • Ko, H. C., Chuang, C. W.: On the passage of radiation through moving astrophysical plasmas. Ap. J. 222, 1012 (1978).

    Article  ADS  Google Scholar 

  • Lee, L. C., Jokipii, J. R.: Strong scintillations in astrophysics. I. the Markov approximation, its validity and application to angular broadening. Ap. J. 196, 695 (1975).

    Article  ADS  Google Scholar 

  • Lee, L. C., Jokipii, J. R.: Strong scintillations in astrophysics. Il. A theory of temporal broadening of pulses. Ap. J. 201, 532 (1975).

    Article  ADS  Google Scholar 

  • Lee, L. C., JoKipi, J. R.: Strong scintillations in astrophysics. Iii. The fluctuations in intensity. Ap. J. 202, 439 (1975).

    Google Scholar 

  • Lerche, I.: On the passage of radiation through inhomogeneous, moving media. I. The plane, differentially sheared medium. Ap. J. 187, 589 (1974).

    Article  ADS  Google Scholar 

  • Lerche, I.: On the relativistic theory of electromagnetic dispersion relations and Poynting’s theorem. Ap. J. Suppl. 29, 113 (1975).

    Article  ADS  Google Scholar 

  • Lerche, I.: On the passage of radiation through inhomogeneous, moving media. IV. Radiative transfer under single-particle Compton scattering. Ap. J. 191, 191 (1974).

    Article  ADS  Google Scholar 

  • Lerche, I.: On the passage of radiation through inhomogeneous, moving media. V. Line absorption and frequency variations of optical depth. Ap. b 191, 753 (1974).

    Google Scholar 

  • Lerche, I.: On the passage of radiation through inhomogeneous, moving media. VI. Dispersion effects on phase and ray paths in a plane, differentially shearing medium. Ap. J. 191, 759 (1974).

    Article  ADS  Google Scholar 

  • Lerche, I.: On the passage of radiation through inhomogeneous, moving media. X. Ray and phase paths in arbitrary velocity fields. Ap. J. 194, 403 (1974).

    Article  ADS  Google Scholar 

  • Lerche, I.: On the passage of radiation through inhomogeneous, moving media. II. The rotating, differentially shearing medium. Ap. J. 187, 597 (1974).

    Article  ADS  Google Scholar 

  • Manchester, R. N., Taylor, J. H., Van, Y. Y.: Detection of pulsar proper motion. Ap. J. 189, L 119 (1974).

    Google Scholar 

  • Marscher, A. P.: Effects of nonuniform structure on the derived physical parameters of compact synchrotron sources. Ap. J. 216, 244 (1977).

    Article  ADS  Google Scholar 

  • Martin, P. G.: On the Kramers-Kronig relations for interstellar polarization. Ap. J. 202, 389 (1975).

    Article  ADS  Google Scholar 

  • Michel, F. C.: Rotating magnetosphere: far-field solutions. Ap. J. 187, 585 (1974).

    Article  ADS  Google Scholar 

  • Michel, F. C.: Rotating magnetosphere: acceleration of plasma from the surface. Ap. J. 192, 713 (1974).

    Article  ADS  Google Scholar 

  • Michel, F. C.: Pulsar extinction. Ap. J. 195, L69 (1975).

    Article  ADS  Google Scholar 

  • Michel, F. C.: Rotating magnetospheres: frozen-in-flux violations. Ap. J. 196, 579 (1975).

    Article  ADS  Google Scholar 

  • Michel, F. C.: Self-consistent rotating magnetosphere. Ap. J. 197, 193 (1975).

    Article  ADS  Google Scholar 

  • Michel, F. C.: Composition of the neutron star surface in pulsar models. Ap. J. 198, 683 (1975).

    Article  ADS  Google Scholar 

  • Opher, R.: The origin of the nonthermal radiation of quasistellar objects and galactic nuclei. Ap. J. 201, 526 (1975).

    Article  ADS  Google Scholar 

  • Pacholczyk, A. G., Scott, J. S.: Physics of compact radio sources. I. particle acceleration and flux variations. Ap. J. 210, 311 (1976).

    Article  ADS  Google Scholar 

  • Peterson, F. W.: Spectral index dispersion in extragalactic radio sources. Ap. J. 202, 603 (1975).

    Article  ADS  Google Scholar 

  • Peterson, F. W., King, C. Iii: A model for simultaneous synchrotron and inverse Compton fluxes. Ap. J. 195, 753 (1975).

    Article  ADS  Google Scholar 

  • Roberts, D. H.: The luminosity distribution and total space density of pulsars. Ap. J. 205, L29 (1976).

    Article  ADS  Google Scholar 

  • Ruderman, M. A., Sutherland, P. G.: Theory of pulsars: polar gaps, sparks, and coherent microwave radiation. Ap. J. 196, 51 (1975).

    Article  ADS  Google Scholar 

  • Salvati, M.: Relativistic correlations in the theory of expanding synchrotron sources. Ap. J. 233, 11 (1979).

    Article  ADS  Google Scholar 

  • Sturrock, P. A., Baker, K., Turk, J. S.: Pulsar extinction. Ap. J. 206, 273 (1976).

    Article  ADS  Google Scholar 

  • Sturrock, P. A., Petrosian, V., Turk, J. S.: Optical radiation from the crab pulsar. Ap. J. 196 73 (1975).

    Google Scholar 

  • Tademaru, E.: Acceleration of pulsars by asymmetric radiation. Iii. Observational evidence. Ap. J. 214, 885 (1977).

    Article  ADS  Google Scholar 

  • Vitello, P., Pacini, F.: The evolution of expanding nonthermal sources. I. Nonrelativistic expansion. Ap. J. 215, 452 (1977).

    Article  ADS  Google Scholar 

  • Vitello, P., Pacini, F.: The evolution of expanding nonthermal sources. IL Relativistic expansions. Ap. J. 220, 756 (1978).

    Article  ADS  Google Scholar 

  • Weisheit, J. C., Shore, B. W.: Plasma-screening effects upon atomic hydrogen photoabsorption. Ap. J. 194, 519 (1974).

    Article  ADS  Google Scholar 

  • Witt, A. N.: Multiple scattering in reflection nebulae. I. A Monte Carlo approach. Ap. J. Suppl. 35, 1 (1977).

    Article  ADS  Google Scholar 

  • Witt, A. N.: Multiple scattering in reflection nebulae. Iii. Nebulae with embedded illuminating stars. Ap. J. Suppl. 35, 21 (1977).

    Article  ADS  Google Scholar 

  • Young, A. T.: Seeing: Its cause and cure. Ap. J. 189, 587 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, K.R. (1980). Continuum Radiation. In: Astrophysical Formulae. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21642-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21642-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55040-2

  • Online ISBN: 978-3-662-21642-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics