Advertisement

Analytical Electron Microscopy

  • Ludwig Reimer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 36)

Abstract

X-ray spectrometers can be coupled to a transmission electron microscope to record x-ray quanta emitted from the specimen. With an energy-dispersive spectrometer, quantitative analysis is possible for elements with atomic numbers above ten.

Keywords

Analytical Electron Microscopy Bragg Reflection Kikuchi Line Ewald Sphere Detector Diaphragm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 9.1
    C.J. Cooke, P. Duncombe: Performance analysis of a combined electron microscope and electron probe microanalyser ‘EMMA’, in 5th Int’l Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt, K.H. Gaukler (Springer, Berlin, Heidelberg 1969) p.245Google Scholar
  2. 9.2
    C.J. Cooke, I.K. Openshaw: Combined high resolution electron microscopy and X-ray microanalysis, in Microscopie Electronique1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p. 175Google Scholar
  3. 9.3
    J.B. LePoole: Miniature lens, in Electron Microscopy 1964 , Vol. A, ed. by M. Titlbach (Czechoslovak Acad. Sci., Prague 1964) p.439Google Scholar
  4. 9.4
    P.F. Chapman: A microanalysis attachment for the Elmiskop I, in 5th Infi Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt, K.H. Gaukler (Springer, Berlin, Heidelberg 1969) p.241Google Scholar
  5. 9.5
    H. Neff: Über die Röntgen-Emissionsanalyse von elektronenmikroskopischen Präparaten. Z. Instrumentenkd. 72, 125 (1964)Google Scholar
  6. 9.6
    E. Fuchs: X-ray spectrometer attachment for Elmiskop I electron microscope. Rev. Sci. Instrum. 37, 623 (1966)ADSCrossRefGoogle Scholar
  7. 9.7
    D.A. Gedcke: The Si(Li) X-ray spectrometer for X-ray microanalysis, in Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. (Academic, London 1974) p.403Google Scholar
  8. 9.8
    T.A. Hall: Reduction of background due to backscattered electrons in energy dispersive X-ray microanalysis. J. Micr. 110, 103 (1977)CrossRefGoogle Scholar
  9. 9.9
    B. Neumann, L. Reimer: A permanent magnet system for electron deflection in front of an energy dispersive X-ray spectrometer. Scanning 1, 130 (1978)CrossRefGoogle Scholar
  10. 9.10
    N.C. Barbi, A.O. Sandborg, J.C. Russ, C.E. Soderquist: Light element analysis on the SEM using a windowless energy dispersive X-ray spectrometer, in Scanning Electron Microscopy1974, ed. by O. Johari (IIT Research Inst., Chicago 1974) p.289Google Scholar
  11. 9.10a
    J.C. Russ: Procedures for quantitative ultralight element energy dispersive X-ray analysis, in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.289Google Scholar
  12. 9.11
    L. Reimer: Scanning Electron Microscopy. Physics of Image Formation and Microanalysis, in Springer Ser. in Opt. Sciences, Vol.45, (Springer, Berlin, Heidelberg 1985)Google Scholar
  13. 9.12
    S.J.B. Reed: Electron Microprobe Analysis (Cambridge University Press, London 1975)Google Scholar
  14. 9.13
    J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York 1981)CrossRefGoogle Scholar
  15. 9.14
    K.F.J. Heinrich: Electron Beam X-Ray Microanalysis (Van-Nostrand, New York 1981)Google Scholar
  16. 9.15
    M.H. Jacobs, J. Baborovska: Quantitative microanalysis of thin foils with a combined electron microscope-microanalyser (EMMA-3), in Electron Microscopy 1972 (The Institute of Physics, London 1972) p. 136Google Scholar
  17. 9.16
    G.W. Lorimer, G. Cliff, J.N. Clark: Determination of the thickness and spatial resolution for the quantitative analysis of thin foils, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.153Google Scholar
  18. 9.17
    R. König: Quantitative X-ray microanalysis of thin foils, in Electron Microscopy in Mineralogy, ed. by H.R. Wenk (Springer, Berlin, Heidelberg 1976) p.526CrossRefGoogle Scholar
  19. 9.18
    J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed Quantitative X-ray analysis in the electron microscope, in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.315Google Scholar
  20. 9.19
    J. Philibert, R. Tixien Electron probe microanalysis of TEM specimens, in Physical Aspects of Electron Microscopy and Analysis, ed. by B.M. Siegel, D.R. Beaman (Wiley, New York 1975) p.333Google Scholar
  21. 9.20
    G.W. Lorimer, S.A. Al-Salman, G. Cliff: The quantitative analysis of thin specimens: Effects of absorption, fluorescence and beam spreading, in Development in Electron Microscopy and Analysis 1977, ed. by D.L. Miseli (The Institute of Physics, London 1977) p.369Google Scholar
  22. 9.21
    CR. Hall: On the production of characteristic X-rays in thin metal crystals. Proc. Roy. Soc. A 295, 140 (1966)ADSCrossRefGoogle Scholar
  23. 9.22
    D. Cherns, A. Howie, M.H. Jacobs: Characteristic X-ray production in thin crystals. Z. Naturforsch. A 28, 565 (1973)ADSGoogle Scholar
  24. 9.23
    B. Neumann, L. Reimer. Anisotropic X-ray generation in thin and bulk single crystals. J. Phys. D 13, 1737 (1980)ADSCrossRefGoogle Scholar
  25. 9.24
    J. Bentley, N.J. Zaluzec, E.A. Kenik, R.W. Carpenter: Optimization of an analytical electron microscope for X-ray microanalysis, in Scanning Electron Microscopy 1979/II, ed. by O. Johari (SEM Inc. AMF O’Hare 1979) p.581Google Scholar
  26. 9.25
    J. Philibert, R. Tixien Electron penetration and the atomic number correction in electron probe microanalysis. J. Phys. D 1, 685 (1968)ADSCrossRefGoogle Scholar
  27. 9.26
    M.J. Nasir: Quantitative analysis on thin films in EMMA-4 using block standards, in Electron Microscopy 1972 (The Institute of Physics, London 1972) p. 142Google Scholar
  28. 9.27
    G. Cliff, G.W. Lorimer Quantitative analysis of thin metal foils using EMMA-4 — the ratio technique, in Electron Microscopy 1972 (The Institute of Physics, London 1972) p. 140Google Scholar
  29. 9.28
    G. Cliff, G.W. Lorimer: The quantitative analysis of thin specimens. J. Micr. 103, 203 (1975)CrossRefGoogle Scholar
  30. 9.29
    M.N. Thompson, P. Doig, J.W. Edington, P.E.J. Flewitt: The influence of specimen thickness on x-ray count rates in STEM microanalysis. Philos. Mag. 35, 1537 (1977)ADSCrossRefGoogle Scholar
  31. 9.30
    P. Schwaab: Quantitative energy dispersive x-ray microanalysis of thin metal specimens using the STEM. Scanning 9, 1 (1987)CrossRefGoogle Scholar
  32. 9.31
    T.P. Schreiber, A.M. Wims: A quantitative x-ray microanalysis thin film method using K-, L- and M-lines. Ultramicroscopy 6, 323 (1981)Google Scholar
  33. 9.31a
    J.E. Wood, D.C. Williams, J.I. Goldstein: Experimental and theoretical determination of ka,Fe factors for quantitative X-ray microanalysis in the analytical electron microscope. J. Micr. 133, 255 (1984)CrossRefGoogle Scholar
  34. 9.32
    C.E. Lyman, P.E. Manning, D.J. Duquette, E. Hall: STEM microanalysis of duplex stainless steel weld metal, in Scanning Electron Microscopy 1978/1, ed. by O. Johari (SEM Inc., OMF O’Hare 1978) p.213Google Scholar
  35. 9.32a
    D.B. Williams, J.I. Goldstein: STEM/X-ray microanalysis across α/γ interfaces in FeNi meteorites, in Electron Microscopy1978, Vol.1, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.416Google Scholar
  36. 9.33
    A.M. Ritter, W.G. Morris, M.F. Henry: Factors affecting the measurement of composition profiles in STEM, in Scanning Electron Microscopy 1979/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1979) p.121Google Scholar
  37. 9.34
    T.A. Hall: The microprobe assay of chemical elements, in Physical Techniques in Biological Research, Vol.1, Pt.A, ed. by G. Oster (Academic, New York 1971) p.157Google Scholar
  38. 9.34a
    T.A. Hall, H. Clarke Anderson, T. Appleton: The use of thin specimens for x-ray microanalysis in biology. J. Micr. 99, 177 (1973)CrossRefGoogle Scholar
  39. 9.35
    T.A. Hall, B.L. Gupta: EDS quantitation and application to biology, in Introduction to Analytical Electron Microscopy, ed. by J.J. Hren, J.F. Goldstein, D.C. Joy (Plenum, New York 1979) p. 169CrossRefGoogle Scholar
  40. 9.36
    N. Roos, T. Barnard: Aminoplastic standards for quantitative X-ray microanalysis of thin sections of plastic embedded biological material. Ultramicroscopy 15, 277 (1984)CrossRefGoogle Scholar
  41. 9.37
    A.R. Spurr: Choice and preparation of standards for X-ray microanalysis of biological materials with special reference to macrocyclic polyether complexes. J. Microscopie Biol. Cell 55, 287 (1975)Google Scholar
  42. 9.38
    G.M. Roomans, H.L.M. van Gaal: Organometallic and organometalloid compounds as standards for microprobe analysis of epoxy resin embedded tissue. J. Micr. 109, 235 (1977)CrossRefGoogle Scholar
  43. 9.38a
    G.M. Roomans: Standards for X-ray microanalysis of biological specimens, in Scanning Electron Microscopy 1979/II, (SEM Inc., AMF O’Hare Chicago 1979) p.649Google Scholar
  44. 9.39
    H. Shuman, A.V. Somlyo, A.P. Somlyo: Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicroscopy 1, 317 (1976)CrossRefGoogle Scholar
  45. 9.40
    T.O. Ziebold: Precision and sensitivity in electron microprobe analysis. Anal. Chem. 39, 858 (1967)CrossRefGoogle Scholar
  46. 9.41
    D.C. Joy, D.M. Maher: Sensitivity limits for thin specimens X-ray analysis, in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.325Google Scholar
  47. 9.42
    A.J.F. Metherell: Energy analysing and energy selecting microscopes, in Advances in Optical and Electron Microscopy, Vol.4, ed. by R. Barer, V.E. Cosslett (Academic, London 1971) p.263Google Scholar
  48. 9.43
    W. Steckelmachen Energy analysers for charged particle beams. J. Phys. E 6, 1061 (1973)ADSCrossRefGoogle Scholar
  49. 9.44
    H.T. Pearce-Percy: The design of spectrometers for energy loss spectroscopy, in Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1978) p.41Google Scholar
  50. 9.45
    D.B. Wittry: An electron spectrometer for use with the TEM. J. Phys. D 2, 1757 (1969)ADSCrossRefGoogle Scholar
  51. 9.46
    H. Hintenbergen Improved magnetic focusing of charged particles. Rev. Sci. Intrum. 20, 748 (1949)ADSCrossRefGoogle Scholar
  52. 9.47
    S. Penner: Calculations of properties of magnetic deflection systems. Rev. Sci. Instrum. 32, 150 (1961)ADSCrossRefGoogle Scholar
  53. 9.48
    A.V. Crewe, M. Isaacson, D. Johnson: A high resolution electron spectrometer for use in transmission electron microscopy. Rev. Sci. Instrum. 42, 411 (1971)ADSCrossRefGoogle Scholar
  54. 9.49
    R.F. Egerton: A simple electron spectrometer for energy analysis in the transmission microscope. Ultramicroscopy 3, 39 (1978)CrossRefGoogle Scholar
  55. 9.50
    R.F. Egerton: Design of an aberration-corrected electron spectrometer for the TEM. Optik 57, 229 (1980)Google Scholar
  56. 9.51
    H. Shuman: Correction of the second-order aberrations of uniform field magnetic sectors. Ultramicroscopy 5, 45 (1980)CrossRefGoogle Scholar
  57. 9.52
    R.F. Egerton: The use of electron lenses between a TEM specimen and an electron spectrometer. Optik 56, 363 (1980)Google Scholar
  58. 9.53
    D.E. Johnson: Pre-spectrometer optics in CTEM/STEM. Ultramicroscopy 5, 163 (1980)CrossRefGoogle Scholar
  59. 9.54
    A.W. Blackstock, R.D. Birkhoff, M. Slater: Electron accelerator and high resolution analyser. Rev. Sci. Instrum. 26, 274 (1955)ADSCrossRefGoogle Scholar
  60. 9.55
    J. Lohff: Charakteristische Energieverluste bei der Streuung mittelschneller Elektronen an Aluminium-Oberflächen. Z. Phys. 171, 442 (1963)ADSCrossRefGoogle Scholar
  61. 9.56
    Y. Kokubo, H. Koike, T. Someya: Development of energy analyzer for scanning and transmission microscope, in Electron Microscopy1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.374Google Scholar
  62. 9.57
    W. Kraus, P. Fazekas: Electron energy-loss spectrometry using an electron microscope in combination with an electrostatic cylindrical mirror. Siemens Forsch. Entwicklungsber. 6, 172 (1977)Google Scholar
  63. 9.58
    A.V. Crewe, J. Wall, L.M. Welter A high resolution scanning transmission electron microscope. J. Appl. Phys. 39, 5861 (1968)ADSCrossRefGoogle Scholar
  64. 9.59
    H. Boersch: Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Phys. 139, 115 (1954)ADSCrossRefGoogle Scholar
  65. 9.60
    H. Boersch, H. Miessnen Ein hochempfindlicher Gegenfeld-Energieanalysator für Elektronen. Z. Phys. 168, 298 (1962)ADSCrossRefGoogle Scholar
  66. 9.61
    H. Boersch, S. Schweda: Eine inverse Gegenfeldmethode zur Energieanalyse von Elektronen und Ionenstrahlen. Z. Phys. 167, 1 (1962)ADSCrossRefGoogle Scholar
  67. 9.62
    K. Brack: Über eine Anordnung zur Filterung von Elektroneninterferenzen. Z. Naturforsch. A 17, 1066 (1962)ADSGoogle Scholar
  68. 9.63
    H. Boersch, R. Wolter, H. Schoenebeck: Elastische Energieverluste kristallgestreuter Elektronen: Z. Phys. 199, 124 (1967)ADSCrossRefGoogle Scholar
  69. 9.64
    M.T. Browne, S. Lockovic, R.E. Burge: Instrumentation and recording for the vacuum generators HB5 STEM instrument, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.27Google Scholar
  70. 9.65
    H. Boersch, J. Geiger, W. Stickel: Das Auflösungsvermögen des elektrostatisch-magnetischen Energieanalysators für schnelle Elektronen. Z. Phys. 180, 415 (1964)ADSCrossRefGoogle Scholar
  71. 9.66
    J. Geiger, M. Nolting, B. Schröder: How to obtain high resolution with a Wien filter spectrometer, in Microscopie Electronique1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.111Google Scholar
  72. 9.67
    W.H.J. Anderson, J.B. LePoole: A double Wienfilter as a high resolution, high transmission electron energy analyser. J. Phys. E 3, 121 (1970)ADSCrossRefGoogle Scholar
  73. 9.68
    G.H. Curtis, J. Silcox: A Wien filter for use as an energy analyzer with an electron microscope. Rev. Sci. Instrum. 42, 630 (1971)ADSCrossRefGoogle Scholar
  74. 9.69
    P.E. Batson: Prospects for high-resolution EELS experiments with the STEM. Ultramicroscopy 18, 125 (1985)CrossRefGoogle Scholar
  75. 9.70
    G. Möllenstedt Die elektrostatische Linse als hochauflösender Geschwindig-keitsanalysator. Optik 5, 499 (1949)Google Scholar
  76. 9.71
    G. Möllendstedt, W. Dietrich: Verbesserung der Optik des hochauflösenden elektrostatischen Geschwindigkeitsanalysators. Optik 12, 246 (1955)Google Scholar
  77. 9.72
    K. Keck, H. Deichsel: Die Verwendung der Elektronen-Einzellinse als “lichtstarkes” Energiefilter für Elektronenstrahlen. Optik 17, 401 (1960)Google Scholar
  78. 9.73
    A.J.F. Metherell, R.F. Cook: Resolution and dispersion of the four classes of Möllenstedt electron energy analysers. Optik 34, 535 (1972)Google Scholar
  79. 9.74
    S. Kuwabara, T. Uefuji, Y. Takamatsu: A simple electrostatic energy filter for electron diffraction and electron microscopy. Jpn. J. Appl. Phys. 13, 1495 (1974)ADSCrossRefGoogle Scholar
  80. 9.75
    F. Lenz: Über das chromatische Auflösungsvermögen von Elektronenlinsen bei der Geschwindigkeitsanalyse. Optik 10, 439 (1953)Google Scholar
  81. 9.76
    R. Shirota, T. Yanaka: An energy analyser with rotation symmetrical lenses, in Electron Microscopy1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.368Google Scholar
  82. 9.77
    L. Reimer, U. Riediger: Energieverlustspektroskopie mit einer modifizierten Kaustikmethode in einem 100 keV-Transmissionselektronenmikroskop. Optik 46, 67 (1976)Google Scholar
  83. 9.78
    T. Ichinokawa: Electron energy analysis by a cylindrical magnetic lens. Jpn. J. Appl. Phys. 7, 799 (1968)ADSCrossRefGoogle Scholar
  84. 9.79
    K.Z. Considine, K.C.A. Smith: An energy analyser for high voltage microscopy, in Electron Microscopy1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.329Google Scholar
  85. 9.80
    Y. Kamiya, K. Shimizu, T. Suzuki: The velocity analyser for high energy electrons. Optik 41, 421 (1974)Google Scholar
  86. 9.81
    R. Castaing: Quelques application du filtrage magnétique des vitesses en microscopie eléctronique. Z. Angew. Phys. 27, 171 (1969)Google Scholar
  87. 9.81a
    R. Castaing, L. Henry: Filtrage magnétique des vitesses en microscope electronique. CR. Acad. Sci. Paris 255, 76 (1962)Google Scholar
  88. 9.82
    W. Egle, A. Rilk, F.P. Ottensmeyer: A new analytical TEM with imaging electron energy loss spectrometer, in Electron Microscopy1984, Vol.1, ed. by A. Csanady et. al., (Motesz, Budapest 1984) p.63Google Scholar
  89. 9.83
    L. Reimer, I. Fromm, R. Rennekamp: Operation modes of electron spectroscopic imaging and energy-loss spectroscopy in a TEM. Ultramicroscopy 24, 339 (1988)CrossRefGoogle Scholar
  90. 9.84
    H. Rose, E. Plies: Entwurf eines fehlerarmen magnetischen Energie-Analysators. Optik 40, 336 (1974) H.T. Pearce-Percy, D. Krahl, J. Jaeger A 4-magnet imaging spectrometer for a fixed-beam transmission microscope, in Electron Microscopy1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.348Google Scholar
  91. 9.85
    G. Zanchi, J.Ph. Perez, J. Sevely: Adaption of a magnetic filtering device in a one megavolt electron microscope. Optik 43, 495 (1975)Google Scholar
  92. 9.85a
    G. Zanchi, J. Sevely, B. Jouffrey: An energy filter for high voltage electron microscopy. J. Micr. Spectr. Electr. 2, 95 (1977)Google Scholar
  93. 9.86
    S. Lanio: High-resolution imaging magnetic energy filter with simple structure. Optik 73, 99 (1986)Google Scholar
  94. 9.87
    O.L. Krivanek, C. Ahn: Energy-filtered imaging with quadrupole lenses, in Electron Microscopy1986, Vol.1, ed. by T. Imura et al. (Japanese Society of Electron Microscopy, Tokyo 1986) p.519Google Scholar
  95. 9.88
    H. Shuman, P. Kruit Quantitative data processing of parallel recorded electron energy-loss spectra with low signal to background. Rev. Sci. Instr. 56, 231 (1985)ADSCrossRefGoogle Scholar
  96. 9.88a
    D.E. Johnson, M. Connick: Quantitative assessment of a parallel detection system for energy-loss spectrometry. Rev. Sci. Instr. 58, 1822 (1987)ADSCrossRefGoogle Scholar
  97. 9.89
    H. Shuman: Parallel recording of electron energy loss spectra. Ultramicroscopy 6, 163 (1981)Google Scholar
  98. 9.90
    P.E. Batson: Digital data acquisition of electron energy loss intensities. Ultra-microscopy 3, 367 (1979)CrossRefGoogle Scholar
  99. 9.91
    R.F. Egerton, D. Kenway: An acquisition, storage display and processing system for electron energy-loss spectra. Ultramicroscopy 4, 221 (1979)CrossRefGoogle Scholar
  100. 9.92
    J. Daniels, C. von Festenberg, H. Raether, K. Zeppenfeld: Optical Constants of Solids by Electron Spectroscopy, Springer Tracts Mod. Phys.,54, 77 (Springer, Berlin, Heidelberg 1970)ADSCrossRefGoogle Scholar
  101. 9.93
    R.W. Ditchfield, A.G. Cullis: Identification of impurity particles in epitaxially grown Si films using combined electron microscopy and energy analysis, in Microscopie Electronique1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p. 125Google Scholar
  102. 9.94
    R.F. Cook: Electron energy loss spectroscopy of glass, in Microscopie Electronique, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p. 127Google Scholar
  103. 9.95
    M. Isaacson: Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine, and uracil. J. Chem. Phys. 56, 1803 and 1813 (1972)ADSCrossRefGoogle Scholar
  104. 9.96
    J. Hainfeld, M. Isaacson: The use of electron energy loss spectroscopy for studying membrane architecture. Ultramicroscopy 3, 87 (1978)CrossRefGoogle Scholar
  105. 9.97
    D.R. Spalding, A.J.F. Metherell: Plasmons losses in Al-Mg alloys. Philos. Mag. 18, 41 (1968)ADSCrossRefGoogle Scholar
  106. 9.98
    S.L. Cundy, A.J.F. Metherell, M.J. Whelan, P.N.T. Unwin, R.B. Nicholson: Studies of segregation and the initial stages of precipitation at grain boundaries in Al-7wt% Mg alloy with an energy analysing electron microscope. Proc. Roy. Soc. A 307, 267 (1968)ADSCrossRefGoogle Scholar
