Skip to main content

Diffraction Contrast and Crystal-Structure Imaging

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

  • 363 Accesses

Abstract

A crystal can be imaged with the primary beam (bright field) or with a Bragg reflection (dark field). The local intensity depends on the thickness, resulting in thickness contours, and on the tilt of the lattice planes, resulting in bend contours, which can be described by the dynamical theory of electron diffraction. In certain cases, the intensity of a Bragg reflection depends so sensitively on specimen thickness that atomic surface steps can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J.F. Metherell, M.J. Whelan: Measurement of absorption of fast electrons in single crystal films of Al. Philos. Mag. 15, 755 (1967)

    ADS  Google Scholar 

  2. A. Iijima: Intensity of fast electron transmitted through thick single crystals. J. Phys. Soc. Jpn. 35, 213 (1973)

    ADS  Google Scholar 

  3. L. Reimen Contrast in amorphous and crystalline objects. Lab. Invest. 14, 939 (1965)

    Google Scholar 

  4. L. Reimen Deutung der Kontrastunterschiede vom amorphen und kristallinen Objekten in der Elektronenmikroskopie. Z. Angew. Phys. 22, 287 (1967)

    Google Scholar 

  5. G. Dupouy, F. Perrier, R. Uyeda, R. Ayroles, A. Mazel: Mesure du coefficient d’absorption des électrons accélérés sons des tensions comprises entre 100 et 1200 kV. J. Microscopie 4, 429 (1965)

    Google Scholar 

  6. A. Mazel, R. Ayroles: Etude dans des cristaux d’oxyde de magnesium des distances d’extinction correspondant a diverses reflexions systematiques, in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.99

    Google Scholar 

  7. G. Möllenstedt Elektronenmikroskopische Sichtbarmachung von Hohlstellen in Einkristall-Lamellen. Optik 10, 72 (1953)

    Google Scholar 

  8. K. Shirota, T. Yamamoto, T. Yanaka, O. Vingsbo: On dark field techniques in transmission electron microscopy. Ultramicroscopy 1, 67 (1975)

    Google Scholar 

  9. L. Reimen Elektronenoptische Untersuchung zur Zwillingsbildung in Silber-Aufdampfschichten. Optik 16, 30 (1959)

    Google Scholar 

  10. P. Rao: Separation and identification of phases with through-focus dark-field electron microscopy. Philos. Mag. 32, 755 (1975)

    ADS  Google Scholar 

  11. G.M. Michal, R. Sinclaire: A quantitative assessment of the capabilities of 2i D microscopy for analysing crystalline solids. Philos. Mag. A 42, 691 (1980)

    ADS  Google Scholar 

  12. L. Reimen Contrast in the different modes of SEM, in Scanning Electron Microscopy: Systems and Applications 1973 (The Institute of Physics, London 1973) p.120

    Google Scholar 

  13. G.R. Booker, D.C. Joy, J.P. Spencer, H. von Harrach: Contrast effects from crystalline material using STEM, in Scanning Electron Microscopy 1974, ed. by O. Johari (IIT Research Ins., Chicago 1974) p.225

    Google Scholar 

  14. D.M. Maher, D.C. Joy: The formation and interpretation of defect images from crystalline materials in a scanning transmission electron microscope. Ultramicroscopy 1, 239 (1976)

    Google Scholar 

  15. L. Reimer, P. Hagemann: Scanning transmission electron microscopy of crystalline specimens, in Scanning Electron Microscopy 1976/1, ed. by O. Johari (IIT Research Ins., Chicago 1976) p.321

    Google Scholar 

  16. L. Reimer, P. Hagemann: Anwendung eines Rasterzusatzes zu einem Transmissionselektronenmikroskop. II. Abbildung kristalliner Objekte. Optik 47, 325 (1977)

    Google Scholar 

  17. T. Yamamoto, H. Nishizawa: Imaging of crystalline substances in STEM. Phys. Status Solidi A 28, 237 (1975)

    ADS  Google Scholar 

  18. H. Hashimoto: High voltage TEM — contrast theory, in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p.9

    Google Scholar 

  19. C.J. Humphreys, L.E. Thomas, J.S. Lally, R.M. Fisher: Maximising the penetration in HVEM. Philos. Mag. 23, 87 (1971)

    ADS  Google Scholar 

  20. A. Rocher, R. Ayroles, A. Mazel, C. Mory, B. Jouffrey: Electron penetration in Al, Cu, and MgO at high voltages up to 3 MV, in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p.436

