On k-Products Modulo μ-Products

  • Burkhard Wald
Part of the Lecture Notes in Mathematics book series (LNM, volume 1006)

Abstract

1. For a set I and a family (Ai)i∈i of abelian groups consider the cartesian product \( \mathop \pi \limits_{i \in I} {A_i}, \) which is in a natural way an abelian group iEI again. The support of an element x of \( \mathop \pi \limits_{i \in I} {A_i}, \)is defined by supp(x) {=i ∈ I: x(i) ≠ 0}.

Keywords

Cardi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    S. Balcercyk, On groups of functions defined on Boolean algebras, Fund. Math. 50 (1962) 347–367.Google Scholar
  2. [D]
    H.D. Donder, in preparation.Google Scholar
  3. [DH]
    M. Dugas and G. Herden; Arbitrary torsion classes and almost free abelian groups, to appear in Israel J.Google Scholar
  4. [F]
    L. Fuchs, Infinite Abelian groups II, Academic Press, New York 1974.Google Scholar
  5. [GS]
    R. Göbel and S. Shelah, Semi-rigid classes of cotorsionfree abelian groups, submitted to J. Algebra.Google Scholar
  6. [GW1]
    R. Göbel and B. Wald, Wachstumstypen und schlanke Gruppen, Symp. Math. 23 (1979) 201–239.Google Scholar
  7. [GW2]
    R. Göbel and B. Wald, Lösung eines Problems von L. Fuchs, J. Algebra, 71 (1981) 219–231.CrossRefGoogle Scholar
  8. [GWW]
    R. Göbel, B. Wald and P. Westphal, Groups of integer-valuated functions, in Abelian Group Theory, Proceedings, Oberwolfach 1981, Springer Lecture Notes, 874 (1981) 161–178.Google Scholar
  9. [J]
    T. Jech, Set Theory, Academic Press, New York, London (1978).Google Scholar
  10. [L]
    J. Lo’s, Linear equations and pure subgroups, Bull. Acad. Polon. Sci., 7 (1959) 13–18.Google Scholar
  11. [S]
    E. Sasiada, Proof that every countable and reduced torsionfree abelian group is slender, Bull. Acad. Polon. Sci., 7 (1959) 143–144.Google Scholar
  12. [W]
    B. Wald, Martinaxiom und die Beschreibung gewisser Homomorphismen in der Theorie der g1 -freien abelschen Gruppen, to appear in Manuscr. Math.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Burkhard Wald

There are no affiliations available

Personalised recommendations