  107. 9.99
    D.R. Spalding, R.E. Villagrana, G.A. Chadwick: A study of copper distribution in lamellar Al-CuAl2 eutectics using an energy analysing microscope. Philos. Mag. 20, 471 (1969)ADSCrossRefGoogle Scholar
  108. 9.100
    R.F. Cook, S.L. Cundy: Plasmon energy losses in Al-Zn alloys. Philos. Mag. 20, 665 (1969)ADSCrossRefGoogle Scholar
  109. 9.101
    G. Hibbert, J.W. Eddington: Experimental errors in combined electron microscopy and energy analysis. J. Phys. D 5, 1780 (1972)ADSCrossRefGoogle Scholar
  110. 9.102
    G. Hibbert, J.W. Edington: Superposition effects in the energy analysing electron microscope. Philos. Mag. 26, 1071 (1972)ADSCrossRefGoogle Scholar
  111. 9.103
    R.F. Cook, A. Howie: Effect of elastic constraints on electron energy loss measurements in inhomogeneous alloy. Philos. Mag. 20, 641 (1969)ADSCrossRefGoogle Scholar
  112. 9.104
    D.R. Spalding: Electron microscopy evidence of plasmon-dislocation interactions. Philos. Mag. 34, 1073 (1976)ADSCrossRefGoogle Scholar
  113. 9.105
    R.F. Egerton: Measurement of inelastic/elastic scattering ratio for fast electrons and its use in the study of radiation damage. Phys. Status Solidi A 37, 663 (1976)ADSCrossRefGoogle Scholar
  114. 9.106
    R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum, New York, London 1986)Google Scholar
  115. 9.107
    R.F. Egerton: Instrumentation and software for energy-loss microanalysis, in Scanning Electron Microscopy 1980/I (SEM Inc., AMF O’Hare, Chicago 1980) p.41Google Scholar
  116. 9.108
    C. Colliex, C. Jeanguillaume, O. Trebbia: Quantitative local microanalysis with EELS, in Microprobe Analysis of Biological Systems, ed. by T.E. Hutchinson, A.P. Somlyo (Academic, New York 1981) p.251Google Scholar
  117. 9.109
    J. Bentley, G.L. Lehmann, P.S. Sklad: Improved background fitting for EELS, in Electron Microscopy1982, Vol.1 (Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982) p.585Google Scholar
  118. 9.110
    J.D. Steele, J.M. Titchmarsh, J.N. Chapman, J.H. Paterson: A single stage process for quantifying EELS. Ultramicroscopy 17, 273 (1985)CrossRefGoogle Scholar
  119. 9.111
    M. Isaacson, D. Johnson: The microanalysis of light elements using transmitted energy loss electrons. Ultramicroscopy 1, 33 (1975)CrossRefGoogle Scholar
  120. 9.112
    R.F. Egerton, M.J. Whelan: High resolution microanalysis of light elements by electron energy loss spectrometry, in Electron Microscopy1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.384Google Scholar
  121. 9.113
    J. Sevely, J.Ph. Perez, B. Jouffrey: Energy losses of electrons through Al and carbon films from 300 keV up to 1200 keV, in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p.32Google Scholar
  122. 9.114
    D.W. Johnson, J.C.H. Spence: Determination of the single-scattering probability distribution from plural-scattering data. J. Phys. D 7, 771 (1974)ADSCrossRefGoogle Scholar
  123. 9.115
    CR. Bradley, M.L. Wroge, P.C. Gibbons: How to remove multiple scattering from core-excitation spectra. Ultramicroscopy 16, 95 (1985);CrossRefGoogle Scholar
  124. 9.115a
    CR. Bradley, M.L. Wroge, P.C. Gibbons: How to remove multiple scattering from core-excitation spectra. Ultramicroscopy 19, 317 (1986);CrossRefGoogle Scholar
  125. 9.115b
    CR. Bradley, M.L. Wroge, P.C. Gibbons: How to remove multiple scattering from core-excitation spectra. Ultramicroscopy 21, 305 (1987)CrossRefGoogle Scholar
  126. 9.116
    R.F. Egerton: Formulae for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy 3, 243 (1978)CrossRefGoogle Scholar
  127. 9.117
    G. Lehmpfuhl, J. Taftø The channelling effect in electron energy loss spectroscopy, in Electron Microscopy 1980, Vol.3, ed. by P. Brederoo, V.E. Cosslett (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.62Google Scholar
  128. 9.118
    R.F. Egerton, C.J. Rossouw, M.J. Whelan: Progress towards a method for the quantitative microanalysis of light elements by electron energy-loss spectrometry, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p. 129Google Scholar
  129. 9.119
    D.C. Joy, D.M. Mahen Electron energy loss spectroscopy: Detectable limits for elemental analysis. Ultramicroscopy 5, 333 (1980)CrossRefGoogle Scholar
  130. 9.120
    J.C.H. Spence, J. Lynch: STEM microanalysis by transmission EELS in crystals. Ultramicroscopy 9, 267 (1982)CrossRefGoogle Scholar
  131. 9.121
    C. Colliex: An illustrated review of various factors governing the high spatial resolution capabilities in EELS microanalysis. Ultramicroscopy 18, 131 (1985)CrossRefGoogle Scholar
  132. 9.122
    W. Probst, R. Bauer: Technik und biologische Anwendung der elektronen-spektroskopischen Abbildung (ESI) und EELS. Verh. Deutsch. Zool. Ges. 80, 119 (1987)Google Scholar
  133. 9.123
    R. Bauer, U. Hezel, D. Kurz: High-resolution imaging of thick biological sections with an imaging EELS. Optik 77, 171 (1987)Google Scholar
  134. 9.124
    H.T. Pearce-Percy, J.M. Cowley: On the use of energy filtering to increase the contrast of STEM images of thick biological materials. Optik 44, 273 (1976)Google Scholar
  135. 9.125
    M. Isaacson, J.P. Langmore, H. Rose: Determination of the non-localization of the inelastic scattering of electrons by electron microscopy. Optik 41, 92 (1974)Google Scholar
  136. 9.126
    A.V. Crewe, J. Wall: Contrast in high resolution STEM. Optik 30, 461 (1970)Google Scholar
  137. 9.127
    A. El Hili: Analyse quantitative a haute résolution par images electroniques filtrées. J. Microscopie 5, 669 (1966)Google Scholar
  138. 9.128
    B. Jouffrey: Electron energy loss spectroscopy, in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Miseli (The Institute of Physics, London 1977) p.351Google Scholar
  139. 9.129
    C.J. Wilson, P.E. Batson, A.J. Craven, L.M. Brown: Differentiated energy loss spectroscopy in STEM, in Developments in Electron Microscopy and Analysis 1977 , ed. by D.L. Miseli (The Institute of Physics, London 1977) p.365Google Scholar
  140. 9.130
    K.M. Adamson-Sharpe, F.P. Ottensmeyer: Spatial resolution and detection sensitivity in microanalysis by electron energy loss selected imaging. J. Micr. 122, 302 (1981)CrossRefGoogle Scholar
  141. 9.130a
    C. Colliex: Electron energy loss analysis in materials science, in Electron Microscopy1982, Vol.1 (Deutsche Gesellschaft für Elektronenmikroskopie, Frankfurt 1982) p. 159Google Scholar
  142. 9.131
    S.L. Cundy, A.J.F. Metherell, M.J. Whelan: An energy analysing electron microscope. J. Sci. Instrum. 43, 712 (1966)ADSCrossRefGoogle Scholar
  143. 9.132
    Y. Kamiya, R. Uyeda: Effect of incoherent waves on the electron microscopy image of crystals. J. Phys. Soc. Jpn. 16, 1361 (1961)ADSCrossRefGoogle Scholar
  144. 9.133
    Y. Kamiya, Y. Nakai: Diffraction contrast effect of electrons scattered inelast-ically through large angles. J. Phys. Soc. Jpn. 31, 195 (1971)ADSCrossRefGoogle Scholar
  145. 9.134
    S.L. Cundy, A.J.F. Metherell, M.J. Whelan: Contrast preserved by elastic and quasi-elastic scattering of fast electrons near Bragg beams. Philos. Mag. 15, 623 (1967)ADSCrossRefGoogle Scholar
  146. 9.135
    R. Castaing, P. Hénoc, L. Henry, M. Natta: Degré de cohérence de la diffusion électronique par interaction électron-phonon. C. R. Acad. Sci. Paris 265, 1293 (1967)Google Scholar
  147. 9.136
    S. Kuwabara, T. Uefuji: Variation of electron microscopic thickness fringes of Al single crystals with energy loss. J. Phys. Soc. Jpn. 38, 1090 (1975)ADSCrossRefGoogle Scholar
  148. 9.137
    J.B. LePoole: Ein neues Elektronenmikroskop mit stetig regelbarer Vergrößerung. Philips Tech Rundsch. 9, 33 (1947)Google Scholar
  149. 9.138
    M.E. Haine, R.S. Page, R.G. Garfitt A three-stage electron microscope with Stereographic dark field and electron diffraction capabilities. J. Appi. Phys. 21, 173 (1950)ADSCrossRefGoogle Scholar
  150. 9.144
    J.C. Lodder, K.G. van der Berg: A method for accurately determining lattice parameters using electron diffraction in a commercial electron microscope. J. Micr. 100, 93 (1974)CrossRefGoogle Scholar
  151. 9.145
    F. Fujimoto, K. Komaki, S. Takagi, H. Koike: Diffraction patterns obtained by scanning electron microscopy. Z. Naturforsch. A 27, 441 (1972)ADSGoogle Scholar
  152. 9.146
    A.P. Pogany, P.S. Turner: Reciprocity in electron diffraction and microscopy. Acta Cryst. A 24, 103 (1968)CrossRefGoogle Scholar
  153. 9.147
    M.N. Thompson: A scanning transmission microscope: Some techniques and applications, in Scanning Electron Microscopy: Systems and Applications, ed. by W.C. Nixon (The Institute of Physics, London 1973) p. 176Google Scholar
  154. 9.148
    D.M. Maher: Scanning electron diffraction in TEM and SEM operating in the transmission mode, in Scanning Electron Microscopy1974, ed. by O. Johari (IIT Research Inst., Chicago 1974) p.215Google Scholar
  155. 9.149
    K.J. van Oostrum, A. Leenhouts, A. Jore: A new scanning micro-diffraction technique. Appl. Phys. Lett. 23, 283 (1973)ADSCrossRefGoogle Scholar
  156. 9.150
    R.H. Geiss: Electron diffraction from areas less than 3 nm in diameter. Appi. Phys. Lett. 27, 174 (1975)ADSCrossRefGoogle Scholar
  157. 9.151
    R.H. Geiss: STEM electron diffraction from 30 A diameter areas, in Developments in Electron Microscopy and Analysis1975, ed. by J.A. Venables (Academic, London 1976) p.61Google Scholar
  158. 9.152
    J.P. Chevalier, A.J. Craven: Microdiffraction, application to short range order in a quenched copper-platinum alloy. Philos. Mag. 36, 67 (1977)ADSCrossRefGoogle Scholar
  159. 9.153
    W.D. Riecke: Beugungsexperimente mit sehr feinen Elektronenstrahlen. Z. Angew. Phys. 27, 155 (1969)Google Scholar
  160. 9.154
    B. Bengtsson, B. Loberg, D.A. Porter, K.E. Easterling: The performance of a 200 kV STEM, in Electron Microscopy1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.450Google Scholar
  161. 9.155
    L.M. Brown, A.J. Craven, L.G.P. Jones, A. Griffith, W.M. Stobbs, CJ. Wilson: Application of a high resolution STEM to material science, in Scanning Electron Microscopy 1976/1, ed. by O. Johari (UT Research Inst., Chicago 1976) p.353Google Scholar
  162. 9.156
    H. von Harrach, C.E. Lyman, G.E. Verney, D.C. Joy, G.R. Booker: Performance of the Oxford field-emission scanning transmission electron microscope, in Developments in Electron Microscopy and Analysis1975, ed. by J.A. Venables (Academic, London 1976) p.7Google Scholar
  163. 9.157
    L. Reimer: Electron diffraction methods in TEM, STEM and SEM. Scanning 2, 3 (1979)CrossRefGoogle Scholar
  164. 9.158
    W. Kossel, G. Möllenstedt Elektroneninterferenzen im konvergenten Bündel. Naturwissenschaften 26, 660 (1938)ADSCrossRefGoogle Scholar
  165. 9.159
    W. Kossel, G. Möllenstedt Dynamische Anomalie von Elektroneninterferenzen. Ann. Phys. 42, 287 (1942)CrossRefGoogle Scholar
  166. 9.160
    P. Goodman, G. Lehmpfuhl: Elektronenbeugungsuntersuchungen im konvergenten Bündel mit dem Siemens Elmiskop I. Z. Naturforsch. A 20, 110 (1965)ADSGoogle Scholar
  167. 9.161
    H. Raith: Elektronenbeugung im konvergenten Bündel an gekühlten Präparaten mit dem Siemens-Elmiskop I. Z. Naturforsch A 20, 855 (1965)ADSGoogle Scholar
  168. 9.162
    D.J.H. Cockayne, P. Goodman, J.C. Mills, A.F. Moodie: Design and generation of an electron diffraction camera for the study of small crystalline regions. Rev. Sci. Instrum. 38, 1097 (1967)ADSCrossRefGoogle Scholar
  169. 9.163
    J.M. Cowley, D.J. Smith, G.A. Sussex: Application of a high voltage STEM, in Scanning Electron Microscopy1970, ed. by O. Johari (IIT Research Inst., Chicago 1970) p. 11Google Scholar
  170. 9.164
    P. Goodman: Observation of background contrast in convergent beam patterns. Acta Cryst. A 28, 92 (1972)CrossRefGoogle Scholar
  171. 9.165
    C. van Essen: SEM channelling patterns from 2 μm selected areas, in Microscopie Electronique1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.237Google Scholar
  172. 9.166
    L. Reimer, P. Hagemann: The use of transmitted and backscattered electrons in the scanning mode of a TEM, in Developments in Electron Microscopy and Analysis1977, ed. by D.L. Miseli (The Institute of Physics, London 1977) p. 135Google Scholar
  173. 9.167
    R.J. Woolf, D.C. Joy, J.M. Titchmarsh: Scanning transmission electron diffraction in the SEM, in Electron Microscopy1972 (The Institute of Physics, London 1972) p.498Google Scholar
  174. 9.168
    A.J. Craven: Specimen orientation in STEM, in Developments in Electron Microscopy and Analysis1977, ed. by D.L. Miseli (The Institute of Physics, London 1977) p.311Google Scholar
  175. 9.169
    G. Möllenstedt, H.R. Meyer: Strahlengang zur Strukturanalyse von Einkristallen durch Elektronen-Transmissions-Doppelwinkelabrasterung. Optik 42, 487 (1975)Google Scholar
  176. 9.170
    J.A. Feades: Another way to form zone-axis patterns, in Electron Microscopy and Analysis1979, ed. by T. Mulvey (The Institute of Physics, London 1979) P.9Google Scholar
  177. 9.171
    H. Mahl, W. Weitsch: Kleinwinkelbeugung mit Elektronenstrahlen. Naturwissenschaften 47, 301 (1960); Z. Naturforsch. A 15, 1051 (1960)ADSCrossRefGoogle Scholar
  178. 9.172
    R.P. Ferrien. Small angle electron diffraction in the electron microscope, in Advances in Optical and Electron Microscopy, Vol.3, ed. by R. Barer, V.E. Cosslett (Academic, London 1969) p. 155Google Scholar
  179. 9.173
    R.H. Wade, J. Silcox: Small angle electron scattering from vacuum condensed metallic films. Phys. Status Solidi 19, 57 and 63 (1967)CrossRefGoogle Scholar
  180. 9.174
    J. Smart, R.E. Burge: Small-angle electron diffraction patterns of assemblies of spheres and viruses. Nature 205, 1296 (1965)ADSCrossRefGoogle Scholar
  181. 9.175
    V. Drahos, A. Delong: Low-angle electron diffraction from defined specimen area, in Microscopie Electronique1970, Vol.2, ed. by P. Favard (Société Fran-caise de Microscopie Electronique, Paris 1970) p. 147Google Scholar
  182. 9.176
    R.T. Murray, R.P. Ferrien Biological applications of electron diffraction. J. Ultrastruct. Res. 21, 361 (1967)CrossRefGoogle Scholar
  183. 9.177
    G.A. Bassett, A. Keller: Low-angle scattering in an electron microscope applied to polymers. Philos. Mag. 9, 817 (1964)ADSCrossRefGoogle Scholar
  184. 9.178
    P.H. Denbigh, C.W.B. Grigson: Scanning electron diffraction with energy analysis. J. Sci. Instrum. 42, 395 (1965)ADSCrossRefGoogle Scholar
  185. 9.179
    L. Reimer, K. Freking: Versuch einer quantitativen Erfassung der Textur von Au-Aufdampfschichten. Z. Phys. 184, 119 (1965)ADSCrossRefGoogle Scholar
  186. 9.180
    M.F. Tompsett Review: Scanning high-energy electron diffraction in materials science. J. Mat. Sci. 7, 1069 (1972)CrossRefGoogle Scholar
  187. 9.181
    C.W. Grigson: Improved scanning electron diffraction system. Rev. Sci. Ins-trum. 36, 1587 (1965)ADSCrossRefGoogle Scholar
  188. 9.182
    F.C.S.M. Totthill, W.C. Nixon, C.W.B. Grigson: Ultra-high vacuum modification of an AEI EM6 electron microscope for studies of nucleation in evaporated films, in Electron Microscopy1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.229Google Scholar
  189. 9.183
    A.M. MacLeod, J.N. Chapman: A digital scanning and recording system for spot electron diffraction patterns. J. Phys. E 10, 37 (1977)ADSCrossRefGoogle Scholar
  190. 9.184
    F. Heise: Ein Zusatzgerät für Elektronenbeugung mit streifendem Einfall. Optik 9, 139 (1952)Google Scholar
  191. 9.185
    W. Riecke, F. Stöcklein: Eine Objektkammer mit universell beweglichem Präparattisch für Elektronenbeugungsuntersuchungen. Z. Phys. 156, 163 (1959)ADSCrossRefGoogle Scholar
  192. 9.186
    J.M. Cowley: Surface energies and surface structure of small crystals studied by use of a STEM instrument. Surf. Sci. 114, 587 (1982)ADSCrossRefGoogle Scholar
  193. 9.187
    C. Elibol, J.H. Ou, G.G. Hembree, J.M. Cowley: Improved instrument for medium energy electron diffraction and microscopy of surfaces. Rev. Sci. Instr. 56, 1215 (1985)ADSCrossRefGoogle Scholar
  194. 9.188
    J.A. Venables, C.J. Harland: Electron back-scattering patterns — a new technique for obtaining crystal information in the SEM. Philos. Mag. 27, 1193 (1973)ADSCrossRefGoogle Scholar
  195. 9.189
    M.N. Alam, M. Blackman, D.W. Pashley: High-angle Kikuchi patterns. Proc. Roy. Soc. A 221, 224 (1954)ADSCrossRefGoogle Scholar
  196. 9.190
    L. Reimer, W. Pöpper, B. Volbert Contrast reversals in the Kikuchi bands of backscattered and transmitted electron diffraction patterns, in Developments in Electron Microscope and Analysis1977, ed. by D.L. Miseli (The Institute of Physics, London 1977) p.259Google Scholar
  197. 9.191
    D.G. Coates: Kikuchi-like reflection patterns obtained with the SEM. Philos. Mag. 16, 1179 (1967)ADSCrossRefGoogle Scholar
  198. 9.192
    G.R. Booker. Scanning electron microscopy: Electron channelling effects, in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx (North-Holland, Amsterdam 1970) p.613Google Scholar
  199. 9.193
    L. Reimer: Electron specimen interactions in SEM, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.83Google Scholar
  200. 9.194
    J.W. Steeds, G.J. Tatlock, J. Hampson: Real space crystallography. Nature 241, 435 (1973)ADSCrossRefGoogle Scholar
  201. 9.195
    G.J. Tatlocks, J.W. Steeds: Real space crystallography in molybdenite. Nature Phys. Sci. 246, 126 (1973)ADSCrossRefGoogle Scholar
  202. 9.196
    J.W. Steeds, P.M. Jones, G.M. Rackham, M.D. Shannon: Crystallographic information from zone axis patterns, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.351Google Scholar
  203. 9.197
    J.W. Steeds, P.M. Jones, J.E. Loveluck, K.E. Cooke: The dependence of zone axis patterns on string integrals or the number of bound states in high energy electron diffraction. Philos. Mag. 36, 309 (1977)ADSCrossRefGoogle Scholar
  204. 9.198
    M.D. Shannon, J.W. Steeds: On the relationship between projected crystal potential and the form of certain zone axis patterns in high energy electron diffraction. Philos. Mag. 36, 279 (1977)ADSCrossRefGoogle Scholar
  205. 9.199
    W. Witt Zur absoluten Präzisionsbestimmung von Gitterkonstanten mit Elektroneninterferenzen am Beispiel von Thallium-(I)-Chlorid. Z. Naturforsch. A 19, 1363 (1964)ADSGoogle Scholar
  206. 9.200
    J.M. Corbett, F.W. Boswell: Use of thin single crystals as reference standards for precision electron diffraction. J. Appl. Phys. 37, 2016 (1966)ADSCrossRefGoogle Scholar
  207. 9.201
    A.L. MacKay: Calibration of diffraction patterns taken in the electron microscope. J. Phys. E 3, 248 (1970)MathSciNetADSCrossRefGoogle Scholar
  208. 9.202
    J.T. Jubb, E.E. Laufer. The beam-tilt device of an electron microscope as an internal diffraction standard. J. Phys. E 9, 871 (1976)ADSCrossRefGoogle Scholar
  209. 9.203
    E.E. Laufer, J.T. Jubb, K.S. Milliken: The use of the beam tilt circuitry of an electron microscope for rapid determination of lattice constants. J. Phys. E 8, 671 (1975)ADSCrossRefGoogle Scholar
  210. 9.204
    H. König: Gitterkonstantenbestimmung im Elektronenmikroskop. Naturwissenschaften 33, 343 (1946)ADSCrossRefGoogle Scholar
  211. 9.205
    F.W.C. Bosswell: A standard substance for precise electron diffraction measurements. Phys. Rev. 80, 91 (1950)ADSCrossRefGoogle Scholar
  212. 9.206
    C. Lu, E.W. Malmberg: ZnO smoke as a reference standard in electron wavelength calibration. Rev. Sci. Instrum. 14, 271 (1943)ADSCrossRefGoogle Scholar
  213. 9.207
    R. Rühle: Über Gesetzmäßigkeiten in Texturaufnahmen von Elektronenbeugungsbildern. Optik 7, 279 (1950)Google Scholar
  214. 9.208
    Z.G. Pinsken Electron Diffraction (Butterworths, London 1953)Google Scholar
  215. 9.209
    B.K. Vainshtein: Structure Analysis by Electron Diffraction (Pergamon, Oxford 1964)Google Scholar
  216. 9.210
    J.A. Gard: Interpretation of electron micrographs and diffraction patterns: the electron optical investigation of clays. Mineralogical Soc. London (1971)Google Scholar
  217. 9.211
    J.M. Cowley: Crystal structure determination by electron diffraction. Prog. Mater. Sci. 13, 267 (1966)CrossRefGoogle Scholar
  218. 9.212
    S. Nagakura: A method for correcting the primary extinction effect in electron diffraction. Acta Cryst. 10, 601 (1957)CrossRefGoogle Scholar
  219. 9.213
    B.K. Vainshtein, A.N. Lobacher: Dynamic scattering and its use in structural electron diffraction studies. Sov. Phys. Cryst. 6, 609 (1961)Google Scholar
  220. 9.214
    J.M. Cowley: Structure analysis of single crystals by electron diffraction. Acta Cryst. 6, 516, 522 and 846 (1953)CrossRefGoogle Scholar
  221. 9.215
    J.M. Cowley: The theoretical basis for electron diffraction structure analysis, in Electron Microscopy 1962, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p.11–1Google Scholar
  222. 9.216
    S. Fujime, D. Watanabe, S. Ogawa: On forbidden reflection spots and unexpected streaks appearing in electron diffraction patterns from hexagonal Co. J. Phys. Soc. Jpn. 19, 711 (1964)ADSCrossRefGoogle Scholar
  223. 9.217
    J.F. Brown, D. Clark: The use of the three-stage electron microscope in crystal-structure analysis. Acta Cryst. 5, 615 (1952)CrossRefGoogle Scholar
  224. 9.218
    J.A. Gard: The use of the stereoscopic tilt device of the electron microscope in unit-cell determinations. Br. J. Appl. Phys. 7, 361 (1956)ADSCrossRefGoogle Scholar
  225. 9.219
    J.A. Gard: Interpretation of electron diffraction patterns, in Electron Microscopy in Mineralogy, ed. by H.W. Wenk (Springer, Berlin, Heidelberg 1976) p.52Google Scholar
  226. 9.220
    R.R. Dayal, J.A. Gard, F.P. Glasser: Crystal data on FeAlO3. Acta Cryst. 18, 574 (1965)CrossRefGoogle Scholar
  227. 9.221
    J.A. Gard, J.M. Bennet: A goniometric specimen stage, and its use in crystallography, in Electron Microscopy1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.593Google Scholar
  228. 9.222
    G. Cliff, J.A. Gard, G.W. Lorimer, H.F.W. Taylor: Tacharanite. Mineral. Mag. 40, 113 (1975)Google Scholar
  229. 9.223
    S. Kuwabara: Accurate determination of hydrogen positions in NH4C1 by electron diffraction. J. Phys. Soc. Jpn. 14, 1205 (1959)ADSCrossRefGoogle Scholar
  230. 9.224
    V.V. Udalova, Z.G. Pinsker. Electron diffraction study of the structure of ammonium sulfate. Sov. Phys. Cryst. 8, 433 (1963)Google Scholar
  231. 9.225
    J.A. Gard, H.F.W. Taylor, L.W. Staples: Studies in crystal structure using electron diffraction of single crystals, in Vierter Internationaler Kongreß für Elektronenmikroskopie Berlin1958, Vol. 1, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen 1960) p.449Google Scholar
  232. 9.226
    H.M. Otte, J. Dash, H.F. Schaake: Electron microscopy and diffraction of thin films. Interpretation and correlation of images and diffraction patterns. Phys. Status Solidi 5, 527 (1964)CrossRefGoogle Scholar
  233. 9.227
    C. Laird, E. Eichen, W.R. Bitler: Accuracy in the use of electron diffraction spot patterns for determining crystal orientations. J. Appl. Phys. 37, 2225 (1966)ADSCrossRefGoogle Scholar
  234. 9.228
    K. Lücke, H. Perlwitz, W. Pitsch: Elektronenmikroskopische Bestimmung der Orientierungsverteilung der Kristallite in gewalztem Kupfer. Phys. Status Solidi 7, 733 (1964)CrossRefGoogle Scholar
  235. 9.229
    F. Haessner, U. Jakubowksi, M. Wilkens: Anwendung elektronenmikroskopischer Feinbereichsbeugung zur Ermittlung der Walztextur von Kupfer. Phys. Status Solidi 7, 701 (1964)CrossRefGoogle Scholar
  236. 9.230
    P.L. Ryder, W. Pitsch: The uniqueness of orientation determination by selected area electron diffraction. Philos. Mag. 15, 437 (1967)ADSCrossRefGoogle Scholar
  237. 9.231
    P.L. Ryder, W. Pitsch: On the accuracy of orientation determination by selected area diffraction. Philos. Mag. 18, 807 (1968)ADSCrossRefGoogle Scholar
  238. 9.232
    D.J. Mazey, R.S. Barnes, A. Howie: On interstitial dislocation loops in aluminium bombarded with alpha-particles. Philos. Mag. 7, 1861 (1962)ADSCrossRefGoogle Scholar
  239. 9.233
    M.H. Loretto, L.M. Clarebrough, P. Humble: Nature of dislocation loops in quenched Al. Philos. Mag. 13, 953 (1966)ADSCrossRefGoogle Scholar
  240. 9.234
    M. von Heimendahl: Determination of metal foil thickness and orientation in electron microscopy. J. Appl. Phys. 35, 457 (1964)ADSCrossRefGoogle Scholar
  241. 9.235
    S.S. Sheinin, CD. Cann: The determination of orientation from Kikuchi patterns. Phys. Status Solidi 11, K1 (1965)CrossRefGoogle Scholar
  242. 9.236
    R. Bonnet, F. Durand: Precise determination of the relative orientation of two crystals from the analysis of two Kikuchi patterns. Phys. Status Solidi A 27, 543 (1975)ADSCrossRefGoogle Scholar
  243. 9.237
    W. Griem, P. Schwaab, U. Stockhofe: Behandlung von Epitaxie-Fragen bei der Elektronenbeugung mit Hilfe der Datenverarbeitung. Arch. Eisenhüttenwesen 43, 509 (1972)Google Scholar
  244. 9.238
    W. Griem, P. Schwaab: Behandlung von gesetzmäßigen Verwachsungen nichtkubischer und teilkohärenter Phasen bei der Elektronenbeugung. Arch. Eisenhüttenwesen 44, 677 (1973)Google Scholar
  245. 9.239
    R. Bonnet, E.E. Laufer: Precise determination of the relative orientation of two crystals from the analysis of spot diffraction patterns. Phys. Status Solidi A 40, 599 (1977)ADSCrossRefGoogle Scholar
  246. 9.240
    M.D. Drazin, M.H. Otte: The systematic determination of crystallographic orientations from three octahedral traces on a plane surface. Phys. Status Solidi 3, 824 (1963)CrossRefGoogle Scholar
  247. 9.241
    A.G. Crocker, M. Bevis: The determination of the orientation and thickness of thin foils from transmission electron micrographs. Phys. Status Solidi 6, 151 (1964)CrossRefGoogle Scholar
  248. 9.242
    G. Thomas: Transmission Electron Microscopy of Metals (Wiley, New York 1962)Google Scholar
  249. 9.243
    A. Baltz: Rotation of image and selected area diffraction patterns in the RCA-EMU3 electron microscope. Rev. Sci. Instrum. 33, 246 (1962)ADSCrossRefGoogle Scholar
  250. 9.244
    P. Delavignette: Determination of some instrumental constants of the electron microscope Philips EM 200. J. Sci. Instrum. 40, 461 (1963)ADSCrossRefGoogle Scholar
  251. 9.245
    H. Raether: Reflexion von schnellen Elektronen an Einkristallen. Z. Phys. 78, 527 (1932)ADSCrossRefGoogle Scholar
  252. 9.246
    R.D. Heidenreich: Theory of the ‘forbidden’ (222) electron reflection in the diamond structure. Phys. Rev. 77, 271 (1950)ADSMATHCrossRefGoogle Scholar
  253. 9.247
    M. Takagi, S. Morimoto: The forbidden 222 electron reflection from Ge. J. Phys. Soc. Jpn. 18, 819 (1963)ADSCrossRefGoogle Scholar
  254. 9.248
    H. Göttsche: Zur Struktur dünner Ag-Schichten. Z. Phys. 134, 517 (1953)ADSCrossRefGoogle Scholar
  255. 9.249
    W. Pitsch: Kristallographische Eigenschaften von Eisennitrid-Ausscheidungen im Ferrit. Arch. Eisenhüttenwesen 32, 493 and 573 (1961)Google Scholar
  256. 9.250
    S. Owaga, D. Watanabe, H. Watanabe, T. Kornoda: The direct observation of the long period of the ordered alloy CuAu (II) by means of electron microscope, in Vierter Internationaler Kongreß für Elektronenmikroskopie Berlin1958, Voll, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen 1960) p.334Google Scholar
  257. 9.251
    D.W. Pashley, A.E.B. Presland: The observation of antiphase boundaries during the transition from CuAu I to CuAu II. J. Inst. Met. 87, 419 (1959)Google Scholar
  258. 9.252
    S. Ogawa: On the antiphase domain structures in ordered alloys. J. Phys. Soc. Jpn. 17, Suppl. B.-II, 253 (1962)CrossRefGoogle Scholar
  259. 9.253
    I. Ackermann: Beobachtungen an dynamischen Interferenzerscheinungen im konvergenten Elektronenbündel. Ann. Phys. 2, 19 and 41 (1948)CrossRefGoogle Scholar
  260. 9.254
    P.M. Kelly, A. Jostsons, R.G. Blake, J.G. Napier: The determination of foil thickness by STEM. Phys. Status Solidi A 31, 771 (1975)ADSCrossRefGoogle Scholar
  261. 9.255
    R.G. Blake, A. Jostsons, P.M. Kelly, J.G. Napier: The determination of extinction distances and anomalous absorption coefficients by STEM. Philos. Mag. A 37, 1 (1978)ADSCrossRefGoogle Scholar
  262. 9.256
    J.W. Steeds, K.K. Fung: Application of convergent beam electron microscopy in materials science, in Electron Microscopy1978, Vol.1, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.620Google Scholar
  263. 9.257
    J.W. Steeds: Convergent beam electron diffraction, in Analytical Electron Microscopy, ed. by J.J. Hren, J.I. Goldstein, D.C. Joy (Plenum, New York 1979) p.387CrossRefGoogle Scholar
  264. 9.258
    P.M. Jones, G.M. Rackham, J.W. Steeds: Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination. Proc. Roy. Soc. A 354, 197 (1977)ADSCrossRefGoogle Scholar
  265. 9.259
    B.F. Buxton: Bloch waves and higher order Laue zone effects in high energy electron diffraction. Proc. Roy. Soc. A 350, 335 (1976)ADSCrossRefGoogle Scholar
  266. 9.260
    J.W. Steeds: Information about the crystal potential from zone axis patterns, in Electron Microscopy1980, Vol.4, ed. by P. Brederoo, J. Van Lanuyt (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.96Google Scholar
  267. 9.261
    J.R. Baker, S. McKernan: Structure factor information from HOLZ beam intensities in convergent-beam HEED, in Electron Microscopy and Analysis1981, ed. by M.J. Goringe (The Institute of Physics, London 1982) p.283Google Scholar
  268. 9.262
    G.M. Rackham, P.M. Jones, J.W. Steeds: Upper layer diffraction effects in zone axis patterns, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.336 and 355Google Scholar
  269. 9.263
    J.E. Loveluck, J.W. Steeds: Crystallography of lithium tantalate and quartz, in Developments in Electron Microscopy and Analysis1977, ed. by D.L. Miseli (The Institute of Physics, London 1977) p.293Google Scholar
  270. 9.264
    G.M. Rackham, J.W. Steeds: Convergent beam observation near boundaries and interfaces, in Development in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.457Google Scholar
  271. 9.265
    P. Goodman: A practical method for three-dimensional space-group analysis using convergent beam electron diffraction. Acta Cryst. A 31, 804 (1975)ADSCrossRefGoogle Scholar
  272. 9.265a
    B.F. Buxton, J.A. Eades, J.W. Steeds, G.M. Rackham: The symmetry of electron diffraction zone axis patterns. Philos. Trans. Roy. Soc. A 281, 171 (1976)ADSCrossRefGoogle Scholar
  273. 9.266
    J.W. Steeds: Electron crystallography, in Quantitative Electron Microscopy, ed. by J.N. Chapman, A.J. Craven (Scottish Univ. Sommer School in Physics, Edinburgh 1984) p.49Google Scholar
  274. 9.267
    Y. Kondo, Y. Harada: New electron diffraction technique to obtain HOLZ patterns using hollow-cone illumination, in Electron Microscopy1984, Vol.1, ed. by A. Csanady et al. (MOTESZ, Budapest 1984) p.337Google Scholar
  275. 9.268
    S.J. Pennycook, L.M. Brown, A.J. Craven: Observation of cathodolummescence at single dislocations by STEM. Philos. Mag. A 41, 589 (1980)ADSCrossRefGoogle Scholar
  276. 9.269
    N. Yamamoto, J.C.H. Spence, D. Fathy: Cathodoluminescence and polarization studies from individual dislocations in diamond. Phil. Mag. B 49, 609 (1984)CrossRefGoogle Scholar
  277. 9.270
    S.J. Pennycook, A. Howie: Study of single electron excitations by electron microscopy. Philos. Mag. A 41, 809 (1980)ADSCrossRefGoogle Scholar
  278. 9.271
    P.M. Petroff, D.V. Lang, J.L. Strudel, R.A. Logan: Scanning transmission electron microscopy techniques for simultaneous electronic analysis and observation of defects in semiconductors, in Scanning Electron Microscopy 1978/1, ed. by O. Johari (SEM Inc., AMF O’Hare 1978) p.325Google Scholar
  279. 9.272
    M.J. Leamy: Charge collection scanning electron microscopy. J. Appi. Phys. 53, R51 (1982)ADSCrossRefGoogle Scholar
  280. 9.273
    H. Blumtritt, R. Gleichmann, J. Heydenreich, J. Johansen: Combined scanning (EBIC) and transmission electron microscopic investigations of dislocations in semiconductors. Phys. Status Solidi A 55, 611 (1979)ADSCrossRefGoogle Scholar
  281. 9.274
    T.G. Sparrow, U. Valdrè: Application of scanning transmission electron microscopy to semiconductor devices. Philos. Mag. 36, 1517 (1977)ADSCrossRefGoogle Scholar
  282. 9.275
    P.M. Petroff, D.V. Lang: A new spectroscopic technique for imaging the spatial distribution of nonradiative defects in a scanning transmission electron microscope. Appl. Phys. Lett. 31, 60 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfälische Wilhelms-Universität MünsterMünsterFed. Rep. of Germany

Personalised recommendations