Skip to main content

Analytical Electron Microscopy

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

Abstract

X-ray spectrometers can be coupled to a transmission electron microscope to record x-ray quanta emitted from the specimen. With an energy-dispersive spectrometer, quantitative analysis is possible for elements with atomic numbers above ten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.J. Cooke, P. Duncombe: Performance analysis of a combined electron microscope and electron probe microanalyser ‘EMMA’, in 5th Int’l Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt, K.H. Gaukler (Springer, Berlin, Heidelberg 1969) p.245

    Google Scholar 

  2. C.J. Cooke, I.K. Openshaw: Combined high resolution electron microscopy and X-ray microanalysis, in Microscopie Electronique1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p. 175

    Google Scholar 

  3. J.B. LePoole: Miniature lens, in Electron Microscopy 1964, Vol. A, ed. by M. Titlbach (Czechoslovak Acad. Sci., Prague 1964) p.439

    Google Scholar 

  4. P.F. Chapman: A microanalysis attachment for the Elmiskop I, in 5 th Int’l Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt, K.H. Gaukler (Springer, Berlin, Heidelberg 1969) p.241

    Google Scholar 

  5. D.A. Gedcke: The Si(Li) X-ray spectrometer for X-ray microanalysis, in Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. (Academic, London 1974) p.403

    Google Scholar 

  6. T.A. Hall: Reduction of background due to backscattered electrons in energy dispersive X-ray microanalysis. J. Microsc. 110, 103 (1977)

    Article  Google Scholar 

  7. B. Neumann, L. Reimer: A permanent magnet system for electron deflection in front of an energy dispersive X-ray spectrometer. Scanning 1, 130 (1978)

    Article  Google Scholar 

  8. C.E. Lyman, D.B. Williams, J.I. Goldstein: X-ray detectors and spectrometers. Ultramicroscopy 28, 137 (1988)

    Article  Google Scholar 

  9. R. Schmidt, M. Feller-Kniepmeier: Investigation of system-induced background radiation using a 0÷160 keV high-purity germanium detector. Ultramicroscopy 34, 229 (1990)

    Article  Google Scholar 

  10. N.C. Barbi, A.O. Sandborg, J.C. Russ, C.E. Soderquist: Light element analysis on the SEM using a windowless energy dispersive X-ray spectrometer, in Scanning Electron Microscopy 1974, ed. by O. Johari (IIT Research Inst., Chicago 1974) p.289

    Google Scholar 

  11. J.C. Russ: Procedures for quantitative ultralight element energy dispersive X-ray analysis, in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.289

    Google Scholar 

  12. L. Reimer: Scanning Electron Microscopy. Physics of Image Formation and Microanalysis, Springer Ser. Opt. Sci., Vol.45 (Springer, Berlin, Heidelberg 1985)

    Google Scholar 

  13. S.J.B. Reed: Electron Microprobe Analysis (Cambridge Univ. Press, London 1975)

    Google Scholar 

  14. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York 1981)

    Book  Google Scholar 

  15. K.F.J. Heinrich: Electron Beam X-Ray Microanalysis (Van-Nostrand, New York 1981)

    Google Scholar 

  16. M.H. Jacobs, J. Baborovska: Quantitative microanalysis of thin foils with a combined electron microscope-microanalyser (EMMA-3), in Electron Microscopy 1972 (IoP, London 1972) p.136

    Google Scholar 

  17. G.W. Lorimer, G. Cliff, J.N. Clark: Determination of the thickness and spatial resolution for the quantitative analysis of thin foils, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p. 153

    Google Scholar 

  18. R. König: Quantitative X-ray microanalysis of thin foils, in Electron Microscopy in Mineralogy, ed. by H.R. Wenk (Springer, Berlin, Heidelberg 1976) p.526

    Chapter  Google Scholar 

  19. J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: Quantitative X-ray analysis in the electron microscope, in Scanning Electron Microscopy 1977 I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.315

    Google Scholar 

  20. J. Philibert, R. Tixier: Electron probe microanalysis of TEM specimens, in Physical Aspects of Electron Microscopy and Analysis, ed. by B.M. Siegel, D.R. Beaman (Wiley, New York 1975) p.333

    Google Scholar 

  21. G.W. Lorimer, S.A. Al-Salman, G. Cliff: The quantitative analysis of thin specimens: Effects of absorption, fluorescence and beam spreading, in Development in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (IoP, London 1977) p.369

    Google Scholar 

  22. C.R. Hall: On the production of characteristic X-rays in thin metal crystals. Proc. Roy. Soc. A 295, 140 (1966)

    Article  ADS  Google Scholar 

  23. D. Cherns, A. Howie, M.H. Jacobs: Characteristic X-ray production in thin crystals. Z. Naturforsch. A 28, 565 (1973)

    ADS  Google Scholar 

  24. B. Neumann, L. Reimer: Anisotropic X-ray generation in thin and bulk single crystals. J. Phys. D 13, 1737 (1980)

    Article  ADS  Google Scholar 

  25. J. Bentley, N.J. Zaluzec, E.A. Kenik, R.W. Carpenter: Optimization of an analytical electron microscope for X-ray microanalysis, in Scanning Electron Microscopy 1979 II, ed. by O. Johari (SEM, AMF O’Hare, IL 1979) p.581

    Google Scholar 

  26. J. Philibert, R. Tixier: Electron penetration and the atomic number correction in electron probe microanalysis. J. Phys. D 1, 685 (1968)

    Article  ADS  Google Scholar 

  27. M.J. Nasir: Quantitative analysis on thin films in EMMA-4 using block standards, in Electron Microscopy 1972 (IoP, London 1972) p. 142

    Google Scholar 

  28. G. Cliff, G.W. Lorimer: Quantitative analysis of thin metal foils using EMMA-4 — the ratio technique, in Electron Microscopy 1972 (IoP, London 1972) p. 140

    Google Scholar 

  29. G. Cliff, G.W. Lorimer: The quantitative analysis of thin specimens. J. Microsc. 103, 203 (1975)

    Article  Google Scholar 

  30. M.N. Thompson, P. Doig, J.W. Edington, P.E.J. Flewitt: The influence of specimen thickness on x-ray count rates in STEM microanalysis. Philos. Mag. 35, 1537 (1977)

    Article  ADS  Google Scholar 

  31. P. Schwaab: Quantitative energy dispersive x-ray microanalysis of thin metal specimens using the STEM. Scanning 9, 1 (1987)

    Article  Google Scholar 

  32. T.P. Schreiber, A.M. Wims: A quantitative x-ray microanalysis thin film method using K-, L- and M-lines. Ultramicroscopy 6, 323 (1981)

    Google Scholar 

  33. J.E. Wood, D.C. Williams, J.I. Goldstein: Experimental and theoretical determination of ka, Fe factors for quantitative X-ray microanalysis in the analytical electron microscope. J. Microsc. 133, 255 (1984)

    Article  Google Scholar 

  34. C.E. Lyman, P.E. Manning, D.J. Duquette, E. Hall: STEM microanalysis of duplex stainless steel weld metal, in Scanning Electron Microscopy 1978 I, ed. by O. Johari (SEM, OMF O’Hare, IL 1978) p.213

    Google Scholar 

  35. D.B. Williams, J.I. Goldstein: STEM/X-ray microanalysis across α/ γ interfaces in FeNi meteorites, in Electron Microscopy 1978, Vol.1, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.416

    Google Scholar 

  36. A.M. Ritter, W.G. Morris, M.F. Henry: Factors affecting the measurement of composition profiles in STEM, in Scanning Electron Microscopy 1979 I, ed. by O. Johari (SEM, AMF O’Hare, IL 1979) p.121

    Google Scholar 

  37. T.A. Hall: The microprobe assay of chemical elements, in Physical Techniques in Biological Research, Vol.1, Pt.A, ed. by G. Oster (Academic, New York 1971) p.157

    Google Scholar 

  38. T.A. Hall, H. Clarke Anderson, T. Appleton: The use of thin specimens for x-ray microanalysis in biology. J. Microsc. 99, 177 (1973)

    Article  Google Scholar 

  39. T.A. Hall, B.L. Gupta: EDS quantitation and application to biology, in Introduction to Analytical Electron Microscopy, ed. by J.J. Hren, J.F. Goldstein, D.C. Joy (Plenum, New York 1979) p. 169

    Chapter  Google Scholar 

  40. N. Roos, T. Barnard: Aminoplastic standards for quantitative X-ray microanalysis of thin sections of plastic embedded biological material. Ultramicroscopy 15, 277 (1984)

    Article  Google Scholar 

  41. A.R. Spurr: Choice and preparation of standards for X-ray microanalysis of biological materials with special reference to macrocyclic polyether complexes. J. Microscopie Biol. Cell 55, 287 (1975)

    Google Scholar 

  42. G.M. Roomans, H.L.M. van Gaal: Organometallic and organometalloid compounds as standards for microprobe analysis of epoxy resin embedded tissue. J. Microsc. 109, 235 (1977)

    Article  Google Scholar 

  43. G.M. Roomans: Standards for X-ray microanalysis of biological specimens, in Scanning Electron Microscopy 1979 II, (SEM, AMF O’Hare, IL 1979) p.649

    Google Scholar 

  44. H. Shuman, A.V. Somlyo, A.P. Somlyo: Quantitative electron probe microanalysis of biological thin sections: Methods and validity. Ultramicroscopy 1, 317 (1976)

    Article  Google Scholar 

  45. T.O. Ziebold: Precision and sensitivity in electron microprobe analysis. Anal. Chem. 39, 858 (1967)

    Article  Google Scholar 

  46. D.C. Joy, D.M. Maher: Sensitivity limits for thin specimens X-ray analysis, in Scanning Electron Microscopy 1977 I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.325

    Google Scholar 

  47. A.J.F. Metherell: Energy analysing and energy selecting microscopes, in Advances in Optical and Electron Microscopy, Vol.4, ed. by R. Barer, V.E. Coss-lett (Academic, London 1971) p.263

    Google Scholar 

  48. W. Steckelmacher: Energy analysers for charged particle beams. J. Phys. E 6, 1061 (1973)

    Article  ADS  Google Scholar 

  49. H.T. Pearce-Percy: The design of spectrometers for energy loss spectroscopy, in Scanning Electron Microscopy 1978 I, ed. by O. Johari (SEM, AMF O’Hare, IL 1978) p.41

    Google Scholar 

  50. D.B. Wittry: An electron spectrometer for use with the TEM. J. Phys. D 2, 1757 (1969)

    Article  ADS  Google Scholar 

  51. H. Hintenberger: Improved magnetic focusing of charged particles. Rev. Sci. Intrum. 20, 748 (1949)

    Article  ADS  Google Scholar 

  52. S. Penner: Calculations of properties of magnetic deflection systems. Rev. Sci. Instrum. 32, 150 (1961)

    Article  ADS  Google Scholar 

  53. A.V. Crewe, M. Isaacson, D. Johnson: A high resolution electron spectrometer for use in transmission electron microscopy. Rev. Sci. Instrum. 42, 411 (1971)

    Article  ADS  Google Scholar 

  54. R.F. Egerton: A simple electron spectrometer for energy analysis in the transmission microscope. Ultramicroscopy 3, 39 (1978)

    Article  Google Scholar 

  55. R.F. Egerton: Design of an aberration-corrected electron spectrometer for the TEM. Optik 57, 229 (1980)

    Google Scholar 

  56. H. Shuman: Correction of the second-order aberrations of uniform field magnetic sectors. Ultramicroscopy 5, 45 (1980)

    Article  Google Scholar 

  57. R.F. Egerton: The use of electron lenses between a TEM specimen and an electron spectrometer. Optik 56, 363 (1980)

    Google Scholar 

  58. D.E. Johnson: Pre-spectrometer optics in CTEM/STEM. Ultramicroscopy 5, 163 (1980)

    Article  Google Scholar 

  59. A.W. Blackstock, R.D. Birkhoff, M. Slater: Electron accelerator and high resolution analyser. Rev. Sci. Instrum. 26, 274 (1955)

    Article  ADS  Google Scholar 

  60. J. Lohff: Charakteristische Energieverluste bei der Streuung mittelschneller Elektronen an Aluminium-Oberflächen. Z. Phys. 171, 442 (1963)

    Article  ADS  Google Scholar 

  61. Y. Kokubo, H. Koike, T. Someya: Development of energy analyzer for scanning and transmission microscope, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.374

    Google Scholar 

  62. W. Kraus, P. Fazekas: Electron energy-loss spectrometry using an electron microscope in combination with an electrostatic cylindrical mirror. Siemens Forsch. Entwicklungsber. 6, 172 (1977)

    Google Scholar 

  63. A.V. Crewe, J. Wall, L.M. Welter: A high resolution scanning transmission electron microscope. J. Appl. Phys. 39, 5861 (1968)

    Article  ADS  Google Scholar 

  64. H. Boersch: Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Phys. 139, 115 (1954)

    Article  ADS  Google Scholar 

  65. H. Boersch, H. Miessner: Ein hochempfindlicher Gegenfeld-Energieanalysator für Elektronen. Z. Phys. 168, 298 (1962)

    Article  ADS  Google Scholar 

  66. H. Boersch, S. Schweda: Eine inverse Gegenfeldmethode zur Energieanalyse von Elektronen und Ionenstrahlen. Z. Phys. 167, 1 (1962)

    Article  ADS  Google Scholar 

  67. K. Brack: Über eine Anordnung zur Filterung von Elektroneninterferenzen. Z. Naturforsch. A 17, 1066 (1962)

    ADS  Google Scholar 

  68. H. Boersch, R. Wolter, H. Schoenebeck: Elastische Energieverluste kristallgestreuter Elektronen: Z. Phys. 199, 124 (1967)

    Article  ADS  Google Scholar 

  69. M.T. Browne, S. Lockovic, R.E. Burge: Instrumentation and recording for the vacuum generators HB5 STEM instrument, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.27

    Google Scholar 

  70. H. Boersch, J. Geiger, W. Stickel: Das Ausflösungsvermögen des elektrostatischmagnetischen Energieanalysators für schnelle Elektronen. Z. Phys. 180, 415 (1964)

    Article  ADS  Google Scholar 

  71. J. Geiger, M. Nolting, B. Schröder: How to obtain high resolution with a Wien filter spectrometer, in Microscopie Electronique 1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.111

    Google Scholar 

  72. W.H.J. Anderson, J.B. LePoole: A double Wienfilter as a high resolution, high transmission electron energy analyser. J. Phys. E 3, 121 (1970)

    Article  ADS  Google Scholar 

  73. G.H. Curtis, J. Silcox: A Wien filter for use as an energy analyzer with an electron microscope. Rev. Sci. Instrum. 42, 630 (1971)

    Article  ADS  Google Scholar 

  74. P.E. Batson: Prospects for high-resolution EELS experiments with the STEM. Ultramicroscopy 18, 125 (1985)

    Article  Google Scholar 

  75. G. Möllenstedt: Die elektrostatische Linse als hochauflösender Geschwindigkeit-sanalysator. Optik 5, 499 (1949)

    Google Scholar 

  76. G. Möllendstedt, W. Dietrich: Verbesserung der Optik des hochauflösenden elektrostatischen Geschwindigkeitsanalysators. Optik 12, 246 (1955)

    Google Scholar 

  77. K. Keck, H. Deichsel: Die Verwendung der Elektronen-Einzellinse als “lichtstarkes” Energiefilter für Elektronenstrahlen. Optik 17, 401 (1960)

    Google Scholar 

  78. A.J.F. Metherell, R.F. Cook: Resolution and dispersion of the four classes of Möllenstedt electron energy analysers. Optik 34, 535 (1972)

    Google Scholar 

  79. S. Kuwabara, T. Uefuji, Y. Takamatsu: A simple electrostatic energy filter for electron diffraction and electron microscopy. Jpn. J. Appl. Phys. 13, 1495 (1974)

    Article  ADS  Google Scholar 

  80. F. Lenz: Über das chromatische Auflösungsvermögen von Elektronenlinsen bei der Geschwindigkeitsanalyse. Optik 10, 439 (1953)

    Google Scholar 

  81. R. Shirota, T. Yanaka: An energy analyser with rotation symmetrical lenses, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.368

    Google Scholar 

  82. L. Reimer, U. Riediger: Energieverlustspektroskopie mit einer modifizierten Kaustikmethode in einem 100 keV-Transmissionselektronenmikroskop. Optik 46, 67 (1976)

    Google Scholar 

  83. T. Ichinokawa: Electron energy analysis by a cylindrical magnetic lens. Jpn. J. Appl. Phys. 7, 799 (1968)

    Article  ADS  Google Scholar 

  84. K.Z. Considine, K.C.A. Smith: An energy analyser for high voltage microscopy, in Electron Microscopy1968, Vol.1, ed. by D.S. Bocciarelli (Tipografía Poliglotta Vaticana, Rome 1968) p.329

    Google Scholar 

  85. Y. Kamiya, K. Shimizu, T. Suzuki: The velocity analyser for high energy electrons. Optik 41, 421 (1974)

    Google Scholar 

  86. R. Castaing: Quelques application du filtrage magnétique des vitesses en micros-copie eléctronique. Z. Angew. Phys. 27, 171 (1969)

    Google Scholar 

  87. R. Castaing, L. Henry: Filtrage magnétique des vitesses en microscope électronique. C.R. Acad. Sci. Paris 255, 76 (1962)

    Google Scholar 

  88. W. Egle, A. Rilk, F.P. Ottensmeyer: A new analytical TEM with imaging electron energy loss spectrometer, in Electron Microscopy 1984, Vol.1, ed. by A. Csanady et. al., (Motesz, Budapest 1984) p.63

    Google Scholar 

  89. L. Reimer, I. Fromm, R. Rennekamp: Operation modes of electron spectroscopic imaging and energy-loss spectroscopy in a TEM. Ultramicroscopy 24, 339(1988)

    Article  Google Scholar 

  90. H. Rose, E. Plies: Entwurf eines fehlerarmen magnetischen Energie-Analysa-tors. Optik 40, 336(1974)

    Google Scholar 

  91. H.T. Pearce-Percy, D. Krahl, J. Jaeger: A 4-magnet imaging spectrometer for a fixed-beam transmission microscope, in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.348

    Google Scholar 

  92. G. Zanchi, J.Ph. Perez, J. Sevely: Adaption of a magnetic filtering device in a one megavolt electron microscope. Optik 43, 495 (1975)

    Google Scholar 

  93. G. Zanchi, J. Sevely, B. Jouffrey: An energy filter for high voltage electron microscopy. J. Microsc. Spectr. Electr. 2, 95 (1977)

    Google Scholar 

  94. S. Lanio: High-resolution imaging magnetic energy filter with simple structure. Optik 73, 99(1986)

    Google Scholar 

  95. O.L. Krivanek, C. Ahn: Energy-filtered imaging with quadrupole lenses, in Electron Microscopy 1986, Vol.1, ed. by T. Imura et al. (Japanese Society of Electron Microscopy, Tokyo 1986) p.519

    Google Scholar 

  96. H. Shuman, P. Kruit: Quantitative data processing of parallel recorded electron energy-loss spectra with low signal to background. Rev. Sci. Instr. 56, 231 (1985)

    Article  ADS  Google Scholar 

  97. D.E. Johnson, M. Connick: Quantitative assessment of a parallel detection system for energy-loss spectrometry. Rev. Sci. Instr. 58, 1822 (1987)

    Article  ADS  Google Scholar 

  98. H. Shuman: Parallel recording of electron energy loss spectra. Ultramicroscopy 6, 163(1981)

    Google Scholar 

  99. P.E. Batson: Digital data acquisition of electron energy loss intensities. Ultramicroscopy 3, 367 (1979)

    Article  Google Scholar 

  100. R.F. Egerton, D. Kenway: An acquisition, storage display and processing system for electron energy-loss spectra. Ultramicroscopy 4, 221 (1979)

    Article  Google Scholar 

  101. J. Daniels, C. von Festenberg, H. Raether, K. Zeppenfeld: Optical constants of solids by electron spectroscopy. Springer Tracts Mod. Phys. 54, 77 (Springer, Berlin, Heidelberg 1970)

    Article  ADS  Google Scholar 

  102. R.W. Ditchfield, A.G. Cullis: Identification of impurity particles in epitaxially grown Si films using combined electron microscopy and energy analysis, in Microscopie Electronique 1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p. 125

    Google Scholar 

  103. R.F. Cook: Electron energy loss spectroscopy of glass, in Microscopie Electronique, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.127

    Google Scholar 

  104. M. Isaacson: Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine, and uracil. J. Chem. Phys. 56, 1803 and 1813 (1972)

    Article  ADS  Google Scholar 

  105. J. Hainfeld, M. Isaacson: The use of electron energy loss spectroscopy for studying membrane architecture. Ultramicroscopy 3, 87 (1978)

    Article  Google Scholar 

  106. D.R. Spalding, A.J.F. Metherell: Plasmons losses in Al-Mg alloys. Philos. Mag. 18, 41 (1968)

    Article  ADS  Google Scholar 

  107. S.L. Cundy, A.J.F. Metherell, M.J. Whelan, P.N.T. Unwin, R.B. Nicholson: Studies of segregation and the initial stages of precipitation at grain boundaries in Al-7wt% Mg alloy with an energy analysing electron microscope. Proc. Roy. Soc. A 307, 267 (1968)

    Article  ADS  Google Scholar 

  108. D.R. Spalding, R.E. Villagrana, G.A. Chadwick: A study of copper distribution in lamellar Al-CuAl2 eutectics using an energy analysing microscope. Philos. Mag. 20, 471 (1969)

    Article  ADS  Google Scholar 

  109. R.F. Cook, S.L. Cundy: Plasmon energy losses in Al-Zn alloys. Philos. Mag. 20, 665 (1969)

    Article  ADS  Google Scholar 

  110. G. Hibbert, J.W. Eddington: Experimental errors in combined electron microscopy and energy analysis. J. Phys. D 5, 1780 (1972)

    Article  ADS  Google Scholar 

  111. G. Hibbert, J.W. Edington: Superposition effects in the energy analysing electron microscope. Philos. Mag. 26, 1071 (1972)

    Article  ADS  Google Scholar 

  112. R.F. Cook, A. Howie: Effect of elastic constraints on electron energy loss measurements in inhomogeneous alloy. Philos. Mag. 20, 641 (1969)

    Article  ADS  Google Scholar 

  113. D.R. Spalding: Electron microscopy evidence of plasmon-dislocation interactions. Philos. Mag. 34, 1073 (1976)

    Article  ADS  Google Scholar 

  114. R.F. Egerton: Measurement of inelastic/elastic scattering ratio for fast electrons and its use in the study of radiation damage. Phys. Status Solidi A 37, 663 (1976)

    Article  ADS  Google Scholar 

  115. R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum, New York, London 1986)

    Google Scholar 

  116. R.F. Egerton: Instrumentation and software for energy-loss microanalysis, in Scanning Electron Microscopy 1980 I (SEM, AMF O’Hare, IL 1980) p.41

    Google Scholar 

  117. C. Colliex, C. Jeanguillaume, O. Trebbia: Quantitative local microanalysis with EELS, in Microprobe Analysis of Biological Systems, ed. by T.E. Hutchinson, A.P. Somlyo (Academic, New York 1981) p.251

    Google Scholar 

  118. J. Bentley, G.L. Lehmann, P.S. Sklad: Improved background fitting for EELS, in Electron Microscopy 1982, Vol.1 (Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982) p.585

    Google Scholar 

  119. J.D. Steele, J.M. Titchmarsh, J.N. Chapman, J.H. Paterson: A single stage process for quantifying EELS. Ultramicroscopy 17, 273 (1985)

    Article  Google Scholar 

  120. M. Isaacson, D. Johnson: The microanalysis of light elements using transmitted energy loss electrons. Ultramicroscopy 1, 33 (1975)

    Article  Google Scholar 

  121. R.F. Egerton, M.J. Whelan: High resolution microanalysis of light elements by electron energy loss spectrometry, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.384

    Google Scholar 

  122. J. Sevely, J.Ph. Perez, B. Jouffrey: Energy losses of electrons through Al and carbon films from 300 keV up to 1200 keV, in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p.32

    Google Scholar 

  123. D.W. Johnson, J.C.H. Spence: Determination of the single-scattering probability distribution from plural-scattering data. J. Phys. D 7, 771 (1974)

    Article  ADS  Google Scholar 

  124. C.R. Bradley, M.L. Wroge, P.C. Gibbons: How to remove multiple scattering from core-excitation spectra. Ultramicroscopy 16, 95 (1985); 19, 317 (1986); ibid. 21, 305 (1987)

    Article  Google Scholar 

  125. R.F. Egerton: Formulae for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy 3, 243 (1978)

    Article  Google Scholar 

  126. G. Lehmpfuhl, J. Taftø: The channelling effect in electron energy loss spectroscopy, in Electron Microscopy1980, Vol.3, ed. by P. Brederoo, V.E. Cosslett (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.62

    Google Scholar 

  127. R.F. Egerton, C.J. Rossouw, M.J. Whelan: Progress towards a method for the quantitative microanalysis of light elements by electron energy-loss spectrometry, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p. 129

    Google Scholar 

  128. D.C. Joy, D.M. Maher: Electron energy loss spectroscopy: Detectable limits for elemental analysis. Ultramicroscopy 5, 333 (1980)

    Article  Google Scholar 

  129. J.C.H. Spence, J. Lynch: STEM microanalysis by transmission EELS in crystals. Ultramicroscopy 9, 267 (1982)

    Article  Google Scholar 

  130. C. Colliex: An illustrated review of various factors governing the high spatial resolution capabilities in EELS microanalysis. Ultramicroscopy 18, 131 (1985)

    Article  Google Scholar 

  131. W. Probst, R. Bauer: Technik und biologische Anwendung der elektronen-spek-troskopischen Abbildung (ESI) und EELS. Verh. Deutsch. Zool. Ges. 80, 119 (1987)

    Google Scholar 

  132. R. Bauer, U. Hezel, D. Kurz: High-resolution imaging of thick biological sections with an imaging EELS. Optik 77, 171 (1987)

    Google Scholar 

  133. H.T. Pearce-Percy, J.M. Cowley: On the use of energy filtering to increase the contrast of STEM images of thick biological materials. Optik 44, 273 (1976)

    Google Scholar 

  134. M. Isaacson, J.P. Langmore, H. Rose: Determination of the non-localization of the inelastic scattering of electrons by electron microscopy. Optik 41, 92 (1974)

    Google Scholar 

  135. A.V. Crewe, J. Wall: Contrast in high resolution STEM. Optik 30, 461 (1970)

    Google Scholar 

  136. A. El Hili: Analyse quantitative a haute résolution par images electroniques filtrées. J. Microscopie 5, 669 (1966)

    Google Scholar 

  137. B. Jouffrey: Electron energy loss spectroscopy, in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (IoP, London 1977) p.351

    Google Scholar 

  138. C.J. Wilson, P.E. Batson, A.J. Craven, L.M. Brown: Differentiated energy loss spectroscopy in STEM, in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (IoP, London 1977) p.365

    Google Scholar 

  139. K.M. Adamson-Sharpe, F.P. Ottensmeyer: Spatial resolution and detection sensitivity in microanalysis by electron energy loss selected imaging. J. Microsc. 122, 302 (1981)

    Article  Google Scholar 

  140. C. Colliex: Electron energy loss analysis in materials science, in Electron Microscopy 1982, Vol.1 (Deutsche Gesellschaft für Elektronenmikroskopie, Frankfurt 1982) p. 159

    Google Scholar 

  141. S.L. Cundy, A.J.F. Metherell, M.J. Whelan: An energy analysing electron microscope. J. Sci. Instrum. 43, 712 (1966)

    Article  ADS  Google Scholar 

  142. Y. Kamiya, R. Uyeda: Effect of incoherent waves on the electron microscopy image of crystals. J. Phys. Soc. Jpn. 16, 1361 (1961)

    Article  ADS  Google Scholar 

  143. Y. Kamiya, Y. Nakai: Diffraction contrast effect of electrons scattered inelasti-cally through large angles. J. Phys. Soc. Jpn. 31, 195 (1971)

    Article  ADS  Google Scholar 

  144. S.L. Cundy, A.J.F. Metherell, M.J. Whelan: Contrast preserved by elastic and quasi-elastic scattering of fast electrons near Bragg beams. Philos. Mag. 15, 623 (1967)

    Article  ADS  Google Scholar 

  145. R. Castaing, P. Hénoc, L. Henry, M. Natta: Degré de cohérence de la diffusion électronique par interaction électron-phonon. C. R. Acad. Sci. Paris 265, 1293 (1967)

    Google Scholar 

  146. S. Kuwabara, T. Uefuji: Variation of electron microscopic thickness fringes of Al single crystals with energy loss. J. Phys. Soc. Jpn. 38, 1090 (1975)

    Article  ADS  Google Scholar 

  147. J.B. LePoole: Ein neues Elektronenmikroskop mit stetig regelbarer Vergrößerung. Philips Tech. Rundsch. 9, 33 (1947)

    Google Scholar 

  148. M.E. Haine, R.S. Page, R.G. Garfitt: A three-stage electron microscope with stereographic dark field and electron diffraction capabilities. J. Appl. Phys. 21, 173 (1950)

    Article  ADS  Google Scholar 

  149. W.D. Riecke, E. Ruska: Über ein Elektronenmikroskop mit Einrichtungen für Feinbereichsbeugung and Dunkelfeldabbildung durch Einzelreflex. Z. Wiss. Mikrosk. 63, 288 (1957)

    Google Scholar 

  150. A.W. Agar: Accuracy of selected-area microdiffraction in the electron microscope. Br. J. Appl. Phys. 11, 185 (1960)

    Article  ADS  Google Scholar 

  151. W. Riecke: Über die Genauigkeit der Übereinstimmung von ausgewähltem und beugendem Bereich bei der Feinbereichs-Elektronenbeugung im LePooleschen Strahlengang. Optik. 18, 278 (1961)

    Google Scholar 

  152. W. Riecke: Verzeichnung und Auflösung der im LePooleschen Strahlengang aufgenommenen Beugungsdiagramme. Optik 18, 373 (1961)

    Google Scholar 

  153. W.C.T. Dowell: Fehler von Beugungsdiagrammen, die mittels Elektronenlinsen erzeugt und abgebildet sind. Optik 20, 581 (1963)

    Google Scholar 

  154. J.C. Lodder, K.G. van der Berg: A method for accurately determining lattice parameters using electron diffraction in a commercial electron microscope. J. Microsc. 100, 93 (1974)

    Article  Google Scholar 

  155. F. Fujimoto, K. Komaki, S. Takagi, H. Koike: Diffraction patterns obtained by scanning electron microscopy. Z. Naturforsch. A 27, 441 (1972)

    ADS  Google Scholar 

  156. A.P. Pogany, P.S. Turner: Reciprocity in electron diffraction and microscopy. Acta Cryst. A 24, 103 (1968)

    Article  Google Scholar 

  157. M.N. Thompson: A scanning transmission microscope: Some techniques and applications, in Scanning Electron Microscopy: Systems and Applications, ed. by W.C. Nixon (IoP, London 1973) p. 176

    Google Scholar 

  158. D.M. Maher: Scanning electron diffraction in TEM and SEM operating in the transmission mode, in Scanning Electron Microscopy1974, ed. by O. Johari (HT Research Inst., Chicago 1974) p.215

    Google Scholar 

  159. K.J. van Oostrum, A. Leenhouts, A. Jore: A new scanning micro-diffraction technique. Appl. Phys. Lett. 23, 283 (1973)

    Article  ADS  Google Scholar 

  160. R.H. Geiss: Electron diffraction from areas less than 3 nm in diameter. Appl. Phys. Lett. 27, 174 (1975)

    Article  ADS  Google Scholar 

  161. R.H. Geiss: STEM electron diffraction from 30:80 diameter areas, in Developments in Electron Microscopy and Analysis1975, ed. by J.A. Venables (Academic, London 1976) p.61

    Google Scholar 

  162. J.P. Chevalier, A.J. Craven: Microdiffraction, application to short range order in a quenched copper-platinum alloy. Philos. Mag. 36, 67 (1977)

    Article  ADS  Google Scholar 

  163. W.D. Riecke: Beugungsexperimente mit sehr feinen Elektronenstrahlen. Z. Angew. Phys. 27, 155 (1969)

    Google Scholar 

  164. B. Bengtsson, B. Loberg, D.A. Porter, K.E. Easterling: The performance of a 200 kV STEM, in Electron Microscopy1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.450

    Google Scholar 

  165. L.M. Brown, A.J. Craven, L.G.P. Jones, A. Griffith, W.M. Stobbs, C.J. Wilson: Application of a high resolution STEM to material science, in Scanning Electron Microscopy 1976 I, ed. by O. Johari (IIT Research Inst., Chicago 1976) p.353

    Google Scholar 

  166. H. von Harrach, C.E. Lyman, G.E. Verney, D.C. Joy, G.R. Booker: Performance of the Oxford field-emission scanning transmission electron microscope, in Developments in Electron Microscopy and Analysis1975, ed. by J.A. Venables (Academic, London 1976) p.7

    Google Scholar 

  167. L. Reimer: Electron diffraction methods in TEM, STEM and SEM. Scanning 2, 3 (1979)

    Article  Google Scholar 

  168. W. Kossel, G. Möllenstedt: Elektroneninterferenzen im konvergenten Bündel. Naturwissenschaften 26, 660 (1938)

    Article  ADS  Google Scholar 

  169. W. Kossel, G. Möllenstedt: Dynamische Anomalie von Elektroneninterferenzen. Ann. Phys. 42, 287 (1942)

    Article  Google Scholar 

  170. P. Goodman, G. Lehmpfuhl: Elektronenbeugungsuntersuchungen im konvergenten Bündel mit dem Siemens Elmiskop I. Z. Naturforsch. A 20, 110 (1965)

    ADS  Google Scholar 

  171. H. Raith: Elektronenbeugung im konvergenten Bündel an gekühlten Präparaten mit dem Siemens-Elmiskop I. Z. Naturforsch A 20, 855 (1965)

    ADS  Google Scholar 

  172. D.J.H. Cockayne, P. Goodman, J.C. Mills, A.F. Moodie: Design and generation of an electron diffraction camera for the study of small crystalline regions. Rev. Sci. Instrum. 38, 1097 (1967)

    Article  ADS  Google Scholar 

  173. J.M. Cowley, D.J. Smith, G.A. Sussex: Application of a high voltage STEM, in Scanning Electron Microscopy1970, ed. by O. Johari (IIT Research Inst., Chicago 1970) p. 11

    Google Scholar 

  174. P. Goodman: Observation of background contrast in convergent beam patterns. Acta Cryst. A 28, 92 (1972)

    Article  Google Scholar 

  175. C. van Essen: SEM channelling patterns from 2 /¿m selected areas, in Microscopic Electronique1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.237

    Google Scholar 

  176. L. Reimer, P. Hagemann: The use of transmitted and backscattered electrons in the scanning mode of a TEM, in Developments in Electron Microscopy and Analysis1977, ed. by D.L. Misell (IoP, London 1977) p. 135

    Google Scholar 

  177. R.J. Woolf, D.C. Joy, J.M. Titchmarsh: Scanning transmission electron diffraction in the SEM, in Electron Microscopy1972 (IoP, London 1972) p.498

    Google Scholar 

  178. A.J. Craven: Specimen orientation in STEM, in Developments in Electron Microscopy and Analysis1977, ed. by D.L. Misell (IoP, London 1977) p.311

    Google Scholar 

  179. G. Möllenstedt, H.R. Meyer: Strahlengang zur Strukturanalyse von Einkristallen durch Elektronen-Transmissions-Doppelwinkelabrasterung. Optik 42, 487 (1975)

    Google Scholar 

  180. J.A. Feades: Another way to form zone-axis patterns, in Electron Microscopy and Analysis1979, ed. by T. Mulvey (IoP, London 1979) p.9

    Google Scholar 

  181. H. Mahl, W. Weitsch: Kleinwinkelbeugung mit Elektronenstrahlen. Naturwissenschaften 47, 301 (1960); Z. Naturforsch. A 15, 1051 (1960)

    Article  ADS  Google Scholar 

  182. R.P. Ferrier: Small angle electron diffraction in the electron microscope, in Advances in Optical and Electron Microscopy, Vol.3, ed. by R. Barer, V.E. Cosslett (Academic, London 1969) p. 155

    Google Scholar 

  183. R.H. Wade, J. Silcox: Small angle electron scattering from vacuum condensed metallic films. Phys. Status Solidi 19, 57 and 63 (1967)

    Article  Google Scholar 

  184. J. Smart, R.E. Burge: Small-angle electron diffraction patterns of assemblies of spheres and viruses. Nature 205, 1296 (1965)

    Article  ADS  Google Scholar 

  185. V. Drahos, A. Delong: Low-angle electron diffraction from defined specimen area, in Microscopie Electronique1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p. 147

    Google Scholar 

  186. R.T. Murray, R.P. Ferrier: Biological applications of electron diffraction. J. Ultrastruct. Res. 21, 361 (1967)

    Article  Google Scholar 

  187. G.A. Bassett, A. Keller: Low-angle scattering in an electron microscope applied to polymers. Philos. Mag. 9, 817 (1964)

    Article  ADS  Google Scholar 

  188. P.H. Denbigh, C.W.B. Grigson: Scanning electron diffraction with energy analysis. J. Sci. Instrum. 42, 395 (1965)

    Article  ADS  Google Scholar 

  189. L. Reimer, K. Freking: Versuch einer quantitativen Erfassung der Textur von Au-Aufdampfschichten. Z. Phys. 184, 119 (1965)

    Article  ADS  Google Scholar 

  190. M.F. Tompsett: Review: Scanning high-energy electron diffraction in materials science. J. Mat. Sci. 7, 1069 (1972)

    Article  ADS  Google Scholar 

  191. C.W. Grigson: Improved scanning electron diffraction system. Rev. Sci. Instrum. 36, 1587 (1965)

    Article  ADS  Google Scholar 

  192. F.C.S.M. Totthill, W.C. Nixon, C.W.B. Grigson: Ultra-high vacuum modification of an AEI EM6 electron microscope for studies of nucleation in evaporated films, in Electron Microscopy1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p. 229

    Google Scholar 

  193. A.M. MacLeod, J.N. Chapman: A digital scanning and recording system for spot electron diffraction patterns. J. Phys. E 10, 37 (1977)

    Article  ADS  Google Scholar 

  194. F. Heise: Ein Zusatzgerät für Elektronenbeugung mit streifendem Einfall. Optik 9, 139 (1952)

    Google Scholar 

  195. W. Riecke, F. Stöcklein: Eine Objektkammer mit universell beweglichem Präparattisch für Elektronenbeugungsuntersuchungen. Z. Phys. 156, 163 (1959)

    Article  ADS  Google Scholar 

  196. J.M. Cowley: Surface energies and surface structure of small crystals studied by use of a STEM instrument. Surf. Sci. 114, 587 (1982)

    Article  ADS  Google Scholar 

  197. C. Elibol, J.H. Ou, G.G. Hembree, J.M. Cowley: Improved instrument for medium energy electron diffraction and microscopy of surfaces. Rev. Sci. Instr. 56, 1215 (1985)

    Article  ADS  Google Scholar 

  198. J.A. Venables, C.J. Harland: Electron back-scattering patterns — a new technique for obtaining crystal information in the SEM. Philos. Mag. 27, 1193 (1973)

    Article  ADS  Google Scholar 

  199. M.N. Alam, M. Blackman, D.W. Pashley: High-angle Kikuchi patterns. Proc. Roy. Soc. A 221, 224 (1954)

    Article  ADS  Google Scholar 

  200. L. Reimer, W. Pöpper, B. Volbert: Contrast reversals in the Kikuchi bands of backscattered and transmitted electron diffraction patterns, in Developments in Electron Microscope and Analysis1977, ed. by D.L. Misell (IoP, London 1977) p. 259

    Google Scholar 

  201. D.G. Coates: Kikuchi-like reflection patterns obtained with the SEM. Philos. Mag. 16, 1179 (1967)

    Article  ADS  Google Scholar 

  202. G.R. Booker: Scanning electron microscopy: Electron channelling effects, in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx (North-Holland, Amsterdam 1970) p.613

    Google Scholar 

  203. L. Reimer: Electron specimen interactions in SEM, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.83

    Google Scholar 

  204. J.W. Steeds, G.J. Tatlock, J. Hampson: Real space crystallography. Nature 241, 435 (1973)

    Article  ADS  Google Scholar 

  205. G.J. Tatlocks, J.W. Steeds: Real space crystallography in molybdenite. Nature Phys. Sci. 246, 126 (1973)

    Article  ADS  Google Scholar 

  206. J.W. Steeds, P.M. Jones, G.M. Rackham, M.D. Shannon: Crystallographic information from zone axis patterns, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.351

    Google Scholar 

  207. J.W. Steeds, P.M. Jones, J.E. Loveluck, K.E. Cooke: The dependence of zone axis patterns on string integrals or the number of bound states in high energy electron diffraction. Philos. Mag. 36, 309 (1977)

    Article  ADS  Google Scholar 

  208. M.D. Shannon, J.W. Steeds: On the relationship between projected crystal potential and the form of certain zone axis patterns in high energy electron diffraction. Philos. Mag. 36, 279 (1977)

    Article  ADS  Google Scholar 

  209. W. Witt: Zur absoluten Präzisionsbestimmung von Gitterkonstanten mit Elektroneninterferenzen am Beispiel von Thallium-(I)-Chlorid. Z. Naturforsch. A 19, 1363 (1964)

    ADS  Google Scholar 

  210. J.M. Corbett, F.W. Boswell: Use of thin single crystals as reference standards for precision electron diffraction. J. Appl. Phys. 37, 2016 (1966)

    Article  ADS  Google Scholar 

  211. A.L. MacKay: Calibration of diffraction patterns taken in the electron microscope. J. Phys. E 3, 248 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  212. J.T. Jubb, E.E. Laufer: The beam-tilt device of an electron microscope as an internal diffraction standard. J. Phys. E 9, 871 (1976)

    Article  ADS  Google Scholar 

  213. E.E. Laufer, J.T. Jubb, K.S. Milliken: The use of the beam tilt circuitry of an electron microscope for rapid determination of lattice constants. J. Phys. E 8, 671 (1975)

    Article  ADS  Google Scholar 

  214. H. König: Gitterkonstantenbestimmung im Elektronenmikroskop. Naturwissenschaften 33, 343 (1946)

    Article  ADS  Google Scholar 

  215. F.W.C. Bosswell: A Standard substance for precise electron diffraction measurements. Phys. Rev. 80, 91 (1950)

    Article  ADS  Google Scholar 

  216. C. Lu, E.W. Malmberg: ZnO smoke as a reference standard in electron wavelength calibration. Rev. Sci. Instrum. 14, 271 (1943)

    Article  ADS  Google Scholar 

  217. R. Rühle: Über Gesetzmäßigkeiten in Texturaufnahmen von Elektronenbeugungsbildern. Optik 7, 279 (1950)

    Google Scholar 

  218. Z.G. Pinsker: Electron Diffraction (Butterworths, London 1953)

    MATH  Google Scholar 

  219. B.K. Vainshtein: Structure Analysis by Electron Diffraction (Pergamon, Oxford 1964)

    Google Scholar 

  220. J.A. Gard: Interpretation of electron micrographs and diffraction patterns: the electron optical investigation of clays. Mineralogical Soc. London (1971)

    Google Scholar 

  221. J.M. Cowley: Crystal structure determination by electron diffraction. Prog. Mater. Sci. 13, 267 (1966)

    Article  Google Scholar 

  222. S. Nagakura: A method for correcting the primary extinction effect in electron diffraction. Acta Cryst. 10, 601 (1957)

    Article  Google Scholar 

  223. B.K. Vainshtein, A.N. Lobacher: Dynamic scattering and its use in structural electron diffraction studies. Sov. Phys. Cryst. 6, 609 (1961)

    Google Scholar 

  224. J.M. Cowley: Structure analysis of single crystals by electron diffraction. Acta Cryst. 6, 516, 522 and 846 (1953)

    Article  Google Scholar 

  225. J.M. Cowley: The theoretical basis for electron diffraction structure analysis, in Electron Microscopy 1962, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p.11–1

    Google Scholar 

  226. S. Fujime, D. Watanabe, S. Ogawa: On forbidden reflection spots and unexpected streaks appearing in electron diffraction patterns from hexagonal Co. J. Phys. Soc. Jpn. 19, 711 (1964)

    Article  ADS  Google Scholar 

  227. J.F. Brown, D. Clark: The use of the three-stage electron microscope in crystal-structure analysis. Acta Cryst. 5, 615 (1952)

    Article  Google Scholar 

  228. J.A. Gard: The use of the stereoscopic tilt device of the electron microscope in unit-cell determinations. Br. J. Appl. Phys. 7, 361 (1956)

    Article  ADS  Google Scholar 

  229. J.A. Gard: Interpretation of electron diffraction patterns, in Electron Microscopy in Mineralogy, ed. by H.W. Wenk (Springer, Berlin, Heidelberg 1976) p.52

    Google Scholar 

  230. R.R. Dayal, J.A. Gard, F.P. Glasser: Crystal data on FeAlO3. Acta Cryst. 18, 574 (1965)

    Article  Google Scholar 

  231. J.A. Gard, J.M. Bennet: A goniometric specimen stage, and its use in crystallography, in Electron Microscopy1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.593

    Google Scholar 

  232. G. Cliff, J.A. Gard, G.W. Lorimer, H.F.W. Taylor: Tacharanite. Mineral. Mag. 40, 113 (1975)

    Google Scholar 

  233. S. Kuwabara: Accurate determination of hydrogen positions in NH4Cl by electron diffraction. J. Phys. Soc. Jpn. 14, 1205 (1959)

    Article  ADS  Google Scholar 

  234. V.V. Udalova, Z.G. Pinsker: Electron diffraction study of the structure of ammonium sulfate. Sov. Phys. Cryst. 8, 433 (1963)

    Google Scholar 

  235. J.A. Gard, H.F.W. Taylor, L.W. Staples: Studies in crystal structure using electron diffraction of single crystals, in Vierter Internationaler Kongreß für Elektronenmikroskopie Berlin1958, Vol. 1, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen 1960) p.449

    Google Scholar 

  236. H.M. Otte, J. Dash, H.F. Schaake: Electron microscopy and diffraction of thin films. Interpretation and correlation of images and diffraction patterns. Phys. Status Solidi 5, 527 (1964)

    Article  Google Scholar 

  237. C. Laird, E. Eichen, W.R. Bitler: Accuracy in the use of electron diffraction spot patterns for determining crystal orientations. J. Appl. Phys. 37, 2225 (1966)

    Article  ADS  Google Scholar 

  238. K. Lücke, H. Perlwitz, W. Pitsch: Elektronenmikroskopische Bestimmung der Orientierungsverteilung der Kristallite in gewalztem Kupfer. Phys. Status Solidi 7, 733 (1964)

    Article  Google Scholar 

  239. F. Haessner, U. Jakubowksi, M. Wilkens: Anwendung elektronenmikroskopischer Feinbereichsbeugung zur Ermittlung der Walztextur von Kupfer. Phys. Status Solidi 7, 701 (1964)

    Article  Google Scholar 

  240. P.L. Ryder, W. Pitsch: The uniqueness of orientation determination by selected area electron diffraction. Philos. Mag. 15, 437 (1967)

    Article  ADS  Google Scholar 

  241. P.L. Ryder, W. Pitsch: On the accuracy of orientation determination by selected area diffraction. Philos. Mag. 18, 807 (1968)

    Article  ADS  Google Scholar 

  242. D.J. Mazey, R.S. Barnes, A. Howie: On interstitial dislocation loops in aluminium bombarded with alpha-particles. Philos. Mag. 7, 1861 (1962)

    Article  ADS  Google Scholar 

  243. M.H. Loretto, L.M. Clarebrough, P. Humble: Nature of dislocation loops in quenched Al. Philos. Mag. 13, 953 (1966)

    Article  ADS  Google Scholar 

  244. M. von Heimendahl: Determination of metal foil thickness and orientation in electron microscopy. J. Appl. Phys. 35, 457 (1964)

    Article  ADS  Google Scholar 

  245. S.S. Sheinin, C.D. Cann: The determination of orientation from Kikuchi patterns. Phys. Status Solidi 11, K1 (1965)

    Article  Google Scholar 

  246. R. Bonnet, F. Durand: Precise determination of the relative orientation of two crystals from the analysis of two Kikuchi patterns. Phys. Status Solidi A 27, 543 (1975)

    Article  ADS  Google Scholar 

  247. W. Griem, P. Schwaab, U. Stockhofe: Behandlung von Epitaxie-Fragen bei der Elektronenbeugung mit Hilfe der Datenverarbeitung. Arch. Eisenhüttenwesen 43, 509 (1972)

    Google Scholar 

  248. W. Griem, P. Schwaab: Behandlung von gesetzmäßigen Verwachsungen nichtkubischer und teilkohärenter Phasen bei der Elektronenbeugung. Arch. Eisenhüttenwesen 44, 677 (1973)

    Google Scholar 

  249. R. Bonnet, E.E. Laufer: Precise determination of the relative orientation of two crystals from the analysis of spot diffraction patterns. Phys. Status Solidi A 40, 599 (1977)

    Article  ADS  Google Scholar 

  250. M.D. Drazin, M.H. Otte: The systematic determination of crystallographic orientations from three octahedral traces on a plane surface. Phys. Status Solidi 3, 824 (1963)

    Article  Google Scholar 

  251. A.G. Crocker, M. Bevis: The determination of the orientation and thickness of thin foils from transmission electron micrographs. Phys. Status Solidi 6, 151 (1964)

    Article  Google Scholar 

  252. G. Thomas: Transmission Electron Microscopy of Metals (Wiley, New York 1962)

    Google Scholar 

  253. A. Baltz: Rotation of image and selected area diffraction patterns in the RCA-EMU3 electron microscope. Rev. Sci. Instrum. 33, 246 (1962)

    Article  ADS  Google Scholar 

  254. P. Delavignette: Determination of some instrumental constants of the electron microscope Philips EM 200. J. Sci. Instrum. 40, 461 (1963)

    Article  ADS  Google Scholar 

  255. H. Raether: Reflexion von schnellen Elektronen an Einkristallen. Z. Phys. 78, 527 (1932)

    Article  ADS  Google Scholar 

  256. R.D. Heidenreich: Theory of the ‘forbidden’ (222) electron reflection in the diamond structure. Phys. Rev. 77, 271 (1950)

    Article  ADS  MATH  Google Scholar 

  257. M. Takagi, S. Morimoto: The forbidden 222 electron reflection from Ge. J. Phys. Soc. Jpn. 18, 819 (1963)

    Article  ADS  Google Scholar 

  258. H. Göttsche: Zur Struktur dünner Ag-Schichten. Z. Phys. 134, 517 (1953)

    Article  ADS  Google Scholar 

  259. W. Pitsch: Kristallographische Eigenschaften von Eisennitrid-Ausscheidungen im Ferrit. Arch. Eisenhüttenwesen 32, 493 and 573 (1961)

    Google Scholar 

  260. S. Owaga, D. Watanabe, H. Watanabe, T. Komoda: The direct observation of the long period of the ordered alloy CuAu (II) by means of electron microscope, in Vierter internationaler Kongreß für Elektronenmikroskopie Berlin1958, Vol. 1, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen 1960) p.334

    Google Scholar 

  261. D.W. Pashley, A.E.B. Presland: The observation of antiphase boundaries during the transition from CuAu I to CuAu II. J. Inst. Met. 87, 419 (1959)

    Google Scholar 

  262. S. Ogawa: On the antiphase domain structures in ordered alloys. J. Phys. Soc. Jpn. 17, Suppl.B.-II, 253 (1962)

    Article  Google Scholar 

  263. I. Ackermann: Beobachtungen an dynamischen Interferenzerscheinungen im konvergenten Elektronenbündel. Ann. Phys. 2, 19 and 41 (1948)

    Article  Google Scholar 

  264. P.M. Kelly, A. Jostsons, R.G. Blake, J.G. Napier: The determination of foil thickness by STEM. Phys. Status Solidi A 31, 771 (1975)

    Article  ADS  Google Scholar 

  265. R.G. Blake, A. Jostsons, P.M. Kelly, J.G. Napier: The determination of extinction distances and anomalous absorption coefficients by STEM. Philos. Mag. A 37, 1 (1978)

    Article  ADS  Google Scholar 

  266. J.W. Steeds, K.K. Fung: Application of convergent beam electron microscopy in materials science, in Electron Microscopy1978, Vol. l, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.620

    Google Scholar 

  267. J.W. Steeds: Convergent beam electron diffraction, in Analytical Electron Microscopy, ed. by J.J. Hren, J.I. Goldstein, D.C. Joy (Plenum, New York 1979) p.387

    Chapter  Google Scholar 

  268. P.M. Jones, G.M. Rackham, J.W. Steeds: Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination. Proc. Roy. Soc. A 354, 197 (1977)

    Article  ADS  Google Scholar 

  269. B.F. Buxton: Bloch waves and higher order Laue zone effects in high energy electron diffraction. Proc. Roy. Soc. A 350, 335 (1976)

    Article  ADS  Google Scholar 

  270. J.W. Steeds: Information about the crystal potential from zone axis patterns, in Electron Microscopy1980, Vol.4, ed. by P. Brederoo, J. Van Lanuyt (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.96

    Google Scholar 

  271. J.R. Baker, S. McKernan: Structure factor information from HOLZ beam intensities in convergent-beam HEED, in Electron Microscopy and Analysis1981, ed. by M.J. Goringe (IoP, London 1982) p.283

    Google Scholar 

  272. G.M. Rackham, P.M. Jones, J.W. Steeds: Upper layer diffraction effects in zone axis patterns, in Electron Microscopy 1974, Vol. l, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.336 and 355

    Google Scholar 

  273. J.E. Loveluck, J.W. Steeds: Crystallography of lithium tantalate and quartz, in Developments in Electron Microscopy and Analysis1977, ed. by D.L. Misell (IoP, London 1977) p.293

    Google Scholar 

  274. G.M. Rackham, J.W. Steeds: Convergent beam observation near boundaries and interfaces, in Development in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.457

    Google Scholar 

  275. P. Goodman: A practical method for three-dimensional space-group analysis using convergent beam electron diffraction. Acta Cryst. A 31, 804 (1975)

    Article  ADS  Google Scholar 

  276. B.F. Buxton, J.A. Eades, J.W. Steeds, G.M. Rackham: The symmetry of electron diffraction zone axis patterns. Philos. Trans. Roy. Soc. A 281, 171 (1976)

    Article  ADS  Google Scholar 

  277. J.W. Steeds: Electron crystallography, in Quantitative Electron Microscopy, ed. by J.N. Chapman, A.J. Craven (Scottish Univ. Sommer School in Physics, Edinburgh 1984) p.49

    Google Scholar 

  278. Y. Kondo, Y. Harada: New electron diffraction technique to obtain HOLZ patterns using hollow-cone illumination, in Electron Microscopy1984, Vol.1, ed. by A. Csanady et al. (MOTESZ, Budapest 1984) p.337

    Google Scholar 

  279. S.J. Pennycook, L.M. Brown, A.J. Craven: Observation of cathodoluminescence at single dislocations by STEM. Philos. Mag. A 41, 589 (1980)

    Article  ADS  Google Scholar 

  280. N. Yamamoto, J.C.H. Spence, D. Fathy: Cathodoluminescence and polarization studies from individual dislocations in diamond. Phil. Mag. B 49, 609 (1984)

    Article  Google Scholar 

  281. S.J. Pennycook, A. Howie: Study of single electron excitations by electron microscopy. Philos. Mag. A 41, 809 (1980)

    Article  ADS  Google Scholar 

  282. P.M. Petroff, D.V. Lang, J.L. Strudel, R.A. Logan: Scanning transmission electron microscopy techniques for simultaneous electronic analysis and observation of defects in semiconductors, in Scanning Electron Microscopy 1978 I, ed. by O. Johari (SEM, AMF O’Hare, IL 1978) p.325

    Google Scholar 

  283. M.J. Leamy: Charge collection scanning electron microscopy. J. Appl. Phys. 53, R51 (1982)

    Article  ADS  Google Scholar 

  284. H. Blumtritt, R. Gleichmann, J. Heydenreich, J. Johansen: Combined scanning (EBIC) and transmission electron microscopic investigations of dislocations in semiconductors. Phys. Status Solidi A 55, 611 (1979)

    Article  ADS  Google Scholar 

  285. T.G. Sparrow, U. Valdrè: Application of scanning transmission electron microscopy to semiconductor devices. Philos. Mag. 36, 1517 (1977)

    Article  ADS  Google Scholar 

  286. P.M. Petroff, D.V. Lang: A new spectroscopic technique for imaging the spatial distribution of nonradiative defects in a scanning transmission electron microscope. Appl. Phys. Lett. 31, 60 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1993). Analytical Electron Microscopy. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21556-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21556-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56849-0

  • Online ISBN: 978-3-662-21556-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics