Skip to main content

Scattering and Phase Contrast for Amorphous Specimens

  • Chapter
  • 345 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

Abstract

Elastic scattering through angles larger than the objective aperture causes absorption of the electrons at the objective diaphragm and a decrease of transmitted intensity. This scattering contrast can be explained by particle optics. The exponential decrease of transmission with increasing specimen thickness can be used for quantitative determination of mass-thickness or of the total mass of an amorphous particle, for example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Reimen: Deutung der Kontrastunterschiede von amorphen und kristallinen Objekten in der Elektronenmikrosopie. Z. Angew. Phys. 22, 287 (1967)

    Google Scholar 

  2. F. Lenz: Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z. Naturforsch. A 9, 185 (1954)

    ADS  MATH  Google Scholar 

  3. C.E. Hall: Scattering phenomena in electron microscope image formation. J. Appl. Phys. 22, 655 (1951)

    ADS  Google Scholar 

  4. W. Lippert: Experimentelle Studien über den Kontrast im Elektronenmikroskop. Optik 11, 412(1954)

    Google Scholar 

  5. W. Lippert: Über die “elektronenmikroskopische Durchlässigkeit” dünner Schichten. Optik 13, 506 (1956)

    Google Scholar 

  6. L. Reimen: Zur Elektronenabsorption dünner Metallaufdampfschichten im Elektronenmikroskop. Z. Angew. Phys. 9, 34 (1957)

    Google Scholar 

  7. L. Reimer: Messung der Abhängigkeit des elektronenmikroskopischen Bildkontrastes von Ordnungszahl, Strahlspannung und Aperturblende. Z. Angew. Phys. 13, 432 (1961)

    Google Scholar 

  8. L. Reimer, K.H. Sommer: Messungen und Berechnungen zum elektronenmikroskopischen Streukontrast für 17–1200 keV Elektronen. Z. Naturforsch. A 23, 1569 (1968)

    Google Scholar 

  9. E. Zeitler, G.F. Bahr: Contributions to the quantitative interpretation of electron microscope pictures. Exp. Cell Res. 12, 44 (1957)

    Google Scholar 

  10. W. Lippert: Bemerkungen zur elektronenmikroskopischen Dickenmessung von Kohleschichten. Z. Naturforsch. B 17, 335 (1962)

    Google Scholar 

  11. W. Schwertfeger: Zur Kleinwinkelstreuung von mittelschnellen Elektronen beim Durchgang durch amorphe Festkörperschichten. Dissertation, Universität Tübingen (1974)

    Google Scholar 

  12. W. Lippert: Zur Brauchbarkeit der Bornschen Nährung bei der Berechnung der Elektronenstreuung für den Bereich der Elektronenmikroskopie. Naturwissenschaften 49, 534 (1962)

    ADS  Google Scholar 

  13. W. Lippert, W. Friese: Zur Darstellbarkeit des Kontrastes mit Hilfe der Lenz-schen Theorie, in Electron Microscopy 1962, 5th Int’l Congr. Electron Microscopy, ed. by S.S. Breese (Academic, New York 1962) p.AA-1

    Google Scholar 

  14. V.E. Cosslett: High voltage electron microscopy: Increase in penetration with voltage, in Electron Microscopy1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.59

    Google Scholar 

  15. G. Dupouy, F. Perrier, P. Verdien: Amélioration du contraste des images d’objets amorphes minces en microscopie électronique. J. Microscopie 5, 655 (1966)

    Google Scholar 

  16. R.F. Whiting, F.P. Ottensmeyer: Heavy atoms in model compounds and nucleic acids imaged by dark field TEM. J. Mol. Biol. 67, 173 (1972)

    Google Scholar 

  17. J. Dubochet, M. Ducommun, M. Zollinger, E. Kellenberger: A new preparation method for dark-field electron microscopy of biomacromolecules. J. Ultrastruct. Res. 35, 147 (1971)

    Google Scholar 

  18. G.J. Brakenhoff, N. Nanninga, J. Pieters: Relative mass determination from dark-field electron micrographs, with an application to ribosomes. J. Ultrastruct. Res. 41, 238 (1972)

    Google Scholar 

  19. W. Krakow, L.A. Howland: A method for producing hollow cone illumination electronically in the conventional transmission microscope. Ultramicroscopy 2, 53 (1976)

    Google Scholar 

  20. E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy. Optik 31, 258 and 359 (1970)

    Google Scholar 

  21. L. Reimer, P. Gentsch, P. Hagemann: Anwendung eines Rasterzusatzes zu einem TEM. I. Grundlagen und Abbildung amorpher Objekte. Optik 43, 431 (1975)

    Google Scholar 

  22. E. Carlemalm, E. Kellenberger: The reproducible observation of unstained embedded cellular material in thin sections: Visualisation of an integral membrane protein by a new mode of imaging for STEM. EMBO J. 1, 63 (1982)

    Google Scholar 

  23. R. Reichelt, E. Carlemalm, A. Engel. Quantitative contrast evaluation for different scanning transmission electron microscope imaging modes, in Scanning Electron Microscopy 1984/III, SEM Inc., AMF O’Hare (Chicago) 1984, p.1011

    Google Scholar 

  24. P.J. Andree, J.E. Mellema, R.W.H. Ruignek. Discrimination of heavy and light elements in a specimen by use of STEM. Ultramicroscopy 17, 237 (1985)

    Google Scholar 

  25. C.E. Hall: Electron densitometry of stained virus particles. J. Biophys. Biochem. Cytol. 1, 1 (1955)

    Google Scholar 

  26. E. Krüger-Thiemer: Ein Verfahren für elektronenmikroskopische Massendikkemessungen an nichtkristallinen Objekten. Z. Wiss. Mikr. 62, 444 (1955)

    Google Scholar 

  27. N.R. Silvester, R.E. Burge: A quantitative estimation of the uptake of two new electron stains by the cytoplasmic membrane of ram sperm. J. Biophys. Biochem. Cytol. 6, 179 (1959)

    Google Scholar 

  28. L. Reimer, P. Hagemann: Recording of mass thickness in STEM. Ultramicroscopy 2, 297 (1977)

    Google Scholar 

  29. M.K. Lamvik: Electronmicroscopic mass determination using photographic isodensity techniques. Ultramicroscopy 1, 187 (1976)

    Google Scholar 

  30. A. Engel. Molecular weight determination by STEM. Ultramicroscopy 3, 273 (1973)

    Google Scholar 

  31. P.W.J. Linders, P. Hagemann. Mass determination of the biological specimens using backscattered electrons. Ultramicroscopy 11, 13 (1983)

    Google Scholar 

  32. E. Zeitler, G.F. Bahr: A photometric procedure for weight determination of submicroscopic particles. J. Appl. Phys. 33, 847 (1962)

    ADS  Google Scholar 

  33. G.F. Bahr, E. Zeitler: The determination of the dry mass in populations of isolated particles. Lab. Invest. 14, 955 (1965)

    Google Scholar 

  34. F.S. Sjöstrand: The importance of high resolution electron microscopy in tissue cell ultrastructure research. Sci. Tools 2, 25 (1955)

    Google Scholar 

  35. B. von Borries, F. Lenz: Über die Entstehung des Kontrastes im elektronenmikroskopischen Bild, in Electron Microscopy, Proc. Stockholm Conference 1956, ed. by F.J. Sjöstrand, J. Rhodin (Almqvist and Wiksells, Stockholm 1957) p.60

    Google Scholar 

  36. F. Thon: Elektronenmikroskopische Untersuchungen an dünnen Kohlefolien. Z. Naturforsch. A 20, 154 (1965)

    ADS  Google Scholar 

  37. F. Thon: Zur Defokussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung. Z. Naturforsch. A 21, 476 (1966)

    ADS  Google Scholar 

  38. F. Lenz, W. Scheffels: Das Zusammenwirken von Phasen- und Amplitudenkontrast in der elektronenmikroskopischen Abbildung. Z. Naturforsch. A 13, 226 (1958)

    ADS  Google Scholar 

  39. A. Howie, O.L. Krivanek, M.L. Rudee: Interpretation of electron micrographs and diffraction patterns of amorphous materials. Philos. Mag. 27, 235 (1973)

    ADS  Google Scholar 

  40. G.J. Brakenhoff: On the sub-nanometre structure visible in high-resolution dark-field electron microscopy. J. Micr. 100, 283 (1974)

    Google Scholar 

  41. A. Oberlin, M. Oberlin, M. Maubois: Study of thin amorphous and crystalline carbon films by electron microscopy. Philos. Mag. 32, 833 (1975)

    ADS  Google Scholar 

  42. L. Reimer, H. Gilde: Scattering theory and image formation in the electron microscope, in Image Processing and Computer-Aided Design in Electron Optics, ed. by P.W. Hawkes (Academic, London 1973) p.138

    Google Scholar 

  43. L. Albert, R. Schneider, H. Fischer. Elektronenmikroskopische Sichtbarmachung von ≤10 Å großen Fremdstoffeinschlüssen in elektrolytisch abgeschiedenen Nickelschichten mittels Phasenkontrast durch Defokussierung. Z. Naturforsch. A 19, 1120 (1964)

    ADS  Google Scholar 

  44. M. Rühle, M. Wilkens: Defocusing contrast of cavities, in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.146

    Google Scholar 

  45. L. Reimer, H. Gilde: Electron optical phase contrast of small gold particles. Optik 41, 524 (1975)

    Google Scholar 

  46. O. Scherzer: The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20 (1949)

    ADS  MATH  Google Scholar 

  47. M.E. Haine: Contrast arising from elastic and inelastic scattering in the electron microscope. J. Sci. Instrum. 34, 9 (1957)

    ADS  Google Scholar 

  48. R.D. Heidenreich, R.W. Hamming: Numerical evaluation of electron microscopical image phase contrast. Bell Syst. Tech. J. 44, 207 (1965)

    Google Scholar 

  49. C.B. Eisenhandler, B.M. Siegel: Imaging of single atoms with the electron microscope by phase contrast. J. Appl. Phys. 37, 1613 (1966)

    ADS  Google Scholar 

  50. R. Langer, W. Hoppe: Die Erhöhung von Auflösung und Kontrast im Elektronenmikroskop mit Zonenkorrekturplatten. Optik 24, 470 (1966); 25, 413 and 507 (1967)

    Google Scholar 

  51. L. Reimer: Elektronenoptischer Phasenkontrast. Z. Naturforsch. A 24, 377 (1969)

    ADS  Google Scholar 

  52. H. Niehrs: Optimale Abbildungsbedingungen und Bildintensitätsverlauf bei einer Elektronenmikroskopie von Atomen. Optik 30, 273 (1969)

    Google Scholar 

  53. H. Niehrs: Optimale Abbildungsbedingungen und Bildintensitätsverlauf bei einer Elektronenmikroskopie von Atomen. Optik 31, 51 (1970)

    Google Scholar 

  54. D.L. Misell: Image formation in the electron microscope. J. Phys. A 4, 782 and 798 (1971)

    ADS  Google Scholar 

  55. D.L. Misell: Image resolution and image contrast in the electron microscope. J. Phys. A 6, 62, 205 and 218 (1973)

    ADS  Google Scholar 

  56. T. Kobayashi, L. Reimer: Computation of electron microscopical images of single organic molecules. Optik 43, 237 (1975)

    Google Scholar 

  57. W. Chiu, R.M. Glaeser: Single atom image contrast: conventional dark-field and bright-field electron microscopy. J. Micr. 103, 33 (1975)

    Google Scholar 

  58. A. Pitt: Dark field image calculation, in Electron Microscopy and Analysis 1979, ed. by T. Mulvey (The Institute of Physics, London 1980) p.269

    Google Scholar 

  59. H. Hoch: Dunkelfeldabbildung von schwachen Phasenobjekten im Elektronenmikroskop. Optik 47, 65 (1977)

    Google Scholar 

  60. W. Krakow: Computer experiments for tilted beam dark-field imaging. Ultramicroscopy 1, 203 (1976)

    Google Scholar 

  61. H. Hashimoto, A. Kumao, K. Hino, H. Yotsumoto, A. Ono: Images of Th atoms in TEM. Jpn. J. Appl. Phys. 10, 1115 (1971)

    ADS  Google Scholar 

  62. R.M. Henkelman, F.P. Ottensmeyer: Visualization of single heavy atoms by dark field electron microscopy. Proc. Nat. Acad. Sci. USA 68, 3000 (1971)

    ADS  Google Scholar 

  63. F.P. Ottensmeyer, E.E. Schmidt, T. Jack, J. Powell: Molecular architecture: the optical treatment of dark field electron micrographs of atoms. J. Ultrastruct. Res. 40, 546 (1972)

    Google Scholar 

  64. F. Thon, D. Willasch: Imaging of heavy atoms in dark field electron microscopy using hollow cone illumination. Optik 36, 55 (1972)

    Google Scholar 

  65. K.J. Hanszen: Problems of image interpretation in electron microscopy with linear and nonlinear transfer. Z. Angew. Phys. 27, 125 (1969)

    Google Scholar 

  66. K.J. Hanszen: The relevance of dark field illumination in conventional and scanning TEM. PTB-Bericht A Ph-7 (Physikalisch-Technische Bundesanstalt, Braunschweig 1974)

    Google Scholar 

  67. D.L. Misell: Image resolution in high voltage electron microscopy. J. Phys. D 6, 1409 (1973)

    ADS  Google Scholar 

  68. H. Formanek, M. Müller, M.H. Hahn, T. Koller: Visualization of single heavy atoms with the electron microscope. Naturwissenschaften 58, 339 (1971)

    ADS  Google Scholar 

  69. J.R. Parsons, H.M. Johnson, C.W. Hoelke, R.R. Hosbons: Imaging of uranium atoms with the electron microscope by phase contrast. Philos. Mag. 27, 1359 (1973)

    ADS  Google Scholar 

  70. W. Baumeister, M.H. Hahn: Electron microscopy of monomolecular layers of thorium atoms. Nature 241, 445 (1973)

    ADS  Google Scholar 

  71. S. Iijima: Observation of single and clusters of atoms in bright field electron microscopy. Optik 48, 193 (1977)

    Google Scholar 

  72. E.B. Prestridge, D.J.C. Yates: Imaging the rhodium atom with a conventional high resolution electron microscope. Nature 234, 345 (1971)

    ADS  Google Scholar 

  73. D. Dorignac, B. Jouffrey: Atomic resolution at 3 MV, in Microscopie Electronique à Haute Tension, ed. by B. Jouffrey, P. Favard (Société Francaise de Microscopie Electronique, Paris 1976) p.143

    Google Scholar 

  74. D. Dorignac, B. Jouffrey: Iron single atom images, in Electron Microscopy1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980) p.112

    Google Scholar 

  75. M. Retsky: Observed single atom elastic cross sections in a scanning electron microscope. Optik 41, 127 (1974)

    Google Scholar 

  76. M. Isaacson, J.P. Langmore, H. Rose: Determination of the non-localization of the inelastic scattering of electrons by electron microscopy. Optik 41, 92 (1974)

    Google Scholar 

  77. A.V. Crewe, J.P. Langmore, M.S. Isaacson: Resolution and contrast in the STEM, in Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. by B. Siegel, D.R. Beaman (Wiley, New York 1975) p.47

    Google Scholar 

  78. M. Isaacson, M. Utlaut, D. Kopf: Analog computer processing of STEM images, in Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes, Topics Curr. Phys., Vol.13, (Springer, Berlin, Heidelberg, 1980) p.257

    Google Scholar 

  79. A.V. Crewe, J. Langmore, M. Isaacson, M. Retsky: Understanding single atoms in STEM, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.260

    Google Scholar 

  80. M.S. Isaacson, J. Langmore, N.W. Parker, D. Kopf, M. Utlaut: The study of the adsorption and diffusion of heavy atoms on light element substrates by means of the atomic resolution STEM. Ultramicroscopy 1, 359 (1976)

    Google Scholar 

  81. J.S. Wall, J.F. Hainfeld, J.W. Bittner: Preliminary measurements of uranium atom motion on carbon films at low temperatures. Ultramicroscopy 3, 81 (1978)

    Google Scholar 

  82. K.J. Hanszen, B. Morgenstern, K.J. Rosenbruch: Aussagen der optischen Übertragungstheorie über Auflösung und Kontrast in elektronenmikroskopischen Bild. Z. Angew. Phys. 16, 477 (1964)

    Google Scholar 

  83. K.J. Hanszen, B. Morgenstern: Die Phasenkontrast- und Amplitudenkontrast-Übertragung des elektronenmikroskopischen Objektivs. Z. Angew. Phys. 19, 215 (1965)

    Google Scholar 

  84. K.J. Hanszen: Generalisierte Angaben über die Phasenkontrast- und Amplitudenkontrast-Übertragungsfunktionen für elektronenmikroskopische Objektive. Z. Angew. Phys. 20, 427 (1966)

    Google Scholar 

  85. K.J. Hanszen: The optical transfer theory of the electron microscope: fundamental principles and applications, in Advances in Optical and Electron Microscopy, Vol.4, ed. by R. Barer, V.E. Cosslett (Academic, London 1971) p.1

    Google Scholar 

  86. K.J. Hanszen: Contrast transfer and image processing, in Image Processing and Computer-Aided Design in Electron Optics, ed. by P.W. Hawkes (Academic, London 1973) p.16

    Google Scholar 

  87. P.W. Hawkes: Coherence in electron optics, in Advances in Optical and Electron Microscopy, Vol.7, ed. by R. Barer, V.E. Cosslett (Academic, London 1978) p.101

    Google Scholar 

  88. P.W. Hawkes: Electron image processing: a survey. Computer Graphics and Image Processing 8, 406 (1978)

    Google Scholar 

  89. P.W. Hawkes: Electron image processing: a survey. Computer Graphics and Image Processing 18, 58 (1982)

    Google Scholar 

  90. K.J. Hanszen, L. Trepte: Der Einfluß von Strom- und Spannungsschwankungen sowie der Energiebreite der Strahlelektronen auf Kontrastübertragung und Auflösung des Elektronenmikroskopes. Optik 32, 519 (1971)

    Google Scholar 

  91. K.J. Hanszen, L. Trepte: Die Kontrastübertragung im Elektronenmikroskop bei partiell kohärenter Beleuchtung. Optik 33, 166 and 182 (1971)

    Google Scholar 

  92. J. Frank: The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38, 519 (1973)

    Google Scholar 

  93. R.H. Wade, J. Frank: Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49, 81 (1977)

    Google Scholar 

  94. W.O. Saxton: Spatial coherence in axial high resolution conventional electron microscopy. Optik 49, 51 (1977)

    Google Scholar 

  95. H. Yoshida, A. Ohshita, H. Tomita: Determination of spatial and temporal coherence functions from a single astigmatic image. Jpn. J. Appl. Phys. 20, 2427 (1981)

    ADS  Google Scholar 

  96. W. Hoppe, D. Köstler, D. Typke, N. Hunsmann: Kontrastübertragung für die Hellfeld-Bildrekonstruktion mit gekippter Beleuchtung in der Elektronenmikroskopie. Optik 42, 43 (1975)

    Google Scholar 

  97. K.H. Downing: Note on transfer functions in electron microscopy with tilted illumination. Optik 43, 199 (1975)

    Google Scholar 

  98. S.C. McFarlane: The imaging of amorphous specimens in a tilted-beam electron microscope. J. Phys. C 8, 2819 (1975)

    ADS  Google Scholar 

  99. R.H. Wade: Concerning tilted beam electron microscope transfer functions. Optik 45, 87 (1976)

    Google Scholar 

  100. P.W. Hawkes: Electron microscope transfer functions in closed form with tilted illumination. Optik 55, 207 (1980)

    Google Scholar 

  101. W. Krakow: Calculation and observation of atomic structure for tilted beam dark-field microscopy, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.261

    Google Scholar 

  102. W. Hoppe: Towards three-dimensional electron microscopy at atomic resolution. Naturwissenschaften 61, 239 (1974)

    ADS  Google Scholar 

  103. W.K. Jenkins, R.H. Wade: Contrast transfer in the electron microscope for tilted and conical bright field illumination, in Developments in Electron Microscopy and Analysis1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.115

    Google Scholar 

  104. W. Kunath: Signal-to-noise enhancement by superposition of bright-field images obtained under different illumination tilts. Ultramicroscopy 4, 3 (1979)

    Google Scholar 

  105. W. Kunath, F. Zemlin, K. Weiss. Apodization in phase-contrast electron microscopy realised with hollow-cone illumination. Ultramicroscopy 16, 123 (1985)

    Google Scholar 

  106. O. Scherzer: Zur Theorie der Abbildung einzelner Atome in dicken Objekten. Optik 38, 387 (1973)

    Google Scholar 

  107. W.O. Saxton, W.K. Jenkins, L.A. Freeman, D.J. Smith: TEM observations using bright field hollow cone illumination. Optik 49, 505 (1978)

    Google Scholar 

  108. H. Rose: Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251 (1977)

    Google Scholar 

  109. J. Fertig, H. Rose: On the theory of image formation in the electron microscope. Optik 54, 165 (1979)

    Google Scholar 

  110. H. Rose: Phase contrast in STEM. Optik 39, 416 (1974)

    Google Scholar 

  111. N.H. Dekkers, H. deLang: Differential phase contrast in a STEM. Optik 41, 452 (1974)

    Google Scholar 

  112. W.C. Stewart: On differential phase contrast with an extended illumination source. J. Opt. Soc. Am. 66, 813 (1976)

    ADS  Google Scholar 

  113. H. Rose: Image formation by inelastically scattered electrons in electron microscopy. Optik 45, 139 (1976)

    Google Scholar 

  114. P.W. Hawkes: Half-plane apertures in TEM, split detectors in STEM and pty-chography. J. Opt. (Paris) 9, 235 (1978)

    ADS  Google Scholar 

  115. G.R. Morrison, J.N. Chapman: STEM imaging with a quadrant detector, in Electron Microscopy 1981, ed. by M.J. Goringe (The Institute of Physics, London 1981) p.329

    Google Scholar 

  116. W. Hoppe: Ein neuer Weg zur Erhöhung des Auflösungsvermögens des Elektronenmikroskops. Naturwissenschaften 48, 736 (1961)

    ADS  Google Scholar 

  117. F. Lenz: Zonenplatten zur Öffnungsfehlerkorrektur und zur Kontrasterhöhung. Z. Phys. 172, 498 (1963)

    ADS  MATH  Google Scholar 

  118. F. Thon, B.M. Siegel: Zonal filtering in optical reconstruction of high resolution phase contrast images, in Microscopie Electronique1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.13

    Google Scholar 

  119. H. Tochigi, H. Nakatsuka, A. Fukami, K. Kanaya: The improvement of the image contrast by using the phase plate in the TEM, in Microscopie Electronique1970, Vol.1, ed. by P. Favard (Société Francaise de Microscope Electronique, Paris 1970) p.73

    Google Scholar 

  120. H.M. Johnson, D.F. Parsons: In-focus phase contrast electron microscopy, in Microscopie Electronique1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.71

    Google Scholar 

  121. P.N.T. Unwin: An electrostatic phase plate for the electron microscope. Ber. Bunsenges. Phys. Chem. 74, 1137 (1970)

    Google Scholar 

  122. W. Krakow, B.M. Siegel: Phase contrast in electron microscope images with an electrostatic phase plate. Optik 42, 245 (1975)

    Google Scholar 

  123. G. Möllenstedt, R. Speidel, W. Hoppe, R. Langer, K.-H. Katerbau, F. Thon: Electron microscopical imaging using zonal correction plates, in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.125

    Google Scholar 

  124. F. Thon, D. Willasch: Hochauflösungs-Elektronenmikroskopie mit Spezialaper-turblenden und Phasenplatten, in Microscopie Electronique1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.3

    Google Scholar 

  125. K.-H. Müller: Phasenplatten für Elektronenmikroskope. Optik 45, 73 (1976)

    Google Scholar 

  126. H.G. Badde, L. Reimer: Der Einfluß einer streuenden Phasenplatte auf das elektronenmikroskopische Bild. Z. Naturforsch. A 25, 760 (1970)