    Google Scholar 

  21. C.J. Humphreys, J.S. Lally: Aspects of Bloch-wave channelling in high-voltage electron microscopy. J. Appl. Phys. 41, 232 (1970)

    ADS  Google Scholar 

  22. J.W. Steeds: Many-beam diffraction effects in gold and measurement of absorption parameters by fitting computer-graphs. Phys. Status Solidi 38, 203 (1970)

    Google Scholar 

  23. M.S. Spring: Electron channelling at high energies. Phys. Lett. A 31, 421 (1970)

    ADS  Google Scholar 

  24. R. Uyeda, M. Nonoyama: The observation of thick specimens by high voltage electron microscopy. Jpn. J. Appl. Phys. 6, 557 (1967)

    ADS  Google Scholar 

  25. G. Thomas: Electron microscopy at high voltages. Philos. Mag. 17, 1097 (1968)

    ADS  Google Scholar 

  26. G. Thomas, J.C. Lacaze: Transmission electron microscopy at 2.5 MeV. J. Microscopie 97, 301 (1973)

    Google Scholar 

  27. H. Fujita, T. Tabata: Voltage dependence of the maximum observable thickness by electron microscopy up to 3 MV. Jpn. J. Appl. Phys. 12, 471 (1973)

    ADS  Google Scholar 

  28. H. Fujita, T. Tabata, K. Yoshida, N. Sumida, S. Katagiri: Some applications of an ultra-high voltage electron microscope on materials science. Jpn. J. Appl. Phys. 11, 1522(1972)

    ADS  Google Scholar 

  29. M.J. Whelan: An outline of the theory of diffraction contrast observed at dislocations and other defects in thin crystals examined by TEM. J. Inst. Met. 87, 392 (1959)

    Google Scholar 

  30. P.B. Hirsch, A. Howie, M.J. Whelan: A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other effects. Philos. Trans. Roy. Soc. London A 252, 499 (1960)

    ADS  Google Scholar 

  31. R. Gevers: On the dynamical theory of electron transmission microscope images of dislocations and stacking faults. Phys. Status Solidi 3, 415 (1963)

    Google Scholar 

  32. R. Gevers: On the dynamical theory of different types of electron microscopic transmission fringe patterns. Phys. Status Solidi 3, 1672 (1963)

    Google Scholar 

  33. A. Howie, M.J. Whelan: Diffraction contrast of electron microscope images of crystal lattice defects. Proc. Roy. Soc. A 263, 217 (1961); 267, 206 (1962)

    ADS  Google Scholar 

  34. C.J. Ball: A relation between dark field electron micrographs of lattice defects. Philos Mag. 9, 541 (1964)

    ADS  Google Scholar 

  35. A. Howie: Inelastic scattering of electrons by crystals. Proc. Roy. Soc. A 271, 268 (1963)

    ADS  MATH  Google Scholar 

  36. M. Wilkens: Zur Theorie des Kontrastes von elektronenmikroskopisch abgebildeten Gitterfehlern. Phys. Status Solidi 5, 175 (1964)

    Google Scholar 

  37. M. Wilkens: Streuung von Blochwellen schneller Elektronen in Kristallen mit Gitterbaufehlern. Phys. Status Solidi 6, 939 (1964)

    Google Scholar 

  38. M. Wilkens, M. Rühle: Black-white contrast figures from small dislocation loops. Phys. Status Solidi B 49, 749 (1972)

    ADS  Google Scholar 

  39. J. van Landuyt, R. Gevers, S. Amelinckx: Fringe patterns at anti-phase boundaries with α=π observed in the electron microscope. Phys. Status Solidi 7, 519 (1964)

    Google Scholar 

  40. CM. Drum, M.J. Whelan: Diffraction contrast effects from stacking faults with phase-angle π. Philos. Mag. 11, 205 (1965)

    ADS  Google Scholar 

  41. M.J. Whelan, P.B. Hirsch: Electron diffraction from crystals containing stacking faults. Philos. Mag. 2, 1121 and 1303 (1957)

    ADS  Google Scholar 

  42. H. Hashimoto, A. Howie, M.J. Whelan: Anomalous electron absorption effects in metal foils. Philos. Mag. 5, 967 (1960); Proc. Roy Soc. A 269, 80 (1962)

    ADS  Google Scholar 

  43. A. Art, R. Gevers, S. Amelinckx: The determination of the type of stacking faults in face centered cubic alloys by means of contrast effects in the electron microscope. Phys. Status Solidi 3, 697 (1963)

    Google Scholar 

  44. R. Gevers, A. Art, S. Amelinckx: Electron microscopic images of single and intersecting stacking-faults in thick foils. Phys. Status Solidi 3, 1563 (1963)

    Google Scholar 

  45. M.J. Marcinkowski: Theory and direct observation of antiphase boundaries and dislocations in superlattices, in Electron Microscopy and Strength of Crystals, ed. by G. Thomas, J. Washburn (Interscience, New York 1963) p.333

    Google Scholar 

  46. S. Amelinckx: The study of planar interfaces by means of electron microscopy, in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx et al. (North-Holland, Amsterdam 1970) p.257

    Google Scholar 

  47. S. Amelinckx, J. Van Landuyt Contrast effects at planar interfaces, in Electron Microscopy in Mineralogy, ed. by H.R. Wenk (Springer, Berlin, Heidelberg, 1976) p.68

    Google Scholar 

  48. R. Serneels, M. Snykers, P. Delavignette, R. Gevers, S. Amelinckx: Friedel’s law in electron diffraction as applied to the study of domain structures in non-centrosymmetrical crystals, Phys. Status Solidi B 58, 277 (1973)

    ADS  Google Scholar 

  49. O. van der Biest, G. Thomas: Identification of enantiomorphism in crystals by electron microscopy. Acta Cryst A 31, 70 (1975)

    Google Scholar 

  50. A.J. Morton: Inversion anti-phase domains in Cu-rich γ-brasses. Phys. Status Solidi A 31, 661 (1975)

    ADS  Google Scholar 

  51. R. Portier, D. Gratias, M. Fayard: Electron microscopy study of enantio-morphic ordered structures. Philos. Mag. 36, 421 (1977)

    ADS  Google Scholar 

  52. R. Gevers, P. Delavignette, H. Bland, S. Amelinckx: Electron microscope transmission images of coherent domain boundaries. Phys. Status Solidi 4, 383 (1964)

    Google Scholar 

  53. R. Gevers, P. Delavignette, H. Blank, J. van Landuyt, S. Amelinckx: Electron microscope transmission images of coherent domain boundaries. Phys. Status Solidi 5, 595 (1964)

    Google Scholar 

  54. R. Gevers, J. van Landuyt, S. Amelinckx: Intensity profiles for fringe patterns due to planar interfaces as observed by electron microscopy. Phys. Status Solidi 11, 689(1965)

    Google Scholar 

  55. J. van Landuyt, R. Gevers, S. Amelinckx: Dynamical theory of the images of microtwins as observed in the electron microscope. Phys. Status Solidi 9, 135 (1965)

    Google Scholar 

  56. H. Blank, S. Amelinckx: Direct observation of ferroelectric domains in barium titanate by means of electron microscopy. Appl. Phys. Lett. 2, 140 (1963)

    ADS  Google Scholar 

  57. P. Delavignette, S. Amelinckx: Electron microscopic observation of anti-ferromagnetic domain walls in NiO. Appl. Phys. Lett. 2, 236 (1963)

    ADS  Google Scholar 

  58. A.J. Ardell: Diffraction contrast at planar interfaces of large coherent precipitates. Philos. Mag. 16, 147 (1967)

    ADS  Google Scholar 

  59. S.S. Sheinin, J.M. Corbett: Application of the multi-beam dynamical theory to crystals containing twins. Phys. Status Solidi A 38, 675 (1976)

    ADS  Google Scholar 

  60. J. van Landuyt, R. Gevers, S. Amelinckx: Diffraction contrast from small voids as observed by electron microscopy. Phys. Status Solidi 10, 319 (1965)

    Google Scholar 

  61. H.R. Wenk (ed.): Electron Microscopy in Mineralogy (Springer, Berlin, Heidelberg, 1976)

    Google Scholar 

  62. C.M. Wayman: Martensitic transformations, in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx et al. (North-Holland, Amsterdam 1970) p. 187

    Google Scholar 

  63. R. Gevers: On the kinematical theory of diffraction contrast of electron transmission microscope images of perfect dislocations of mixed type. Philos. Mag. 7, 651 (1962)

    ADS  MATH  Google Scholar 

  64. W.J. Turnstall, P.B. Hirsch, J. Steeds: Effects of surface stress relaxations on the electron microscope images of dislocations normal to thin metal foils. Philos. Mag. 9, 99 (1964)

    ADS  Google Scholar 

  65. M. Wilkens, M. Rühle, F. Häussermann: On the nature of the long-range dislocation contrast in electron transmission micrographs. Phys. Status Solidi 22, 689 (1967)

    Google Scholar 

  66. P. Delavignette, S. Amelinckx: Dislocation nets in bismuth and antimony tellurides. Philos. Mag. 5, 729 (1960)

    ADS  Google Scholar 

  67. A.K. Head: The computer generation of electron microscope pictures of dislocations. Aust. J. Phys. 20, 557 (1967)

    ADS  Google Scholar 

  68. P. Humble: Computed electron micrographs for tilted foils containing dislocations and stacking faults. Aust. J. Phys. 21, 325 (1968)

    ADS  Google Scholar 

  69. P. Humble: Computed electron micrographs and their use in defect identifications, in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx et al. (North-Holland, Amsterdam 1970) p.99

    Google Scholar 

  70. A.R. Thölén: A rapid method for obtaining electron microscope contrast maps of various lattice defects. Philos. Mag. 22, 175 (1970)

    ADS  Google Scholar 

  71. D.J.H. Cockayne, I.L.F. Ray, M.J. Whelan: Investigations of dislocation strain fields using weak beams. Philos. Mag. 20, 1265 (1969)

    ADS  Google Scholar 

  72. D.J.H. Cockayne: A theoretical analysis of the weak-beam method of electron microscopy. Z. Naturforsch. A 27, 452 (1972)

    ADS  Google Scholar 

  73. D.J.H. Cockayne: The principles and practice of the weak-beam method of electron microscopy. J. Micr. 98, 116 (1973)

    Google Scholar 

  74. I.L.F. Ray, D.J.H. Cockayne: The dissociation of dislocations in silicon. Proc. Roy. Soc. A 325, 543 (1971)

    ADS  Google Scholar 

  75. A. Howie, Z.S. Basinski: Approximation of the dynamical theory of diffraction contrast. Philos. Mag. 17, 1039 (1968)

    ADS  Google Scholar 

  76. C.J. Humphreys, R.A. Drummond: The column approximation and high-resolution imaging of defects, in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.142

    Google Scholar 

  77. D.J.H. Cockayne, M.L. Jenkins, I.L.F. Ray: The measurement of stacking-fault energies of pure face-centred cubic metals. Philos. Mag. 24, 1383 (1971)

    ADS  Google Scholar 

  78. M.L. Jenkins: Measurement of the stacking-fault energy of gold using the weak-beam technique of electron microscopy. Philos. Mag. 26, 747 (1972)

    ADS  Google Scholar 

  79. C.B. Carter, S.M. Holmes: The stacking-fault energy of nickel. Philos. Mag. 35, 1161 (1977)

    ADS  Google Scholar 

  80. C.G. Rhodes, A.W. Thomson: The composition dependence of stacking fault energy in austenitic stainless steel. Metall. Trans. A 8, 1901 (1977)

    Google Scholar 

  81. A. Gomez, D.J.H. Cockayne, P.B. Hirsch, V. Vitek: Dissociation of near-screw dislocations in Ge and Si. Philos Mag. 31, 105 (1975)

    ADS  Google Scholar 

  82. G.W. Groves, M.J. Whelan: The determination of the sense of the Burgers vector of a dislocation from its electron microscope images. Philos. Mag. 7, 1603 (1962)

    ADS  Google Scholar 

  83. R. Siems, P. Delavignette, S. Amelinckx: Die direkte Messung von Stapelfehlerenergien. Z. Phys. 165, 502 (1961)

    ADS  MATH  Google Scholar 

  84. M.H. Loretto, L.K. France: The influence of the degree of the deviation from the Bragg condition on the visibility of dislocations in copper. Philos Mag. 19, 141 (1969)

    ADS  Google Scholar 

  85. K. Marukawa: A new method of Burgers vector identification from electron microscope images. Philos. Mag. A 40, 303 (1979)

    ADS  Google Scholar 

  86. M.F. Ashby, L.M. Brown: On diffraction contrast from inclusions. Philos. Mag. 8, 1649 (1963)

    ADS  Google Scholar 

  87. M.F. Ashby, L.M. Brown: Diffraction contrast from spherically symmetrical coherency strains. Philos. Mag. 8, 1083 (1963)

    ADS  Google Scholar 

  88. M.J. Makin, A.D. Whapham, F.J. Minter: The formation of dislocation loops in copper during neutron irradiation. Philos. Mag. 7, 285 (1962)

    ADS  Google Scholar 

  89. U. Essmann, M. Wilkens: Elektronenmikroskopische Kontrastexperimente an Fehlstellenagglomeraten in neutronen-bestrahltem Kupfer. Phys. Status Solidi 4, K53 (1964)

    Google Scholar 

  90. M. Wilkens: Identification of small defect clusters in particle-irradiated crystals by means of TEM, in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx et al. (North-Holland, Amsterdam 1970) p.233

    Google Scholar 

  91. M. Rühle, M. Wilkens, U. Essmann: Zur Deutung der elektronenmikroskopischen Kontrasterscheinungen an Fehlstellenagglomeraten in neutronenbestrahltem Kupfer. Phys. Status Solidi 11, 819 (1965)

    Google Scholar 

  92. M. Rühle: Elektronenmikroskopie kleiner Fehlstellenagglomerate in bestrahlten Metallen. Phys. Status Solidi 19, 263 and 279 (1967)

    Google Scholar 

  93. M. Rühle, M. Wilkens: Small vacancy dislocation loops in neutron-irradiated copper. Philos. Mag. 15, 1075 (1967)

    ADS  Google Scholar 

  94. K.H. Katerbau: The contrast of dynamical images of small lattice defects in the electron microscope. Phys. Status Solidi A 38, 463 (1976)

    ADS  Google Scholar 

  95. B.L. Eyre, D.M. Maher, R.C. Perrin: Electron microscope image contrast from small dislocation loops. J. Phys. F 7, 1359 and 1371 (1978)

    ADS  Google Scholar 

  96. M.L. Jenkins, K.H. Katerbau, M. Wilkens: TEM studies of displacement cascades in Cu3Au. Philos. Mag. 34, 1141 (1976)

    ADS  Google Scholar 

  97. M. Wilkens, M.L. Jenkin, K.H. Katerbau: TEM diffraction contrast of lattice defects causing strain contrast and structure factor contrast simultaneously. Phys. Status Solidi A 39, 103 (1977)

    ADS  Google Scholar 

  98. M. Rühle, M. Wilkens: Defocusing contrast of cavities. Cryst. Lattice Defects 6, 129 (1975)

    Google Scholar 

  99. T. Mitsuishi, H. Nagasaki, R. Uyeda: A new type of interference fringes observed in electron microscopy of crystalline substances. Proc. Imp. Acad. Jpn. 27, 86 (1951)

    Google Scholar 

  100. G.A. Bassett, J.W. Menter, D.W. Pashley: Moiré patterns of electron micrographs and their application to the study of dislocations in metals. Proc. Roy. Soc. A 246, 345 (1958)

    ADS  Google Scholar 

  101. O. Rang: Zur geometrischen Theorie der Moiré-Muster auf Elektronenbildern übereinander liegender Einkristalle. Z. Krist. 114, 98 (1960)

    Google Scholar 

  102. H. Hashimoto, M. Mannani, T. Naiki: Dynamical theory of electron diffraction for the electron microscopical image of crystal lattices. Philos. Trans. Roy. Soc. London A 253, 459 (1961)

    ADS  MATH  Google Scholar 

  103. R. Gevers: Dynamical theory of moiré fringe patterns. Philos. Mag. 7, 1681 (1962)

    ADS  MATH  Google Scholar 

  104. J. Demny: Aussagen des Verdrehungsmoirés über Gitterfehler. Z. Naturforsch. A 15, 194 (1960)

    ADS  Google Scholar 

  105. J.W. Matthews, W.M. Stobbs: Measurement of the lattice displacement across a coincidence grain boundary. Philos. Mag. 36, 373 (1977)

    ADS  Google Scholar 

  106. L.A. Bruce, H. Jaeger. Geometric factors in fcc and bcc metal-on-metal epitaxy. Philos Mag. 36, 1331 (1977)

    ADS  Google Scholar 

  107. K. Takayanagi, K. Yagi, K. Kobayashi, G. Honjo: Technique for routine UHV in situ electron microscope of growth processes of epitaxial thin films. J. Phys. E 11, 441 (1978)

    ADS  Google Scholar 

  108. J.W. Menter: The direct study by electron microscopy of crystal lattices and their imperfections. Proc. Roy. Soc. 236, 119 (1956)

    ADS  Google Scholar 

  109. R. Scholz, H. Bethge: High resolution study of 20° [001] tilt boundaries in gold, in Electron Microscopy1980, Vol.1, ed. by J. Brederoo, G. Boom (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.238

    Google Scholar 

  110. T. Komoda: On the resolution of the lattice imaging in the electron microscope. Optik 21, 93 (1964)

    Google Scholar 

  111. R. Sinclair Microanalysis by lattice imaging, in Introduction to Analytical Electron Microscopy, ed. by J.J. Hren, J.I. Goldstein, D.C. Joy (Plenum, New York 1978) p.507

    Google Scholar 

  112. R. Sinclair, R. Gronsky, G. Thomas: Optical diffraction from lattice images of alloys. Acta Metall. 24, 789 (1976)

    Google Scholar 

  113. C.K. Wu, R. Sinclair, G. Thomas: Lattice imaging and optical microanalysis of Cu-Ni-Cr spinoidal alloy. Metall. Trans. A 9, 381 (1978)

    Google Scholar 

  114. W.C.T. Dowell: Das elektronenmikroskopische Bild von Netzebenenscharen und sein Kontrast. Optik 20, 535 (1963)

    Google Scholar 

  115. R. Sinclair, J. Dutkiewicz: Lattice imaging of the B19 ordering transformation and interfacial structure in Mg3Cd. Acta Metall. 25, 235 (1977)

    Google Scholar 

  116. V.A. Phillips: Lattice resolution measurements of strain fields at Guinier-Pres-ton zones in Al-3.0% Cu. Acta Metall. 21, 219 (1973)

    Google Scholar 

  117. D.R. Clarke: Determination of grain boundary segregation by combined X-ray microanalysis and lattice fringe imaging, in Scanning Electron Microscopy 1978/1, ed. by O. Johari (SEM Inc., AMF O’Hare 1978) p.77

    Google Scholar 

  118. T. Komoda: Electron microscopic observation of crystal lattices on the level with atomic dimensions. Jpn. J. Appl. Phys. 5, 603 (1966)

    ADS  Google Scholar 

  119. J.G. Allpress, J.V. Sanders: The direct observation of the structure of real crystals by lattice imaging. J. Appl. Cryst. 6, 165 (1973)

    Google Scholar 

  120. J.M. Cowley, S. Iijima: The direct imaging of crystal structures, in Electron Microscopy in Mineralogy, ed. by H.R. Wenk (Springer, Berlin, Heidelberg 1976) p.123

    Google Scholar 

  121. J.L. Hutchison: Lattice images, in Development in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.241

    Google Scholar 

  122. S. Iijima, S. Kimura, M. Goto: High-resolution microscopy of nonstochiome-tric Nb22O54 crystals: Point defects and structural defects. Acta Cryst A 30, 251 (1974)

    Google Scholar 

  123. P.L. Fejes, S. Iijima, J.M. Cowley: Periodicity in thickness of electron microscope crystal-lattice images. Acta Cryst A 29, 710 (1973)

    Google Scholar 

  124. D.F. Lynch, A.F. Moodie, M.A. O’Keefe: n-beam lattice images. V. The use of the charge-density approximation in the interpretation of lattice images. Acta Cryst A 31, 300 (1975)

    Google Scholar 

  125. M.A. O’Keefe, J.W. Sanders: n-beam lattice images. VI. Degradation of image resolution by a combination of incident-beam divergence and spherical aberration. Acta Cryst A 31, 307 (1975)

    Google Scholar 

  126. M. Tanaka, B. Jouffrey: Many-beam lattice images calculated at 100 kV and 1000 kV. Acta Cryst. A 36, 1033 (1980)

    Google Scholar 

  127. D.J. Smith: Current and future trends in high resolution electron microscopy, in Electron Microscopy 1984, Proc. 8th European Congr. on Electr. Micr., Vol.1, ed. by A. Czanady et al., (MOTESZ, Budapest 1984), p.163

    Google Scholar 

  128. H. Hashimoto: Achievement of ultra-high resolution by 400 kV analytical atomic-resolution electron microscopy. Ultramicroscopy 18, 19 (1985)

    Google Scholar 

  129. L.A. Bursill: The interpretation of HREM images of crystals. Ultramicroscopy 18, 1 (1985)

    Google Scholar 

  130. D.J. Smith, W.O. Saxton, M.A. O’Keefe, G.J. Wood, W.M. Stobbs: The importance of beam alignment and crystal tilt in HREM. Ultramicroscopy 11, 263 (1983)

    Google Scholar 

  131. W.O. Saxton, D.J. Smith: The determination of atomic positions in high-resolution electron micrographs. Ultramicroscopy 18, 39 (1985)

    Google Scholar 

  132. D.J. Smith, L.A. Bursill, G.J. Wood: Non-anomalous high-resolution imaging of crystalline materials. Ultramicroscopy 16, 19 (1985)

    Google Scholar 

  133. C.J. Humphreys: The interpretation of high resolution and convergent beam patterns of interfaces in semiconductors, in Electron Microscopy 1986, Vol.1, ed. by T. Imura, S. Maruse, T. Suzuki, Jap. Soc. of Electron Microscopy, Tokyo 1986, p.105

    Google Scholar 

  134. S. Mader Elektronenmikroskopische Untersuchung der Gleitlinienbildung auf Cu-Einkristallen. Z. Phys. 149, 73 (1957)

    ADS  Google Scholar 

  135. L. Reimer, C. Schulte: Elektronenmikroskopische Oberflächenabdrücke und ihr Auflösungsvermögen. Naturwissenschaften 53, 489 (1966)

    ADS  Google Scholar 

  136. G.A. Bassett A new technique for decoration of cleavage and slip steps on ionic crystal surfaces. Philos. Mag. 3, 1042 (1958)

    ADS  Google Scholar 

  137. H. Bethge, K.W. Keller Über die Abbildung von Versetzungen durch Abdampfstrukturen auf NaCl-Kristallen. Z. Naturforsch. A 15, 271 (1860)

    ADS  Google Scholar 

  138. H. Bethge, K.W. Keller, N. Stenzel: Zur elektronenmikroskopischen Sichtbarmachung unterschiedlicher Bindungsenergien und Adsorptionseigenschaften an Lamellenstufen auf NaCl-Kristallen. Naturwissenschaften 49, 152 (1962)

    ADS  Google Scholar 

  139. K. Kambe, G.Lehmpfuhl: Weak-beam technique for electron microscopic observation of atomic steps on thin single-crystal surfaces. Optik 42, 187 (1975)

    Google Scholar 

  140. D. Cherns: Direct resolution of surface atomic steps by transmission electron microscopy. Philos. Mag. 30, 549 (1974)

    ADS  Google Scholar 

  141. G. Lehmpfuhl, T. Takayanagi: Electron microscope contrast of atomic steps on fcc metal crystal surfaces. Ultramicroscopy 6, 195 (1981)

    Google Scholar 

  142. M. Klaua, H. Bethge: Imaging of atomic steps on ultrathin Au films by TEM. Ultramicroscopy 11, 125 (1983)

    Google Scholar 

  143. A.F. Moodie, C.E. Warble: The investigation of primary step growth in MgO by direct TEM. Phil. Mag. 16, 891 (1967)

    ADS  Google Scholar 

  144. G. Lehmpfuhl, C.E. Warble: Direct electron microscope imaging of surface topography by diffraction and phase contrast. Ultramicroscopy 19, 135 (1986)

    Google Scholar 

  145. K. Takayanagi, Y. Tanishiro, M. Takahashi, S. Takahashi: Structure analysis of Si(111) 7×7 by UHV transmission electron diffraction and microscopy. J. Vac. Sci. Techn. A 3, 1502 (1985)

    ADS  Google Scholar 

  146. J.CH. Spence: High energy transmission electron diffraction and imaging studies of the Si (111) 7×7 surface structure. Ultramicroscopy 11, 117 (1983)

    Google Scholar 

  147. G. Binnig, H. Rohrer: Surface imaging by scanning tunneling microscopy. Ultramicroscopy 11, 157 (1983)

    Google Scholar 

  148. E. Ruska, H.O. Müllen Uber Fortschritte bei der Abbildung elektronenbestrahlter Oberflächen. Z. Physik. 116, 366 (1940)

    ADS  Google Scholar 

  149. B. von Borries: Sublichtmikroskopische Auflösung bei der Abbildung von Oberflächen im Übermikroskop. Z. Physik 116, 370 (1940)

    ADS  Google Scholar 

  150. Ch. Fert: Observation directe des surfaces en microscopie electronique par reflexion. Optik 13, 378 (1956)

    Google Scholar 

  151. V.E. Cosslett, D. Jones: A reflexion electron microscope. J. Sci. Instr. 32, 86 (1955)

    ADS  Google Scholar 

  152. N. Osakabe, Y. Tanishiro, K. Yagi, G. Honjo: Direct observation of the phase transition between the (7×7) and (1×1) structures of clean (111) silicon surfaces. Surf. Sci. 109, 353 (1981)

    ADS  Google Scholar 

  153. J.M. Cowley, L.M. Peng: The image contrast of surface steps in REM. Ultramicroscopy 16, 59 (1985)

    Google Scholar 

  154. N. Osakabe, Y. Tanishiro, K. Yagi, G. Honjo: Reflection electron microscopy of clean and gold deposited (111) silicon surfaces. Surf. Sci. 97, 393 (1980)

    ADS  Google Scholar 

  155. Tung Hsu, J.M. Cowley: Reflection electron microscopy (REM) of fcc metals. Ultramicroscopy 11, 239 (1983)

    Google Scholar 

  156. J.M. Cowley: Surface energies and surface structure of small crystals by use of a STEM instrument. Surf. Sci. 114, 587 (1982)

    ADS  Google Scholar 

  157. T. Tanji, J.M. Cowley: Interactions of electron beams with surfaces of MgO crystals. Ultramicroscopy 17, 287 (1985)

    Google Scholar 

  158. L.M. Peng, J.M. Cowley: Dynamical diffraction calculations for RHEED and REM. Acta Cryst. A 42, 545 (1986)

    Google Scholar 

  159. L.D. Marks, D.J. Smith: Direct surface imaging in small metal particles. Nature 303, 316 (1983)

    ADS  Google Scholar 

  160. L.D. Marks, D.J. Smith: Direct atomic imaging of solid surfaces. Surf. Sci. 143, 495 (1984)

    ADS  Google Scholar 

  161. L.D. Marks: Direct atomic imaging of solid surfaces. Surf. Sci. 139, 281 (1984)

    ADS  Google Scholar 

  162. J.M. Gibson, M.L. McDonald, F.C. Unterwald: Direct imaging of a novel silicon surface reconstruction. Phys. Rev. Lett. 55, 1765 (1985)

    ADS  Google Scholar 

  163. L.D. Marks, V. Heine, D.J. Smith: Direct observation of elastic and plastic deformation at Au (111) surfaces. Phys. Rev. Lett. 52, 656 (1984)

    ADS  Google Scholar 

  164. J.L. Hutchinson, N.A. Briscoe: Surface profile imaging of spinel catalyst particles. Ultramicroscopy 18, 435 (1985)

    Google Scholar 

  165. H.Q. Ye, D.J. Smith: Profile imaging of metal surfaces and oxide formation, in Electron Microscopy 1986, ed. T. Imura et al., J. Electron Microscopy 35, Suppl., Vol.II, 959 (1986)

    Google Scholar 

  166. R.L. Wallenberg, J.O. Bovin, D.J. Smith: Atom hopping on small gold particles imaged by high-resolution electron microscopy. Naturwiss. 72, 539 (1985)

    ADS  Google Scholar 

  167. S. Iijima, T. Ichihashi: Structural instability of ultrafine particles in metals. Phys. Rev. Lett. 56, 616 (1986)

    ADS  Google Scholar 

  168. D.J. Smith, L.A. Bursill, D.A. Jefferson: Atomic images of oxide surfaces. Surf. Sci. 175, 673 (1986)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1989). Diffraction Contrast and Crystal-Structure Imaging. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21579-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21579-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50499-3

  • Online ISBN: 978-3-662-21579-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics