Skip to main content

Optoelectronic Interconnections

  • Chapter
  • 361 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 732))

Abstract

The overall performance of data processing machines can be increased in two ways: (i) by using faster system clocks and (ii) by using parallel systems consisting of a multitude of interconnected processing elements. In the near future central aims of information technology are the development of teraflop (1012 floating point operations per second) supercomputers and switching networks for telecommunications with terabit bandwidth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.-J. Bachus, F. Auracher, O. Hildebrandt, B. Schwaderer: ‘An account of the German national joint programme Photonik/Optical Signal Processing’, Proc. European Conference on Optical Communication ECOC’92, Berlin 27.09.-01.10.92, VDE—Verlag, ISBN 3 —8007 — 1897 — 9.

    Google Scholar 

  2. L. A. Bergmann, W. H. Wu, R. Nixon, S. C. Esener, C. C. Guest, T. J. Drabik, M. Feldman, S. H. Lee: ‘Holographic optic interconnects for VLSI’, Opt. Eng. 25, 1109 (1986).

    Article  Google Scholar 

  3. K.-H. Brenner, F. Sauer: ‘Diffractive-reflective optical interconnects’, Appl. Opt. 27, 4251 (1988).

    Article  Google Scholar 

  4. E.R. Brown et. al.: ‘High speed resonant tunneling diodes’, Proc. SPIE 943, 2 (1988).

    Google Scholar 

  5. P. Chavel and J. Taboury: ‘On alleged and real advantages of optical interconnects: examples’, Annales de Physique, Colloque No. 11, supplement No. 1, vol. 16, pp. 153, (1991).

    Google Scholar 

  6. L.R. Coldren: ‘Vertical cavity laser diodes’, Proc. European Conference on Optical Communication ECOC’92, Berlin 27.09.–01.10.92, VDE-Verlag, ISBN 3 — 8007 — 1897 — 9.

    Google Scholar 

  7. H. Dammann, K. Görtler: ‘High efficiency in-line multiple imaging by means of multiple phase holograms’, Opt. Comm. 2, 312 (1971).

    Article  Google Scholar 

  8. R. Diehl: ‘Cooperative effort on optical interconnects in the German national program ‘photonics’ ’, Proc. European Conference on Optical Communication ECOC’92, Berlin 27.09.-01.10.92, VDE—Verlag, ISBN 3 — 8007 — 1897 — 9.

    Google Scholar 

  9. T. Feng: ‘A survey of interconnection networks’, IEEE Comp. Dec. 1981, p. 12–27.

    Google Scholar 

  10. D. Fey: ‘Modellierung, Simulation und Bewertung digitaler optischer Systeme’, Dissertation, Universität Erlangen—Nürnberg 1992.

    Google Scholar 

  11. J.W. Goodman, F.J. Leonberger, S.Y. Kung, R.A. Athale: ‘Optical Interconnections for VLSI systems’, Proc. IEEE 72, 850 (1984).

    Article  Google Scholar 

  12. Hase K. R.: ‘Ein Beitrag zur Realisierung rechnerinterner optischer Bussysteme mit planaren Lichtleitern’, Dissertation Universität Duisburg 1984.

    Google Scholar 

  13. H.J. Haumann et. al.: ‘Optoelectronic interconnection based on a light guiding plate with holographic coupling elements’, Opt. Eng. 30, 1620.

    Google Scholar 

  14. J. P. Herriau, A. Deboulbe, P. Maillot, P. Richin, L. d’Auria, J. P. Huignard: ‘High speed interconnections - analysis of an optical approach’, Int. Symp. Optics in Computing Toulouse, France 1989.

    Google Scholar 

  15. J. Jahns, A. Huang: ‘Planar integration of free space optical components’, Appl. Opt. 28 (1990).

    Google Scholar 

  16. R. K. Kostuk, J. W. Goodman, L. Hesselink: ‘Optical imaging applied to microelectronic chip to chip interconnections’, Appl. Opt. 24, 2851 (1985).

    Article  Google Scholar 

  17. U. Krackhardt, F. Sauer, W. Stork, N. Streibl: ‘Concept for an optical bus-type interconnection network’, Appl. Opt. 31, 1730 (1992).

    Article  Google Scholar 

  18. J. W. Parker: ‘Optical interconnections for electronics’, Proc. European Conference on Optical Communication ECOC’92, Berlin 27.09.-01.10.92, VDE—Verlag, ISBN 3 — 8007 — 1897 — 9.

    Google Scholar 

  19. J. Schwider et. al.: ‘Possibilities and limitations of spacevariant holographic optical elements for switching networks and general interconnects’, Appl. Opt., accepted 1992.

    Google Scholar 

  20. T. Sollner et. al.: ‘Resonant tunneling through quantum wells at 2.5 THz’, Appl. Phys. Lett. 43, 588 (1983).

    Google Scholar 

  21. W. Stork: ‘Optical crossbar’, Optik 76, 173 (1987).

    Google Scholar 

  22. N. Streibl, R. Völkel, J. Schwider, P. Habel, N. Lindlein: ‘Parallel optoelectronic interconnections with high packing density through a light guiding plate using grating couplers and field lenses’, Opt. Commun. submitted 1992.

    Google Scholar 

  23. K. Zürl, N. Streibl: ‘Optoelectronic array interconnections’, Opt. Quant. Electron. 24, 405 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwider, J., Streibl, N., Zürl, K. (1993). Optoelectronic Interconnections. In: Bode, A., Dal Cin, M. (eds) Parallel Computer Architectures. Lecture Notes in Computer Science, vol 732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21577-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21577-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57307-4

  • Online ISBN: 978-3-662-21577-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics