Skip to main content

Specimen Damage by Electron Irradiation

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

Abstract

Most of the energy dissipated in energy losses is converted into heat. The rise in specimen temperature can be decreased by keeping the illuminated area small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.G. Stojanowa, E.M. Belawzewa: Experimentelle Untersuchung der thermischen Einwirkung des Elektronenstrahls auf das Objekt im Elektronenmikroskop, in Vierter Internationaler Kongreß für Elektronenmikroskopie Berlin1958, Vol.1, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen 1960) p.100

    Google Scholar 

  2. M. Watanabe, T. Someya, Y. Nagahama: Temperature rise of specimen due to electron irradiation, in Electron Microscopy 1962, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p.A-8

    Google Scholar 

  3. D.D. Thornburg, C.M. Wayman: Specimen temperature increases during transmission electron microscopy. Phys. Status Solidi A 15, 449 (1973)

    Article  ADS  Google Scholar 

  4. L. Reimer, R. Christenhusz, J. Ficker. Messung der Objekttemperatur im Elektronenmikroskop mittels Elektronenbeugung. Naturwissenshaften 47, 464 (1960)

    Article  ADS  Google Scholar 

  5. M. Fukamachi, T. Kikuchi: Application of the critical voltage effect to the measurement of temperature increase of metal foils during the observation with HVEM. Jpn. J. Appl. Phys. 14, 587 (1975)

    Article  ADS  Google Scholar 

  6. A. Winkelmann: Messung der Temperaturerhöhung der Objekte bei Elektronen-Interferenzen. Z. Angew. Phys. 8, 218 (1956)

    Google Scholar 

  7. E. Gütter, H. Mahl: Einfluß einer periodischen Objektbeleuchtung auf die elektronenmikroskopische Abbildung. Optik 17, 233 (1960)

    Google Scholar 

  8. G. Honjo, N. Kitamura, K. Shimaoka, K. Mihama: Low temperature specimen method for electron diffraction and electron microscopy. J. Phys. Soc. Jpn. 11, 527 (1956)

    Article  ADS  Google Scholar 

  9. L. Reimer, R. Christenhusz: Reversible Temperaturindikatoren in Form von Aufdampfschichten zur Ermittlung der Objekttemperatur im Elektronenmikroskop. Naturwissenshaften 48, 619 (1961)

    Article  ADS  Google Scholar 

  10. L. Reimer, R. Christenhusz: Experimenteller Beitrag zur Objekterwärmung im Elektronenmikroskop. Z. Angew. Phys. 14, 601 (1962)

    Google Scholar 

  11. S. Yamaguchi: Über die Temperatur-Erhöhung der Objekte im Elektronenstrahl. Z. Angew. Phys. 8, 221 (1956)

    Google Scholar 

  12. S. Leisegang: Zur Erwärmung elektronenmikroskopischer Objekte bei kleinem Strahlquerschnitt, in Proc. 3rd Intr’l Conf. Electron Microscopy, London 1954, ed. by R. Ross (Royal Microscopical Society, London 1956) p.176

    Google Scholar 

  13. B. Gale, K.F. Hale: Heating of metallic foils in an electron microscope. Br. J. Appl. Phys. 12, 115 (1961)

    Article  ADS  Google Scholar 

  14. K. Kanaya: The temperature distribution along a rod-specimen in the electron microscope. J. Electr. Micr. Jpn. 4, 1 (1956)

    Article  Google Scholar 

  15. P. Balk, J. Ross Colvin: Note on an indirect measurement of object temperature in electron microscopy. Kolloid. Z. 176, 141 (1961)

    Article  Google Scholar 

  16. L. Reimer: Zur Zersetzung anorganischer Kristalle im Elektronenmikroskop. Z. Naturforsch. A 14, 759 (1959)

    ADS  Google Scholar 

  17. L. Reimen: Ein experimenteller Beitrag zur Thermokraft dünner Aufdampf-schichten. Z. Naturforsch. A 12, 525 (1957)

    ADS  Google Scholar 

  18. D. Thornburg, C.M. Wayman: Thermoelectric power of vacuum evaporated Au-Ni thin film thermocouples. J. Appl. Phys. 40, 3007 (1969)

    Article  ADS  Google Scholar 

  19. G.R. Piercy, R.W. Gilbert, L.M. Howe: A liquid helium cooled finger for the Siemens electron microscope. J. Sci.Instrum. 40, 487 (1963)

    Article  ADS  Google Scholar 

  20. G.M. Parkinson, W. Jones, J.M. Thomas: Electron microscopy at liquid helium temperatures, in Electron Microscopy at Molecular Dimensions, ed. by W. Baumeister, W. Vogell (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  21. S. Kritzinger, E. Ronander: Local beam heating in metallic electron microscope specimens. J. Micr. 102, 117 (1974)

    Article  Google Scholar 

  22. K. Kanaya: The temperature distribution of specimens on thin substrates supported on a circular opening in the electron microscope. J. Elect. Micr. Jpn. 3, 1 (1955)

    Google Scholar 

  23. L. Reimer, R. Christenhusz: Determination of specimen temperature. Lab. Invest. 14, 1158 (1965)

    Google Scholar 

  24. R. Christenhusz, L. Reimer: Schichtdickenabhängigkeit der Wärmerzeugung durch Elektronenbestrahlung im Energiebereich zwischen 9 und 100 keV. Z. Angew. Phys. 23, 397 (1967)

    Google Scholar 

  25. S. Leisegang: Elektronenmikroskope, in Handbuch der Physik, Vol.33 (Springer, Berlin, Göttingen 1956) p.396

    Google Scholar 

  26. V.E. Cosslett, R.N. Thomas: Multiple scattering of 5–30 keV electrons in evaporated metal films. II. Range-energy relations. Br. J. Appl. Phys. 15, 1283 (1964)

    Article  ADS  Google Scholar 

  27. L. Reimen: Monte-Carlo-Rechnungen zur Elektronendiffusion. Optik 27, 86 (1968)

    Google Scholar 

  28. B. von Borries, W. Glaser. Über die Temperaturerhöhung der Objekte im Elektronenmikroskop. Kolloid. Z. 106, 123 (1944)

    Article  Google Scholar 

  29. J. Ling: A calculation of the temperature distribution in electron microscope specimens. Br. J. Appl. Phys. 18, 991 (1967)

    Article  ADS  Google Scholar 

  30. A. Brockes: Zur Objekterwärmung im Elektronenmikroskop. Kolloid. Z. 158, 1 (1958)

    Article  Google Scholar 

  31. R. Christenhusz, L. Reimer: Wärmeleitfähigkeit elektronenmikroskopischer Trägerfolien. Naturwissenschaften 55, 439 (1968)

    Article  ADS  Google Scholar 

  32. E. Knapek, J. Dubochet: Beam damage to organic material is considerably reduced in cryo-electron microscopy. J. Mol. Biol. 141, 147 (1980)

    Article  Google Scholar 

  33. I. Dietrich, F. Fox, H.G. Heide, E. Knapek, R. Weyl: Radiation damage due to knock-on processes on carbon foils cooled to liquid helium temperature. Ultramicroscopy 3, 185 (1978)

    Article  Google Scholar 

  34. Y. Talmon, E.L. Talmon: Temperature rise and sublimation of water from thin frozen hydrated specimens in cold stage microscopy, in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.265

    Google Scholar 

  35. Y. Talmon, E.L. Thomas: Beam heating of a moderately thick cold stage specimen in the SEM/STEM. J. Micr. 111, 151 (1977)

    Article  Google Scholar 

  36. L.G. Pittaway: The temperature distributions in the foil and semi-infinite targets bombarded by an electron beam. Br. J. Appl. Phys. 15, 967 (1964)

    Article  ADS  Google Scholar 

  37. H. Kohl, H. Rose, H. Schnabl: Dose-rate effect at low temperatures in FBEM and STEM due to object-heating. Optik 58, 11 (1981)

    Google Scholar 

  38. L. Reimen: Irradiation changes in organic and inorganic objects. Lab. Invest. 14, 1082 (1965);

    Google Scholar 

  39. L. Reimen: Review of the radiation damage problem of organic specimens in electron microscopy, in Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. by B.M. Siegel, D.R. Beaman (Wiley, New York 1975) p.205

    Google Scholar 

  40. K. Stenn, G.F. Bahr: Specimen damage caused by the beam of the transmission electron microscope, a correlative consideration. J. Ultrastruct. Res. 31, 526 (1970)

    Article  Google Scholar 

  41. D.T. Grubb, A. Keller: Beam-induced radiation damage in polymers and its effect on the image formed in the electron microscope, in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.554

    Google Scholar 

  42. R.M. Glaeser: Radiation damage and biological electron microscopy, in Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. by B.M. Siegel, D.R. Beaman (Wiley, New York 1975) p.205

    Google Scholar 

  43. E. Zeitler (ed.). Cryomicroscopy and Radiation Damage, (North-Holland, Amsterdam 1982), published also in Ultramicroscopy 10, 1–178 (1982);

    Google Scholar 

  44. E. Zeitler (ed.). Further conference report in Ultramicroscopy 14, 163–315 (1984)

    Google Scholar 

  45. M.S. Isaacson: Inelastic scattering and beam damage of biological molecules, in Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. by B.M. Siegel, D.R. Beaman (Wiley, New York 1975) p. 147

    Google Scholar 

  46. D.F. Parsons: Radiation damage in biological materials, in Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. by B.M. Siegel, D.R. Beaman (Wiley, New York 1975) p. 259

    Google Scholar 

  47. M.S. Isaacson: Specimen damage in the electron microscope, in Principles and Techniques of Electron Microscopy, Vol.7, ed. by M.A. Hayat (Van Nostrand-Reinhold, New York 1977) p.1

    Google Scholar 

  48. R.M. Glaeser, K.A. Taylor: Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. J. Micr. 112, 127 (1978)

    Article  Google Scholar 

  49. V.E. Cosslett: Radiation damage in the high resolution electron microscopy of biological materials: a review. J. Micr. 113, 113 (1978)

    Article  Google Scholar 

  50. W. Baumeister, W. Vogell (eds.): Electron Microscopy at Molecular Dimensions (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  51. Z.M. Bacq, P. Alexander: Fundamentals of Radiobiology (Pergamon, Oxford 1961)

    Google Scholar 

  52. R.D. Bolt, J.G. Carroll (eds.): Radiation Effects on Organic Materials (Academic, New York 1963)

    Google Scholar 

  53. A. Charlesby: Atomic Radiation and Polymers (Pergamon, Oxford 1960)

    Google Scholar 

  54. A.J. Swallow: Radiation Chemistry of Organic Compounds (Pergamon, Oxford 1960)

    Google Scholar 

  55. H. Dertinger, H. Jung: Molekulare Strahlenbiologie (Springer, Berlin, Heidelberg 1968)

    Google Scholar 

  56. H.C. Box: Cryoprotection of irradiated specimens, in Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. by B.M. Siegel, D.R. Beaman (Wiley, New York 1975) p.279

    Google Scholar 

  57. J. Hüttermann: Solid-state radiation chemistry of DNA and its constituents. Ultramicroscopy 10, 25 (1982)

    Article  Google Scholar 

  58. R. Spehr, H. Schnabl: Zur Deutung der unterschiedlichen Strahlen-Empfindlichkeit organischer Moleküle. Z. Naturforsch. A 28, 1729 (1973)

    ADS  Google Scholar 

  59. H. Schnabl: Does removal of hydrogen change the electron energy-loss spectra of DNA bases? Ultramicroscopy 5, 147 (1980)

    Article  Google Scholar 

  60. G.M. Parkinson, M.J. Goringe, W. Jones, W. Rees, J.M. Thomas, J.O. Williams: Electron induced damage in organic molecular crystals: Some observations and theoretical considerations, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.315

    Google Scholar 

  61. T. Gejvall, G. Löfroth: Radiation induced degradation of some crystalline amino acids. Radiat. Eff. 25, 187 (1975)

    Article  Google Scholar 

  62. J. Vesely: Electron beam damage of amorphous synthetic polymers. Ultramicroscopy 14, 279 (1984)

    Article  MathSciNet  Google Scholar 

  63. L. Reimen: Methods of detection of radiation damage in electron microscopy. Ultramicroscopy 14, 291 (1984)

    Article  Google Scholar 

  64. L. Reimen: Quantitative Untersuchung zu Massenabnahme von Einbettungsmitteln (Methacrylat, Vestopal und Araldit) unter Elektronenbeschuß. Z. Naturforsch. B 14, 566 (1959)

    Google Scholar 

  65. W. Lippert: Über thermisch bedingte Veränderungen an dünnen Folien im Elektronenmikroskop. Z. Naturforsch. A 15, 612 (1960)

    ADS  Google Scholar 

  66. G.F. Bahr, F.B. Johnson, E. Zeitlen The elementary composition of organic objects after electron irradiation. Lab. Invest. 14, 1115 (1965)

    Google Scholar 

  67. K. Ramamurti, A.V. Crewe, M.S. Isaacson: Low temperature mass loss of thin films of 1-phenylalanine and 1-tryptophan upon electron irradiation. Ultramicroscopy 1, 156 (1975)

    Article  Google Scholar 

  68. R. Freeman, K.R. Leonard: Comparative mass measurement of biological macromolecules by scanning transmission electron microscopy. J. Micr. 122, 175 (1981)

    Article  Google Scholar 

  69. W. Lippert Über Massendickeveränderungen bei Kunststoffen im Elektronenmikroskop. Optik 19, 145 (1962)

    Google Scholar 

  70. G. Siegel: Der Einfluß tiefer Temperaturen auf die Strahlenschädigung von organischen Kristallen durch 100 keV-Elektronen. Z. Naturforsch. A 27, 325 (1972)

    ADS  Google Scholar 

  71. A. Brockes. Über Veränderungen des Aufbaus organischer Folien durch Elektronen-Bestrahlung. Z. Phys. 149, 353 (1957)

    Article  ADS  Google Scholar 

  72. A. Cosslett: The effect of the electron beam on thin sections, in Proc. Europ. Reg. Conf. on Electron Microscopy, Vol.2, ed. by A.L. Houwink, B.J. Spit (Nederlandse Vereniging voor Electronenmicroscopie, Delft 1960) p.678

    Google Scholar 

  73. L. Reimen: Interferenzfarben von Methacrylatschnitten und ihre Veränderung unter Elektronenbeschuß. Photogr. Wiss. 9, 25 (1960)

    Google Scholar 

  74. L. Reimer: Veränderungen organischer Kristalle unter Beschuß mit 60 keV Elektronen im Elektronenmikroskop. Z. Naturforsch. A 15, 405 (1960)

    ADS  Google Scholar 

  75. K. Kobayashi, K. Sakaoku: Irradiation changes in organic polymers at various accelerating voltages. Lab. Invest. 14, 1097 (1965)

    Google Scholar 

  76. H. Orth, E.W. Fischer: Änderungen der Gitterstruktur hochpolymerer Einkristalle durch Bestrahlung im Elektronenmikroskop. Makromol. Chem. 88, 188 (1965)

    Article  Google Scholar 

  77. L. Reimer, J. Spruth: Information about radiation damage of organic molecules by electron diffraction. J. Micr. Spectr. Electron. 3, 579 (1978)

    Google Scholar 

  78. W.R.K. Clark, J.N. Chapman, A.M. MacLeod, R.P. Ferrien: Radiation damage mechanism in copper phthalocyanine and its chlorinated derivatives. Ultramicroscopy 5, 195 (1980)

    Article  Google Scholar 

  79. N. Uyeda, T. Kobayashi, E. Suito, Y. Harada, M. Watanabe: Molecular image resolution in electron microscopy. J. Appl. Phys. 43, 5181 (1972)

    Article  ADS  Google Scholar 

  80. T. Kobayashi, Y. Fujiyoshi, K. Ishizuka, N. Uyeda: Structure determination and atom identification on polyhalogenated molecule, in Electron Microscopy1980, Vol.4, ed. by P. Brederoo, J. Van Landuyt (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980) p. 158

    Google Scholar 

  81. Y. Murata: Studies of radiation damage mechanisms by optical diffraction analysis and high resolution image, in Electron Microscopy1980, Vol.3, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1980) p.49

    Google Scholar 

  82. L. Reimer, J. Spruth: Interpretation of the fading of diffraction patterns from organic substances irradiated with 100 keV electrons at 10–300 K. Ultramicroscopy 10, 199 (1982)

    Article  Google Scholar 

  83. J.R. Fryer: Radiation damage in organic crystalline films. Ultramicroscopy 14, 277 (1984)

    Google Scholar 

  84. D.J. Smith, J.R. Fryer, R.A. Camps: Radiation damage and structure studies: Halogenated phthalocyanines. Ultramicroscopy 19, 279 (1986)

    Article  Google Scholar 

  85. D. Van Dyck, M. Wilkens: Aspects of electron diffraction from radiation-damaged crystals. Ultramicroscopy 14, 237 (1984)

    Article  Google Scholar 

  86. R.M. Glaeser: Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36, 466 (1971)

    Article  Google Scholar 

  87. D.T. Grubb, G.W. Groves: Rate of damage of polymer crystals in the electron microscope: dependence on temperature and beam voltage. Philos. Mag. 24, 815 (1971)

    Article  ADS  Google Scholar 

  88. L.E. Thomas, C.J. Humphreys, W.R. Duff, D.T. Grubb: Radiation damage of polymers in the million volt electron microscope. Radiat. Eff. 3, 89 (1970)

    Article  ADS  Google Scholar 

  89. A.V. Crewe, M. Isaacson, D. Johnson: Electron beam damage in biological molecules, in Proc. 28th Annual Meeting of EMSA (Claitor’s Publ. Div., Baton Rouge, LO 1970) p.264

    Google Scholar 

  90. L. Reimer. Veränderungen organischer Farbstoffe im Elektronenmikroskop. Z. Naturforsch. B 16, 166 (1961)

    Google Scholar 

  91. N. Uyeda, T. Kobayashi, M. Ohara, M. Watanabe, T. Taoka, Y. Harada: Reduced radiation damage of halogenated copper-phthalocyanine, in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.566

    Google Scholar 

  92. W. Baumeister, U.P. Fringeli, M. Hahn, F. Kopp, J. Seredynski: Radiation damage in tripalmitin layers studied by means of infrared spectroscopy and electron microscopy. Biophys. J. 16, 791 (1976)

    Article  Google Scholar 

  93. W. Baumeister, J. Seredynski: Radiation damage to proteins: changes on the primary and secondary structure level, in Electron Microscopy 1980 , Vol.3, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1980) p.40

    Google Scholar 

  94. W. Baumeister, M. Hahn, J. Seredynski, L.M. Herbertz: Radiation damage of proteins in the solid state: changes of amino acid composition in catalase. Ultramicroscopy 1, 377 (1976)

    Article  Google Scholar 

  95. M. Isaacson: Electron beam induced damage of organic solids: implications for analytical electron microscopy. Ultramicroscopy 4, 193 (1979)

    Article  Google Scholar 

  96. R.F. Egerton: Chemical measurements of radiation damage in organic samples at and below room temperature. Ultramicroscopy 5, 521 (1980)

    Google Scholar 

  97. R.F. Egerton: Organic mass loss at 100 K and 300 K. J. Micr. 126, 95 (1982)

    Article  Google Scholar 

  98. M. Misra, R.F. Egerton: Assessment of electron irradiation damage to biomo-lecules by electron diffraction and EELS. Ultramicroscopy 15, 337 (1984)

    Article  Google Scholar 

  99. H. Shuman, A.V. Somlyo, P. Somlyo: Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicroscopy 1, 317 (1976)

    Article  Google Scholar 

  100. T.A. Hall, B.L. Gupta: Beam-induced loss of organic mass under electronmi-croscope conditions. J. Micr. 100, 177 (1974)

    Article  Google Scholar 

  101. P. Bernsen, L. Reimer, P.F. Schmidt: Investigation of electron irradiation damage of evaporated organic films by laser microprobe mass analysis. Ultramicroscopy 7, 197 (1981)

    Article  Google Scholar 

  102. S.H. Faraj, S.M. Salih: Spectroscopy of electron irradiated polymers in electron microscope. Rad. Eff. 55, 149 (1981)

    Article  Google Scholar 

  103. P.K. Haasma, M. Parikh: A tunneling spectroscope study of molecular degradation due to electron irradiation. Science 188, 1304 (1975)

    Article  ADS  Google Scholar 

  104. T. Wolfram (ed.): Inelastic Electron Tunneling Spectroscopy, Springer Ser. Solid-State Sci., Vol.4 (Springer, Berlin, Heidelberg 1978)

    Google Scholar 

  105. M.J. Richardson, K. Thomas: Aspects of HVEM of polymers, in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.562

    Google Scholar 

  106. S.M. Salih, V.E. Cosslett: Some factors influencing radiation damage in organic substances, in Electron Microscopy 1974, Vol.2 ed. J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.670

    Google Scholar 

  107. V.E. Cosslett, G.L. Jones, R.A. Camps: Image viewing and recording in high voltage electron microscopy, in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p. 147

    Google Scholar 

  108. M.V. King, D.F. Parsons: Design features of a photographic film optimized for the high-voltage electron microscope. Ultramicroscopy 2, 371 (1977)

    Article  Google Scholar 

  109. M. Fotino: Improved response of photographic emulsions for electron micrographs at higher voltages, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p. 104

    Google Scholar 

  110. M.V. King, D.V. Parsons: Recording of electron-diffraction patterns of radiation-sensitive materials in the high-voltage electron microscope with luminescent radiographic screens. J. Appl. Cryst. 10, 62 (1977)

    Article  Google Scholar 

  111. J. Dubochet Carbon loss during irradiation of T4 bacteriophages and E.coli bacteria in electron microscopes. J. Ultrastruct. Res. 52, 276 (1975)

    Article  Google Scholar 

  112. K.H. Downing: Temperature dependence of the critical electron exposure for hydrocarbon monolayers. Ultramicroscopy 11, 229 (1983)

    Article  Google Scholar 

  113. L. Zuppiroli, N. Housseau, L. Fooro, J.P. Guillot, J. Pelissien: Fading of the Bragg spots in irradiated organic conductors: temperature and composition effects. Ultramicroscopy 19, 325 (1986)

    Article  Google Scholar 

  114. E. Knapek: Properties of organic specimens and their supports at 4 K under irradiation in an electron microscope. Ultramicroscopy 10, 71 (1982)

    Article  Google Scholar 

  115. D.F. Parsons, V.R. Matricardi, R.C. Moretz, J.N. Turner: Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys. 15, 161 (1974)

    Google Scholar 

  116. H.G. Heide, S. Grund: Eine Tiefkühlkette zum Überführen von wasserhaltigen biologischen Objekten ins Elektronenmikroskop. J. Ultrastruct. Res. 48, 259 (1974)

    Article  Google Scholar 

  117. K.A. Taylor, R.M. Glaesen Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55, 448 (1976)

    Article  Google Scholar 

  118. T.E. Hutchinson, D.E. Johnson, A.P. Mackenzie: Instrumentation for direct observation of frozen hydrated specimens in the electron microscope. Ultramicroscopy 3, 315 (1978)

    Article  Google Scholar 

  119. J. Lepault, J. Dubochet: Beam damage and frozen-hydrated specimens, in Electron Microscopy 1986, Vol.1, ed. by T. Imura et al. (Jpn. Soc. Electron Microscopy, Tokyo 1986) p.25

    Google Scholar 

  120. Y. Talmon: Radiation damage to organic inclusions in ice. Ultramicroscopy 14, 305 (1984)

    Article  Google Scholar 

  121. S.M. Salih, V.E. Cosslett: Reduction in electron irradiation damage to organic compounds by conducting coatings. Philos. Mag. 30, 225 (1974)

    Article  ADS  Google Scholar 

  122. J.R. Fryer, F. Holland: The reduction of radiation damage in the electron microscope. Ultramicroscopy 11, 67 (1983)

    Article  Google Scholar 

  123. A. Rose: Television pickup tubes and the problem of noise. Adv. Electron. 1, 131 (1948)

    Google Scholar 

  124. R.C. Williams, H.W. Fischer: Electron microscopy of tobacco mosaic virus under conditions of minimal beam exposure. J. Mol. Biol. 52, 121 (1970)

    Article  Google Scholar 

  125. M. Ohtsuki, E. Zeitlen: Minimal beam exposure with a field emission source. Ultramicroscopy 1, 163 (1975)

    Article  Google Scholar 

  126. K.H. Herrmann, J. Menadue, H.T. Pearce-Percy: The design of compact deflection coils and their application to a minimum exposure system, in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.342

    Google Scholar 

  127. Y. Fujiyoshi, T. Kobayashi, K. Ishizuka, N. Uyeda, Y. Ishida, Y. Harada: A new method for optimal-resolution electron microscopy of radiation-sensitive specimens. Ultramicroscopy 5, 459 (1980)

    Google Scholar 

  128. I.A.M. Kuo, R.M. Glaesen: Development of methodology for low exposure, high resolution electron microscopy of biological specimens. Ultramicroscopy 1, 53 (1975)

    Article  Google Scholar 

  129. S.B. Hayward, R.M. Glaeser: Radiation damage of purple membrane at low temperature. Ultramicroscopy 4, 201 (1979)

    Article  Google Scholar 

  130. W. Chiu, R.M. Glaeser: Evaluation of photographic emulsions for low-exposure imaging, in Electron Microscopy at Molecular Dimensions, ed. by W. Baumeister, W. Vogell (Springer, Berlin, Heidelberg 1980) p. 194

    Chapter  Google Scholar 

  131. M. Kessel, J. Frank, W. Goldfarb: Low-dose microscopy of individual biological macromolecules, in Electron Microscopy at Molecular Dimensions, ed. by W. Baumeister, W. Vogell (Springer, Berlin, Heidelberg 1980) p. 154

    Chapter  Google Scholar 

  132. D.L. Dorset, F. Zemlin: Structural changes in electron irradiated paraffin crystals at >15 K and their relevances to lattice imaging experiments. Ultramicroscopy 17, 229 (1985)

    Article  Google Scholar 

  133. W. Kunath, K. Weiss, H. Sack-Kongehl, M. Kessel, E. Zeitlen: Time-resolved low-dose microscopy of glutamine synthease molecules. Ultramicroscopy 13, 241 (1984)

    Article  Google Scholar 

  134. D.W. Pashley, A.E.B. Presland: Ion damage to metal films inside an electron microscope. Philos. Mag. 6, 1003 (1961)

    Article  ADS  Google Scholar 

  135. M.N. Kabler, R.T. Williams: Vacancy-interstitial pairs production via electron-hole recombination in halide crystals. Phys. Rev. B 18, 1948 (1978)

    Article  ADS  Google Scholar 

  136. H. Strunk: High voltage transmission electron microscopy of the dislocation arrangement in plastically deformed NaCl crystals, in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1976) p.285

    Google Scholar 

  137. L.W. Hobbs, A.E. Hughes, D. Pooley: A study of interstitial clusters in irradiated alkali halides using direct electron microscopy. Proc. Roy. Soc. A 332, 167 (1973)

    Article  ADS  Google Scholar 

  138. L.W. Hobbs: Radiation effects in the electron microscopy of beam-sensitive inorganic solids, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.287

    Google Scholar 

  139. L.W. Hobbs: Radiation damage in electron microscopy of inorganic solids. Ultramicroscopy 3, 381 (1979)

    Article  Google Scholar 

  140. L.W. Hobbs: Radiation effects in analysis by TEM, in Quantitative Electron Microscopy, ed. by J.N. Chapman and A.J. Craven, (Scottish Univ. Sommer School in Physics, Edinburgh 1984) p.399

    Google Scholar 

  141. T. Evans: Decomposition of calcium fluroide and strontium fluoride in the electron microscope. Philos Mag. 8, 1235 (1963)

    Article  ADS  Google Scholar 

  142. L.E. Murn: Transmission electron microscope study of crystal defects in natural fluorite. Phys. Status Solidi A 22, 239 (1974)

    Article  ADS  Google Scholar 

  143. L.T. Chadderton, E. Johnson, T. Wohlenberg: Transmission electron microscopy of 100 keV electron damage in fluorite, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.199

    Google Scholar 

  144. J. Ho Ahn, D.R. Feacor, E.J. Essene: Cation-diffusion-induced characteristic beam damage in TEM images of micas. Ultramicroscopy 19, 375 (1986)

    Article  Google Scholar 

  145. R.D. Baeta, K.H.G. Ashbee: Electron irradiation damage in synthetic quartz, in Developments in Electron Microscopy and Analysis (Academic, London 1976) p.307

    Google Scholar 

  146. M.R. Pascui, J.L. Hutchinson, L.W. Hobbs: Rad. Effects 74, 219 (1983)

    Article  Google Scholar 

  147. D.E. McLennan: Study of ionic crystals under electron bombardment. Canad. J. Phys. 29, 122 (1951)

    Article  ADS  Google Scholar 

  148. O. Glemser, G. Butenuth: Veränderungen von KMnO4 im Elektronenstrahl im Vergleich zur thermischen Zersetzung. Optik 10, 42 (1953)

    Google Scholar 

  149. R.B. Fischer: Decompositions of inorganic specimens during observation in the electron microscope. J. Appl. Phys. 25, 894 (1954)

    Article  ADS  Google Scholar 

  150. J.H. Talbot: Decomposition of CaSO4.2H2O in the electron microscope. Br. J. Appl. Phys. 7, 110(1956)

    Article  ADS  Google Scholar 

  151. H.R. Oswald, W. Feitknecht: The oxidation of manganous hydroxide with molecular oxygen and the transformation of the products in the electron beam, in Electron Microscopy 1962, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p.H-9

    Google Scholar 

  152. J. Sawkill: Nucleation in silver azide, an investigation by electron microscopy. Proc. Roy. Soc. A 229, 135 (1955)

    Article  ADS  Google Scholar 

  153. E.D. Kater: Mechanism of decomposition of dolomite in the electron microscope. Ultramicroscopy 18, 241 (1985)

    Article  Google Scholar 

  154. D.J. Smith: Atomic resolution studies of surface structure and reactions, in Electron Microscopy 1986, Vol.11, ed. by T. Imura et al. (Jpn. Soc. Electron Microscopy, Tokyo 1986) p.929

    Google Scholar 

  155. M.J. Makin: Atom displacement radiation damage in electron microscopes, in Electron Microscopy 1978, Vol.3, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.330

    Google Scholar 

  156. M. Wilkens, K. Urban: Studies of radiation damage in crystalline materials by means of high voltage electron microscopy, in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p.332

    Google Scholar 

  157. K. Urban: Radiation damage in inorganic materials in the electron microscope, in Electron Microscopy1980, Vol.4, ed. by P. Brederoo, J. Van Lan-duyt (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p. 188

    Google Scholar 

  158. V.E. Cosslett Radiation damage by electrons, with special reference to the knock-on process, in Electron Microscopy and Analysis 1979, ed. by T. Mulvey (The Institute of Physics, London 1979) p. 177

    Google Scholar 

  159. M. Kiritani, T. Yoshiie, E. Ishida, S. Kojima, Y Satoh: In-situ electron radiation damage study of materials by HVEM, in Electron Microscopy 1986, Vol.11, ed. by T. Imura et al. (Jpn. Soc. Electron Microscopy, Tokyo 1986) p.1089

    Google Scholar 

  160. M. Wilkens: Radiation damage in crystalline materials, displacement cross sections and threshold energy surfaces, in High Voltage Electron Microscopy, ed. by T. Imura, H. Hashimoto (Jap. Soc. Electron Microscopy, Kyoto 1977) p.475

    Google Scholar 

  161. N. Yoshida, K. Urban: A study of the anisotropy of the displacement threshold energy on copper by means of a new high-resolution technique, in High Voltage Electron Microscopy, ed. by T. Imura, H. Hashimoto (Japanese Soc. Electron Microscopy, Kyoto 1977) p.493

    Google Scholar 

  162. W.E. King, K.L. Merkle, M. Meshii: Study of the anisotropy of the threshold energy in copper using in-situ electrical resistivity measurements in the HVEM, in Electron Microscopy 1980, Vol.4, ed. by P. Brederoo, J. Van Lan-duyt (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.212

    Google Scholar 

  163. M.O. Ruault: In situ study of radiation damage in thin foils of gold by high voltage electron microscopy. Philos. Mag. 36, 835 (1977)

    Article  ADS  Google Scholar 

  164. L.E. Thomas: The diffraction dependence of electron damage in a high voltage electron microscope. Rad. Eff. 5, 183 (1970)

    Article  ADS  Google Scholar 

  165. N. Yoshida, K. Urban: Electron diffraction channelling and its effect on displacement damage formation, in High Voltage Electron Microscopy, ed. by T. Imura, H. Hashimoto (Japanese Soc. Electron Microscopy, Kyoto 1977) p.485

    Google Scholar 

  166. J.J. Hren: Barriers of AEM: Contamination and etching, in Introduction to Analytical Electron Microscopy, ed. by J.J. Hren, J.I. Goldstein, D.C. Joy (Plenum, New York 1979) p.481

    Chapter  Google Scholar 

  167. L. Reimer, M. Wächter: Contribution to the contamination problem in transmission electron microscopy. Ultramicroscopy 3, 169 (1978)

    Article  Google Scholar 

  168. H.G. Heide: Zur Vorevakuierung von Photomaterial für Elektronenmikroskope. Z. Angew. Phys. 19, 348 (1965)

    Google Scholar 

  169. A.E. Ennos: The sources of electron-induced contamination in the electron microscope. Br. J. Appl. Phys. 5, 27 (1954)

    Article  ADS  Google Scholar 

  170. S. Leisegang: Über Versuche in einer stark gekühlten Objektpatrone, in Proc. 3rd Int’l Congr. on Electron Microscopy, ed. by R. Ross (Royal Microscopical Soc, London 1954) p. 184

    Google Scholar 

  171. H.G. Heide: Die Objektverschmutzung im Elektronenmikroskop und das Problem der Strahlenschädigung durch Kohlenstoffabbau. Z. Angew. Phys. 15, 116 (1963)

    Google Scholar 

  172. H.G. Heide: Die Objektraumkühlung im Elektronenmikroskop. Z. Angew. Phys. 17, 73 (1964)

    ADS  Google Scholar 

  173. J.T. Fourie: The controlling parameter in contamination of specimens in electron microscopes. Optik 44, 111 (1975)

    Google Scholar 

  174. K.H. Müllen Elektronen-Mikroschreiber mit geschwindigkeitsgesteuerter Strahlführung. Optik 33, 296 (1971)

    Google Scholar 

  175. G. Love, V.D. Scott, N.M.T. Dennis, L. Laurenson: Sources of contamination in electron optical equipment. Scanning 4, 32 (1981)

    Article  Google Scholar 

  176. M.T. Browne, P. Charalambous, R.E. Burge: Uses of contamination in STEM projection electron lithography, in Developments in Electron Microscopy and Analysis 1981, ed. by M.J. Goringe (The Institute of Physics, London 1981) p.47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1989). Specimen Damage by Electron Irradiation. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21579-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21579-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50499-3

  • Online ISBN: 978-3-662-21579-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics