Realizing Algebraic Number Fields

  • R. S. Pierce
  • C. I. Vinsonhaler
Part of the Lecture Notes in Mathematics book series (LNM, volume 1006)


In the paper [13], the authors studied the problem of realizing rational division algebras in a special way. Let D be a division algebra that is finite dimensional over the rational field Q. If p is a prime, we say that D is p-realizable when there is a p-local torsion free abelian group A whose rank is the dimension of D over Q, such that D is isomorphic to the quasiendomorphism ring of A.


Normal Subgroup Galois Group Division Algebra Cyclic Subgroup Galois Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Beaumont and R. S. Pierce, Torsion free rings, Illinois J. Math., 5 (1961), 61–98.Google Scholar
  2. 2.
    A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc., 13 (1963), 687–710.Google Scholar
  3. 3.
    C. W. Curtis, W. M. Kantor and G. M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc., 218 (1976), 1–59.Google Scholar
  4. 4.
    W. Feit, Some consequences of the classification of finite simple groups, Proc. Symp. in Pure Math. 37, Amer. Math. Soc. 1980, 175–181.Google Scholar
  5. 5.
    M. Hall, Jr., Combinatorial Theory, Ginn-Blaisdell, Waltham, 1967.Google Scholar
  6. 6.
    G. H. Hardy and E. M. Wright, The Theory of Numbers, Oxford Univ. Press, Oxford, 1960.Google Scholar
  7. 7.
    D. Hilbert, Uber die Irreduzibilität ganzer rationaler Funktionen mit gangzaligen Koeffizienten, J. fur Reine u. Ang. Math, 110 (1892), 104–129.Google Scholar
  8. 8.
    T. Hungerford, Algebra, Springer-Verlag, New York, 1964.Google Scholar
  9. 9.
    B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.Google Scholar
  10. 10.
    S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, 1970.Google Scholar
  11. 11.
    R. S. Pierce, Associative Algebras, Springer-Verlag, New York, 1982.CrossRefGoogle Scholar
  12. 12.
    R. S. Pierce, Subrings of simple algebras, Mich. Math. Jour., 7 (1960), 241–243.Google Scholar
  13. 13.
    R. S. Pierce and C. Vinsonhaler, Realizing division algebras, Pac. Jour. of Math. (to appear).Google Scholar
  14. 14.
    I. F. Ritt, On algebraic functions which can be expressed in terms of radicals, Trans. Amer. Math. Soc., 24 (1923), 21–30.CrossRefGoogle Scholar
  15. 15.
    P. Schultz, The endomorphism ring of the additive group of a ring, Jour. Austr. Math. Soc., 15 (1973), 60–69.CrossRefGoogle Scholar
  16. 16.
    I. R. Shafarevitch, Construction of fields of algebraic numbers with given solvable Galois group, Izv. Akad. Nauk. SSSR Ser. Mat., 18 (1954), 525–578.Google Scholar
  17. 17.
    K.-Y. Shik, On the construction of Galois extensions of function fields and number fields, Math. Ann., 207 (1974), 99–120.CrossRefGoogle Scholar
  18. 18.
    H. Wielandt, Finite Permutation Groups, Academic Press, New York and London, 1964.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • R. S. Pierce
  • C. I. Vinsonhaler

There are no affiliations available

Personalised recommendations