    ADS  Google Scholar 

  127. D. Willasch: High resolution electron microscopy with profile phase plates. Optik 44, 17 (1975)

    Google Scholar 

  128. L. Reimer, H.G. Badde, E. Drewes, H. Gilde, H. Kappert, H.J. Höhling, D.B. von Bassewitz, A. Rössner: Laserbeugung an elektronenmikroskopischen Aufnahmen. Forschungsber. Landes Nordrhein Westfalen Nr.2314 (Westdeutscher, Opladen 1973)

    Google Scholar 

  129. J.R. Berger, D. Harker: Optical diffractometer for production of Fourier transforms of electron micographs. Rev. Sci. Instrum. 38, 292 (1967)

    ADS  Google Scholar 

  130. O.L. Krivanek: A method for determining the coefficient of spherical aberration from a single electron micrograph. Optik 45, 97 (1976)

    Google Scholar 

  131. W. Krakow, K.H. Downing, B.M. Siegel: The use of tilted specimens to obtain the contrast transfer characteristics of an electron microscope imaging system. Optik 40, 1, (1974)

    Google Scholar 

  132. L. Reimer, H.G. Heine, R.A. Ajeian: Optimalbedingungen für den Beugungsnachweis von Defokussierungsstrukturen in elektronenmikroskopischen Aufnahmen. Z. Naturforsch. A 24, 1846 (1969)

    ADS  Google Scholar 

  133. L. Reimer, H. Kappert: Bestimmung der Domänenwanddicke aus defokus-sierten elektronenoptischen Aufnahmen von ferromagnetischen Schichten. Z. Angew. Phys. 26, 58 (1969)

    Google Scholar 

  134. J. Frank: Nachweis von Objektbewegungen im lichtoptischen Diffraktogramm von elektronenmikroskopischen Aufnahmen. Optik 30, 171 (1969)

    Google Scholar 

  135. J. Frank: Observation of the relative phases of electron microscopic phase contrast zones with the aid of the optical diffractometer. Optik 35, 608 (1972)

    Google Scholar 

  136. L. Reimer, B. Volbert, P. Bracker: Quality control of SEM micrographs by laser diffractometry. Scanning 1, 233 (1978)

    Google Scholar 

  137. K.H. Herrmann, D. Krahl: ‘Real-time’-Elektronenbildwandlung mit Thermoplastschichten. Optik 45, 231 (1976)

    Google Scholar 

  138. P. Bonhomme, A. Beorchia, B. Meunier, F. Dumont, D. Rossier: Incoherent reading light tests of a Pockels-effect imaging device used in an ‘in-line’ optical processor of microscopical electron images. Optik 45, 159 (1976)

    Google Scholar 

  139. A. Beorchia, P. Bonhomme, N. Bonnet: Modulation transfer function and detective quantum efficiency of Electrotitus. Optik 55, 11 (1980)

    Google Scholar 

  140. D. Gabon: Microscopy by reconstructed wave-fronts. Proc. Roy. Soc. A 197, 454 (1949)

    ADS  Google Scholar 

  141. D. Gabon: Microscopy by reconstructed wave-fronts. Proc. Phys. Soc. B 64, 449 (1950)

    ADS  Google Scholar 

  142. A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda: Optical reconstuction of image from Fraunhofer electron-hologram. Jpn. J. Appl. Phys. 7, 295 (1968)

    ADS  Google Scholar 

  143. J. Munch: Experimental electron holography. Optik 43, 79 (1975)

    Google Scholar 

  144. K.J. Hanszen, G. Ade, R. Lauer: Genauere Angaben über spärische längsaberration, Verzeichnung in der Pupillenebene und über die Wellenaberration von Elektronenlinsen. Optik 35, 567 (1972)

    Google Scholar 

  145. K.J. Hanszen: Neuere theoretische Erkenntnisse und praktische Erfahrungen über die holographische Rekonstruktion elektronenmikroskopischer Aufnahmen, PTB-Bericht A Ph-4 (Physikalisch-Technische Bundesanstalt, Braunschweig 1973)

    Google Scholar 

  146. G. Ade: Erweiterung der Kontrastübertragungstheorie auf nicht-isoplanatische Abbildungen. Optik 50, 143 (1978)

    Google Scholar 

  147. K.J. Hanszen: Holographische Rekonstruktionsverfahren in der Elektronenmikroskopie und ihre kontrastübertragungstheoretische Deutung. Optik 32, 74 (1970)

    Google Scholar 

  148. A. Lohmann: Optische Einseitenbandübertragung angewandt auf das Gabor-Mikroskop. Opt. Acta 3, 97 (1956)

    ADS  Google Scholar 

  149. K.J. Hanszen: Einseitenband-Holographie. Z. Naturforsch. A 24, 1849 (1969)

    ADS  Google Scholar 

  150. W. Hoppe, R. Langer, F. Thon: Verfahren zur Rekonstruktion komplexer Bildfunktionen in der Elektronenmikroskopie. Optik 30, 538 (1970)

    Google Scholar 

  151. W. Hoppe: Zur ‘Abbildung’ komplexer Bildfunktionen in der Elektronenmikroskopie. Z. Naturforsch. A 26, 1155 (1971)

    ADS  Google Scholar 

  152. F. Thon: Hochauflösende elektronenmikroskopische Abbildung amorpher Objekte mittels Zweistrahlinterferenzen, in Electron Microscopy1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.127

    Google Scholar 

  153. K.H. Downing: Compensation of lens aberrations by single-sideband holography, in Proc. 30th Ann. EMSA Meeting (Claitor’s Publ. Div., Baton Rouge LO 1972) p.562

    Google Scholar 

  154. P. Sieber: High resolution electron microscopy with heated apertures and reconstruction of single-sideband micrographs, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.274

    Google Scholar 

  155. K.H. Downing, B.M. Siegel: Discrimination of heavy and light components in electron microscopy using single-sideband holographic techniques. Optik 42, 155 (1975)

    Google Scholar 

  156. E.N. Leith, J. Upatnieks: Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123 (1962)

    ADS  Google Scholar 

  157. G. Möllenstedt, H. Wahl: Elektronenholographie und Rekonstruktion mit Laserlicht. Naturwissenschaften 55, 340 (1968)

    ADS  Google Scholar 

  158. H. Tomita, T. Matsuda, T. Komoda: Electron microholography by two-beam method. Jpn. J. Appl. Phys. 9, 719 (1970)

    ADS  Google Scholar 

  159. H. Tomita, T. Matsuda, T. Komoda: Off-axis electron micro-holography. Jpn. J. Appl. Phys. 11, 143 (1972)

    ADS  Google Scholar 

  160. H. Lichte. Electron holography approaching atomic resolution. Ultramicroscopy 20, 293 (1986)

    Google Scholar 

  161. A. Tonomura, T. Matsuda, T. Kawasaki, J. Endo, N. Osakawa. Sensitivity-enhanced electron-hologram interferometry and thickness-measurement application at atomic scale. Phys. Rev. Lett. 54, 60 (1985)

    ADS  Google Scholar 

  162. A. Tonomura, J. Endo, T. Matsuda: An application of electron holography to interference microscopy. Optik 53, 143 (1979)

    Google Scholar 

  163. J. Endo, T. Matsuda, A. Tonomura: Interference electron microscopy by means of holography. Jpn. J. Appl. Phys. 18, 2291 (1979)

    ADS  Google Scholar 

  164. A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Direct observation of fine structure of magnetic domain walls by electron holography. Phys. Rev. Lett. 44, 1430 (1980)

    ADS  Google Scholar 

  165. N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fuijiwara, A. Tonomura: Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746 (1983)

    ADS  Google Scholar 

  166. K.J. Hanszen: Experience and results obtained in electron miscroscopical holography by using a reference beam in the light optical reconstruction step, in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980) p.136

    Google Scholar 

  167. K.J. Hanszen, R. Lauer, G. Ade: Discussions of the possibilities and limitations of in-line and off-axis holography in electron microscopy, PTB-Bericht A Ph-15 (Physikalisch-Technische Bundesanstalt, Braunschweig 1980)

    Google Scholar 

  168. K.J. Hanszen: Methods of off-axis holography and investigations of the phase structure in crystals. J. Phys. D 19, 373 (1986)

    ADS  Google Scholar 

  169. K.H. Hanszen: Holography in electron microscopy. Adv. Electron. Electron Phys. 59, 1 (1982)

    Google Scholar 

  170. K.J. Hanszen: Lichtoptische Anordnungen mit Laser-Lichtquellen als Hilfmittel für die Elektronenmikroskopie, in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.153

    Google Scholar 

  171. J. Rogers: The design and use of an optical model of the electron microscope, in Proc. of the ICO-11 Conference (Madrid, 1978)

    Google Scholar 

  172. A. Maréchal, P. Croce: Un filtre de fréquences spatiales pour l’amélioration du contraste des images optiques. C. R. Acad. Sci. Paris 237, 607 (1953)

    Google Scholar 

  173. M.H. Hahn: Eine optische Ortsfrequenzfilter- und Korrelationsanlage für elektronenmikroskopische Aufnahmen. Optik 35, 326 (1972)

    Google Scholar 

  174. G.W. Stroke, M. Halioua: Attainment of diffraction-limited imaging in high-resolution electron microscopy by ‘a posteriori’ holographic image sharpening. Opik 35, 50 (1972)

    Google Scholar 

  175. G.W. Stroke, M. Halioua: Image deblurring holographic deconvolution with partially-coherent low-contrast objects and application to electron microscopy. Optik 35, 489 (1972)

    Google Scholar 

  176. G.W. Stroke, M. Halioua: Image improvement in high-resolution electron microscopy with coherent illumination (low-contrast objects) using holographic image-deblurring deconvolution. Optik 37, 192 and 249 (1973)

    Google Scholar 

  177. G.W. Stroke, M. Halioua, F. Thon, D. Willasch: Image improvement in high resolution electron microscopy using holographic image deconvolution. Optik 41, 319 (1974)

    Google Scholar 

  178. A.W. Lohmann, D.P. Paris: Computer generated spatial filters for coherent optical data processing. Appl. Opt. 7, 651 (1968)

    ADS  Google Scholar 

  179. A.W. Lohmann, D.P. Paris: Binary Fraunhofer holograms, generated by computer. Appl. Opt. 6, 1739 (1967)

    ADS  Google Scholar 

  180. R.E. Burge, R.F. Scott: Binary filters for high resolution electron microscopy. Optik 43, 53 (1975); 44, 159 (1976)

    Google Scholar 

  181. S. Boseck, H. Hager Beseitung des spatialen Rauschens in elektronenmikroskopischen Aufnahmen durch lichtoptische Filterung. Optik 28, 602 (1968)

    Google Scholar 

  182. S. Boseck, R. Lange: Ausschöpfung des Informationsgehaltes von elektronenmikroskopischen Aufnahmen biologischer Objekte mit Hilfe des Abbeschen Beugungsapparates, gezeigt am Beispiel kristallartiger Strukturen. Z. Wiss. Mikr. 70, 66 (1970)

    Google Scholar 

  183. J.B. Bancroft, G.J. Hills, R. Markham: A study of the self-assembly process in a small spherical virus. Virology 31, 354 (1967)

    Google Scholar 

  184. A. Klug, D.J. deRosier: Optical filtering of electron micrographs: reconstruction of one-sided images. Nature 212, 29 (1966)

    ADS  Google Scholar 

  185. C.A. Taylor, J.K. Ranniko: Problems in the use of selective optical spatial filtering to obtain enhanced information from electron micrographs. J. Micr. 100, 307 (1974)

    Google Scholar 

  186. R. Markham, J.H. Hitchborn, G.J. Hills, S. Frey: The anatomy of tobacco mosaic virus. Virology 22, 342 (1964)

    Google Scholar 

  187. R.C. Warren, R.M. Hicks: A simple method of linear integration for resolving structures in periodic lattices. J. Ultrastruct. Res. 36, 861 (1971)

    Google Scholar 

  188. R. Markham, S Frey, G.J. Hills: Methods for the enhancement of image detail and accentuation of stucture in electron microscopy. Virology 20, 88 (1963)

    Google Scholar 

  189. P.W. Hawkes. Processing electron images, in Quantitative Electron Microscopy, ed. by J.N. Chapman, A.J. Craven. Scottish Univ. Summer School Publ. Edinburgh (1984) p.351

    Google Scholar 

  190. D.L. Misell: The phase problem in electron microscopy, in Advances in Optical and Electron Microscopy, Vol.7, ed. by R. Barer, V.E. Cosslett (Academic, London 1978) p.185

    Google Scholar 

  191. W.O. Saxton: Computer techniques for image processing in electron microscopy. Adv. Electron. Electron Phys. Suppl. 10, 289 (1978)

    ADS  Google Scholar 

  192. W.O. Saxton: Recovery of specimen information for strongly scattering objects, in Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes, Topics Curr. Phys., Vol.13, (Springer, Berlin, Heidelberg, 1980) p.35

    Google Scholar 

  193. R.W. Gerchberg, W.O. Saxton: Phase determination from image and diffraction plane pictures in the electron microscope. Optik 34, 275 (1971)

    Google Scholar 

  194. R.W. Gerchberg, W.O. Saxton: A practical algorithm for the determination of phase from image and diffraction plane picture. Optik 35, 237 (1972)

    Google Scholar 

  195. J. Frank: A remark on phase determination in electron microscopy. Optik 38, 582 (1973)

    Google Scholar 

  196. R.W. Gerchberg: Holography without fringes in the electron microscope. Nature 240, 404 (1972)

    ADS  Google Scholar 

  197. J.N. Chapman: The application of iterative techniques to the investigation of strong phase objects in the electron microscope. Philos. Mag. 32, 527–541 (1975)

    ADS  Google Scholar 

  198. D.L. Misell: An examination of an iterative method for the solution of the phase problem in optics and electron optics. J. Phys. D 6, 2200–2217 (1973)

    ADS  Google Scholar 

  199. P. Schiske: Phase determination from a focal series and the corresponding diffraction pattern in electron microscopy for strongly scattering objects. J. Phys. D 8, 1372 (1975)

    ADS  Google Scholar 

  200. D.A. Ansley: Determining the phase of line objects by measuring their intensity in dark field and bright field illumination. Opt. Commun. 8, 140 (1973)

    ADS  Google Scholar 

  201. P. van Toorn, A.M.J. Huiser, H.A. Ferwerda: Proposals for solving the phase retrieval problem for semi-weak objects from noisy electron micrographs. Optik 51, 309 (1978)

    Google Scholar 

  202. R. Langer, J. Frank, A. Feltynowski, W. Hoppe: Anwendung des Bilddifferenzverfahrens auf die Untersuchung von Strukturänderungen dünner Kohlefolien bei Elektronenbestrahlung. Ber. Bunsenges. Phys. Chem. 74, 1120 (1970)

    Google Scholar 

  203. J. Frank: Two-dimensional correlation functions in electron microscope image analysis, in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.622

    Google Scholar 

  204. L.S. Al-Ali: Translational alignment of differently defocused micrographs using cross-correlation, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.225

    Google Scholar 

  205. W. Hoppe, R. Langer, J. Frank, A. Feltynowski: Bilddifferenzverfahren in der Elektronenmikroskopie. Naturwissenschaften 56, 267 (1969)

    ADS  Google Scholar 

  206. R.A. Crowther, L.A. Amos: Harmonic analysis of electron microscope images with rotational symmetry. J. Mol. Biol. 60, 123 (1971)

    Google Scholar 

  207. H.P. Erickson, A. Klug: Measurements and compensation of defocusing and aberrations by Fourier processing of electron micrographs. Philos. Trans. B 261, 105 (1971)

    Google Scholar 

  208. A.M. Kuo, R.M. Glaeser: Development of methodology for low exposure, high resolution electron microscopy of biological specimens. Ultramicroscopy 1, 53 (1975)

    Google Scholar 

  209. P.N.T. Unwin, R. Henderson: Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425 (1975)

    Google Scholar 

  210. J.L. Harris: Image evaluation and restoration. J. Opt. Soc. Am. 56, 569 (1966)

    ADS  Google Scholar 

  211. J. Frank, P. Bußler, R. Langer, W. Hoppe: Einige Erfahrungen mit der rechnerischen Analyse und Synthese von elektronenmikroskopischen Bildern hoher Auflösung. Ber. Bunsenges. Phys. Chem. 74, 1105 (1970)

    Google Scholar 

  212. T.A. Welton: Computational correction of aberrations in electron microscopy, in Proc. 29th Annual Meeting of EMSA (Claitor’s Publ. Div. Baton Rouge, LO 1971) p.94

    Google Scholar 

  213. T.A. Welton: A computational critique of an algorithm for image enhancement in bright field electron microscope. Adv. Electron. Electron Phys. 48, 37 (1978)

    Google Scholar 

  214. W.O. Saxton, J. Frank: Motif detection in quantum noise-limited electron micrographs by cross-correlation. Ultramicroscopy 2, 219 (1977)

    Google Scholar 

  215. J. Frank: Averaging of low exposure electron micrographs of nonperiodic objects. Ultramicroscopy 1, 159 (1979);

    Google Scholar 

  216. J. Frank: Optimal use of image information using signal detection and averaging techniques. Ann. NY Acad. Sci. 306, 112 (1978)

    ADS  Google Scholar 

  217. J. Frank: Reconstruction of non-periodic objects using correlation methods, in Electron Microscopy 1978, Vol.3, ed. by J.M. Sturgess (Microscopial Soc. Canada, Toronto 1978) p.87

    Google Scholar 

  218. J. Frank: The role of correlation techniques in computer image processing, in Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes, Topics Curr. Phys., Vol.13, (Springer, Berlin, Heidelberg, 1980) p.187

    Google Scholar 

  219. J. Frank, W. Goldfarb, D. Eisenberg, T.S. Baker: Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3, 283 (1978)

    Google Scholar 

  220. J. Frank, A. Verschoor, M. Boublik: Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214, 1356 (1981)

    ADS  Google Scholar 

  221. M. van Heel: Detection of objects in quantum-noise-limited images. Ultramicroscopy 7, 331 (1982)

    Google Scholar 

  222. M. van Heel, J. Frank: Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6, 187 (1981)

    Google Scholar 

  223. J. Frank: The rule of multivariate image analysis in solving the architecture of the Limulus polyphemus hemocyanin molecule. Ultramicroscopy 13, 153 (1984)

    Google Scholar 

  224. M. van Heel: Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy 13, 165 (1984)

    Google Scholar 

  225. H. Gross, Th. Müller, I. Wildhaber, H. Winkler. High resolution metal replication, quantified by image processing of periodic test specimens. Ultramicroscopy 16, 287 (1985)

    Google Scholar 

  226. I. Wildhaber, H. Gross, H. Moor. Comparative studies of very thin shadowing films produced by atom beam sputtering and electron beam evaporation. Ultramicroscopy 16, 321 (1985)

    Google Scholar 

  227. P.R. Smith: An integrated set of computer programs for processing electron micrographs of biological structures. Ultramicroscopy 3, 153 (1978)

    Google Scholar 

  228. W.O. Saxton, T.J. Pitt, M. Horner Digital image processing: the SEMPER system. Ultramicroscopy 4, 343 (1979)

    Google Scholar 

  229. J. Frank, B. Shinkin, H. Dowse: SPIDER — a modular software system for electron image processing. Ultramicroscopy 6, 343 (1981)

    Google Scholar 

  230. M. van Heel, W. Keegstra: IMAGIC: a fast, flexible and friendly image analysis software system. Ultramicroscopy 7, 113 (1981)

    Google Scholar 

  231. J.G. Helmcke: Theorie und Praxis der elektronenmikroskopischen Stereoaufnahme. Optik 11, 201 (1954), 12 253 (1955)

    Google Scholar 

  232. J.G. Helmcke, H.J. Orthmann: Fehler bei der Tiefenbestimmung elektronenmikroskopischer Stereoaufnahmen. Optik 11, 562 (1954)

    Google Scholar 

  233. R.I. Garrod, J.F. Nankivell: Sources of error in electron stereomicroscopy. Br. J. Appl. Phys. 9, 214 (1958)

    ADS  Google Scholar 

  234. R.I. Garrod, J.F. Nankivell: Some remarks on the accuracy obtainable in electron stereomicroscopy. Optik 16, 27 (1959)

    Google Scholar 

  235. R.A. Crowther, D.J. deRosier, A. Klug: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. Roy. Soc. A 317, 319 (1970)

    ADS  Google Scholar 

  236. G.N. Ramachandran, A.V. Lakshminarayanan: Three-dimensional reconstruction from radiograph and electron micrographs. Proc. Nat. Acad. Sci. USA 68, 2236 (1971)

    MathSciNet  ADS  Google Scholar 

  237. R.A. Crowther, A. Klug: ART and Science or conditions for three-dimensional structure from projections and its application to electron microscopy. J. Theor. Biol. 32, 199 (1971)

    Google Scholar 

  238. R. Gordon, R. Bender, G.T. Herman: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471 (1970)

    Google Scholar 

  239. B.K. Vainshtein: Finding the structure of objects from projections. Sov. Phys. Cryst. 15, 781 (1971)

    Google Scholar 

  240. P. Gilbert: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105 (1972)

    Google Scholar 

  241. P.F.C. Gilbert: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II. Direct methods. Proc. Roy. Soc. B 182, 89 (1972)

    ADS  Google Scholar 

  242. E. Zeitler: The reconstruction of objects from their projections. Optik 39, 396 (1974)

    Google Scholar 

  243. W. Hoppe, H.J. Schramm, M. Sturm, N. Hunsmann, J. Gaßmann: Three-dimensional electron microscopy of individual biological objects. Z. Natur-forsch. A 31, 645, 1370–1380 (1976)

    ADS  Google Scholar 

  244. J.A. Lake: Reconstruction of three-dimensional structures from electron micrographs: The equivalence of two methods, in Proc. 29th Annual Meeting of EMSA (Claitor’s Publ. Div. Baton Rouge, LO 1971) p.90

    Google Scholar 

  245. M. Zwick, E. Zeitler: Image reconstruction from projections. Optik 38, 550 (1973)

    Google Scholar 

  246. A. Klug, F.H.C. Crick, H.W. Wyckoff: Diffraction by helical structures. Acta Cryst. 11, 199 (1958)

    Google Scholar 

  247. M. Radermacher, T. Wagenknecht, A. Verschoor, J. Frank: Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Micr. 146, 113 (1987)

    Google Scholar 

  248. D.J. deRosier, A. Klug: Reconstruction of three-dimensional structures from electron micrographs. Nature 217, 130 (1968)

    ADS  Google Scholar 

  249. B.K. Vainshtein: Electron microscopical analysis of the three-dimensional structure of biological macromolecules, in Advances in Optical and Electron Microscopy, Vol.7, ed. by R. Barer, V.E. Cosslett (Academic, London 1978) p.281

    Google Scholar 

  250. N.A. Kiselev: Reconstruction of the structure of enzymes from their images, in Electron Microscopy 1978, Vol.3, ed. by J.M. Sturgess (Microscopical Soc. of Canada, Toronto 1978) p.94

    Google Scholar 

  251. D.L. Misell: Image analysis, enhancement and interpretation, in Practical Methods in Electron Microscopy, Vol.7, ed. by A.M. Glauert (North-Holland, Amsterdam 1978)

    Google Scholar 

  252. W.O. Saxton: Digital processing of electron images — a survey of motivations and methods, in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh Int’l Congr. on Electron Microscopy Foundation, Leiden 1980) p.486

    Google Scholar 

  253. J.E. Mellema: Computer reconstruction of regular biological objects, in Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes, Topics Curr. Phys., Vol.13, (Springer, Berlin, Heidelberg 1980) p.89

    Google Scholar 

  254. W. Hoppe, R. Hegerl: Three-dimensional structure determination by electron microscopy (nonperiodic specimens), in Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes, Topics Curr. Phys., Vol.13, (Springer, Berlin, Heidelberg, 1980) p.127

    Google Scholar 

  255. J.N. Chapman: The investigation of magnetic domain structures in thin foils by electron microscopy. J. Phys. D 17, 623 (1984)

    ADS  Google Scholar 

  256. P.J. Grundy, R.S. Tebble: Lorentz electron microscopy. Adv. Phys. 17, 153 (1968)

    ADS  Google Scholar 

  257. R.H. Wade: Lorentz microscopy or electron phase microscopy of magnetic objects, in Advances in Optical and Electron Microscopy, Vol.5, ed. by R. Barer, V.E. Cosslett (Academic, London 1973) p.239

    Google Scholar 

  258. J.P. Jacubovics: Lorentz microscopy and application (TEM and SEM), in Electron Microscopy in Materials Science, Part IV, ed. by U. Valdrè, E. Ruedl (Commission of the European Communites, Brussels 1976) p.1303

    Google Scholar 

  259. H. Boersch, W. Raith, H. Weber: Die magnetische Ablenkung von Elektronenstrahlen in dünnen Fe-Schichten. Z. Phys. 161, 1 (1961)

    ADS  Google Scholar 

  260. K. Schaffernicht: Messung der Magnetisierungsverteilungen in dünnen Fe-Schichten durch die Ablenkung von Elektronen. Z. Angew. Phys. 15, 275 (1963)

    Google Scholar 

  261. D.H. Warrington, J.M. Rodgers, R.S. Tebble: The use of ferromagnetic domain structure to determine the thickness of iron foils in TEM. Philos. Mag. 7, 1783 (1962)

    ADS  Google Scholar 

  262. R.H. Wade: Electron diffraction from a magnetic phase grating. Phys. Status Solidi 19, 847 (1967)

    Google Scholar 

  263. M.J. Goringe, J.P. Jakubovics: Electron diffraction from periodic magnetic fields. Philos. Mag. 15, 393 (1967)

    ADS  Google Scholar 

  264. H. Boersch, H. Raith: Elektronenmikroskopische Abbildung Weißscher Bezirke in dünnen ferromagnetischen Schichten. Naturwissenschaften 46, 574 (1959)

    ADS  Google Scholar 

  265. H.W. Fuller, M.E. Hale: Domains in thin magnetic films observed by electron microscopy. J. Appl. Phys. 31, 1699 (1960)

    ADS  Google Scholar 

  266. J. Podbrdsky. High resolution in-focus Lorentz electron microscopy. J. Micr. 101, 231 (1974)

    Google Scholar 

  267. M.J. Bowman, V.H. Meyer: Magnetic phase contrast from thin ferromagnetic films in the TEM. J. Phys. E 3, 927 (1970)

    ADS  Google Scholar 

  268. L. Marton: Electron optical observation of magnetic fields. J. Appl. Phys. 19, 863 (1948)

    ADS  Google Scholar 

  269. L. Marton, S.H. Lachenbruch: Electron optical mapping of electromagnetic fields. J. Appl. Phys. 20, 1171 (1949)

    ADS  Google Scholar 

  270. L. Marton, J.A. Simpson, S.H. Lachenbruch: Electron optical shadow method of magnetic field mapping. J. Res. NBS 52, 97 (1954)

    MATH  Google Scholar 

  271. M. von Ardenne:Zur Sichtbarmachung von Störungen oder Inhomogenitäten magnetischer und elektrischer Felder mit der elektronenoptischen Schneiden-methode. Phys. Z. 45 312 (1945)

    Google Scholar 

  272. W. Rollwagen, Ch. Schwink: Die Empfindlichkeit einfacher elektronenoptischer Schlierenanordnungen. Optik 10, 525 (1953)

    Google Scholar 

  273. Ch. Schwink: Über neue quantitative Verfahren der elektronenoptischen Schattenmethode. Optik 12, 481 (1955)

    Google Scholar 

  274. Ch. Schwink, O.Schärpf: Electron-optic investigation of the magnetic stray field above Bloch walls in cylindric Ni crystals. Phys. Status Solidi 30, 637 (1968)

    Google Scholar 

  275. A.G. Cullis, D.M. Maher: High-resolution topographical imaging by direct transmission electron microscopy. Philos. Mag. 30, 447 (1974)

    ADS  Google Scholar 

  276. M.E. Hale, H.W. Fuller, H. Rubinstein: Magnetic domain observations by electron microscopy. J. Appl. Phys. 30, 789 (1959)

    ADS  Google Scholar 

  277. H.W. Fuller, M.E. Hale: Determination of magnetization distribution in thin films using electron microscopy. J. Appl. Phys. 31, 238 (1960)

    ADS  Google Scholar 

  278. H. Boersch, H. Harnisch, D. Wohlleben, K. Grohmann: Antiparallele Weißsche Bereiche als Biprisma für Elektroneninterferenzen. Z. Phys. 159, 397 (1960); 167, 72 (1962)

    ADS  Google Scholar 

  279. D. Wohlleben: Diffraction effects in Lorentz microscopy. J. Appl. Phys. 38, 3341 (1967)

    ADS  Google Scholar 

  280. L. Reimer, H. Kappert: Elektronen-Kleinwinkelstreuung und Bildkontrast in defokussierten Aufnahmen magnetischer Bereichsgrenzen. Z. Angew. Phys. 27, 165 (1969)

    Google Scholar 

  281. J.P. Guigay, R.H. Wade: Mainly on the Fresnel mode in Lorentz microscopy. Phys. Status Solidi 29, 799 (1968)

    Google Scholar 

  282. E. Fuchs: Magnetische Strukturen in dünnen ferromagnetischen Schichten, untersucht mit dem Elektronenmikroskop. Z. Angew. Phys. 14, 203 (1962)

    Google Scholar 

  283. R.H. Wade: The determination of domain wall thickness in ferromagnetic films by electron microscopy. Proc. Phys. Soc. 79, 1237 (1962);

    ADS  Google Scholar 

  284. R.H. Wade: Investigation of the geometrical-optical theory of magnetic structure imaging in the electron microscopy. J. Appl. Phys. 37, 366 (1966)

    ADS  Google Scholar 

  285. H. Gong, J.N. Chapman: On the use of divergent wall images in the Fresnel mode of Lorentz microscopy for the measurement of the widths of very narrow domain walls. J. Magn. Magn. Mat. 67, 4 (1987)

    ADS  Google Scholar 

  286. T. Suzuki, A. Hubert: Determination of ferromagnetic domain wall widths by means of high voltage Lorentz microscopy. Phys. Status Solidi 38, K5 (1970)

    Google Scholar 

  287. T. Suzuki, M. Wilkens: Lorentz-electron microscopy of ferromagnetic specimens at high voltages. Phys. Status Solidi A 3, 43 (1970)

    ADS  Google Scholar 

  288. D.S. Hothersall: The investigation of domain walls in thin sections of iron by the electron interference method. Philos. Mag. 20, 89 (1969)

    ADS  Google Scholar 

  289. D.C. Hothersall: Electron images of domain walls in Co foils. Philos. Mag. 24, 241 (1971)

    ADS  Google Scholar 

  290. D.C. Hothersall: Electron images of two-dimensional domain walls. Phys. Status Solidi B 51, 529 (1972)

    ADS  Google Scholar 

  291. P. Schwellinger: The analysis of magnetic domain wall structures in the transition region of Néel and Bloch walls by Lorentz microscopy. Phys. Status Solidi A 36, 335 (1976)

    ADS  Google Scholar 

  292. J.N. Chapman, R.P. Ferrier, N. Toms: Strong stripe domains. Philos. Mag. 28, 561–581 (1973)

    ADS  Google Scholar 

  293. C.G. Harrison, K.D. Leaver: A second domain wall parameter measurable by Lorentz microscopy. Phys. Status Solidi A 12, 413 (1972)

    ADS  Google Scholar 

  294. R. Ajeian, H. Kappert, L. Reimer: Fraunhofer-Beugung an Lorentz-mikros-kopischen Aufnahmen des Magnetisierungs-Ripple. Z. Angew. Phys. 30, 80 (1970)

    Google Scholar 

  295. H.G. Badde, H. Kappert, L. Reimer: Wellenoptische Theorie des Ripple-Kon-trastes in der Lorentzmikroskopie. Z. Angew. Phys. 30, 83 (1970)

    Google Scholar 

  296. T. Suzuki: Investigations into ripple wavelength in evaporated thin films by Lorentz microscopy. Phys. Status Solidi 37, 101 (1970)

    Google Scholar 

  297. M. Blackman, A.E. Curzon, A.T. Pawlowicz: Use of an electron beam for detecting superconducting domains of lead in its intermediate state. Nature 200, 157 (1963)

    ADS  Google Scholar 

  298. G. Pozzi, U. Valdrè: Study of electron shadow patterns of the intermediate state of superconducting lead. Philos. Mag. 23, 745 (1971)

    ADS  Google Scholar 

  299. E. Fuchs: Abbildung Weißscher Bezirke in dünnen ferromagnetischen Schichten mit dem elektromagnetischen Elektronenmikroskop. Naturwissenschaften 47, 392 (1960)

    ADS  Google Scholar 

  300. L. Reimen Die Struktur der magnetischen Bereichsgrenzen in grobkristallinen Eisenschichten. Z. Angew. Phys. 18, 373 (1965)

    Google Scholar 

  301. W. Pitsch: Elektronenmikroskopische Beobachtung magnetischer Elementarbereiche in gealterten Eisen-Stickstoff-Legierungen. Arch. Eisenhüttenwesen 36, 737 (1965)

    Google Scholar 

  302. W. Liesk: Magnetische Strukturen in dünnen Schichten, beobachtet im Elektronenmikroskop. Z. Angew. Phys. 14, 200 (1962)

    Google Scholar 

  303. K. Tsuno, T. Taoka: Magnetic-field-free objective lens around a specimen for observing fine structure of ferromagnetic materials in a TEM. Jpn. J. Appl. Phys. 22, 1041 (1983)

    ADS  Google Scholar 

  304. J.P. Jacubovics: The effect of magnetic domain structure on Bragg reflection in TEM. Philos. Mag. 10, 277 (1964)

    ADS  Google Scholar 

  305. J.N. Chapman, E.H. Darlington: The application of STEM to the study of thin ferromagnetic films. J. Phys. E 7, 181 (1974)

    ADS  Google Scholar 

  306. J.N. Chapman, E.M. Waddell, P.E. Batson, R.P. Ferrier: The Fresnel-mode of Lorentz microscopy using a STEM. Ultramicroscopy 4, 283 (1979)

    Google Scholar 

  307. J.N. Chapman, P.E. Batson, E.M. Waddell, R.P. Ferrier: The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicoscopy 3, 203 (1978)

    Google Scholar 

  308. A. Olivei: Holography and interferometry in electron Lorentz microscopy Optik 30, 27 (1969)

    Google Scholar 

  309. A. Olivei: Magnetic inhomogeneties and holographic methods in electron Lorentz microscopy. Optik 33, 93 (1971)

    Google Scholar 

  310. M.S. Cohen, K.J. Harte: Domain wall profiles in magnetic films. J. Appl. Phys. 40, 3597 (1969)

    ADS  Google Scholar 

  311. V.I. Petrov, G.V. Spivak, O.P. Pavluchenko: Transmission electron microscope observation of domain pattern of speedily remagnetized thin ferromagnetic films, in Electron Microscopy 1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.615

    Google Scholar 

  312. V.I. Petrov, G.V. Spivak: On a stroboscopic Lorentz microscope. Z. Angew. Phys. 27, 188 (1969)

    Google Scholar 

  313. O. Bostanjoglo, Th. Rosin: Resonance oscillations of magnetic domain walls and Bloch lines observed by stroboscopic electron microscopy. Phys. Status Solidi A 57, 561 (1980)

    ADS  Google Scholar 

  314. O. Bostanjoglo, Th. Rosin. Resonance oscillations of Bloch lines in permalloy films. Phys. Status Solidi A 66, K5 (1981)

    ADS  Google Scholar 

  315. G.S. Plows, W.C. Nixon: Stroboscopic scanning electron microscopy. J. Phys. E 1, 595 (1968)

    ADS  Google Scholar 

  316. E. Menzel, E. Kubalek: Electron beam chopping system in the SEM, in Scanning Electron Microscopy 1979/I, ed. by O. Johari (IIT Research Inst. Chicago 1979) p.305

    Google Scholar 

  317. G.V. Saparin, G.V. Spivak: Application of stroboscopic cathodoluminescence microscopy, in Scanning Electron Microscopy 1979/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1979) p.305

    Google Scholar 

  318. G.V. Spivak, G.V. Saparin, L.F. Komolova: The physical fundamentals of the resolution enhancement in the SEM for CL and EBIC modes, in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst. Chicago 1977) p.191

    Google Scholar 

  319. H. Mahl, W. Weitsch: Nachweis von fluktuierenden Ladungen in isolierenden Filmen bei Elektronenbestrahlung. Optik 17, 107 (1960)

    Google Scholar 

  320. H. Mahl, W. Weitsch: Versuche zur Beseitigung von Aufladungen auf Durchstrahlungsobjekten durch zusätzliche Bestrahlung mit langsamen Elektronen. Z. Naturforsch. A 17, 146 (1962)

    ADS  Google Scholar 

  321. G.H. Curtis, R.P. Ferrier: The electric charging of electron microscopical specimens. J. Phys. D 2, 1035 (1969)

    ADS  Google Scholar 

  322. D.H. Warrington: A simple charge neutralizer for the electron microscope. J. Sci. Instrum. 43, 77 (1966)

    ADS  Google Scholar 

  323. L. Reimer: Aufladung kleiner Teilchen im Elektronenmikroskop. Z. Naturforsch. A 20, 151 (1965)

    ADS  Google Scholar 

  324. V. Drahos, J. Komrska, M. Lenc: Shadow images of charged spherical particles, in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.157

    Google Scholar 

  325. C. Jönsson, H. Hoffmann: Der Einfluß von Aufladungen auf die Stromdichteverteilung im Elektronenschattenbild dünner Folien. Optik 21, 432 (1964)

    Google Scholar 

  326. H. Pfisterer, E. Fuchs, W. Liesk: Elektronenmikroskopische Abbildung ferro-elektrischer Domänen in dünnen BaTiO3-Einkristallschichten. Naturwissenschaften 49, 178 (1962)

    ADS  Google Scholar 

  327. H. Blank, S. Amelinckx: Direct observation of ferroelectric domains in BaTiO3 by means of the electron microscope. Appl. Phys. Lett. 2, 140 (1963)

    ADS  Google Scholar 

  328. E. Fucks, W. Liesk: Elektronenmikroskopische Beobachtung von Domänenkonfigurationen und von Umpolarisationsvorgängen in dünnen BaTiO3-Einkristallen. J. Phys. Chem. Solidi 25, 845 (1964)

    ADS  Google Scholar 

  329. R. Ayroles, J. Torres, J. Aubree, C. Roucau, M. Tanaka: Electron-microscope Observation of structure domains in the ferroelastic phase of lead phosphate. Pb3(PO4)2. Appl. Phys. Lett. 34, 4 (1979)

    ADS  Google Scholar 

  330. C. Manolikas, S. Amelinckx: Phase transitions in ferroelastic lead orthovana-date as observed by means of electron microscopy and electron diffraction. Phys. Status Solidi A 60, 607 (1980)

    ADS  Google Scholar 

  331. M. Tanaka, G. Honjo: Electron optical studies of BaTiO3 single crystal films. J. Phys. Soc. Jpn. 19, 954 (1964)

    ADS  Google Scholar 

  332. J.M. Titchmarsh, G.R. Booker: The imaging of electric field regions associated with p-n junctions, in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.540

    Google Scholar 

  333. P.G. Merli, G.F. Missiroli, G. Pozzi: TEM observations of p-n junctions. Phys. Status Solidi A 30, 699 (1975)

    ADS  Google Scholar 

  334. C. Capiluppi, P.G. Merli, G. Pozzi, I. Vecchi: Out-of-focus observations of p-n junctions by high-voltage microscopy. Phys. Status Solidi A 35, 165 (1976)

    ADS  Google Scholar 

  335. S. Frabboni, G. Matencci, G. Pozzi: Electron holographic observation of the electrostatic field associated with thin reverse-biased p-n junctions. Phys. Rev. Lett. 55, 2196 (1985)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1989). Scattering and Phase Contrast for Amorphous Specimens. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21579-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21579-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50499-3

  • Online ISBN: 978-3-662-21579-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics