Scattering and Phase Contrast for Amorphous Specimens

  • Ludwig Reimer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 36)


Elastic scattering through angles larger than the objective aperture causes absorption of the electrons at the objective diaphragm and a decrease of transmitted intensity. This scattering contrast can be explained by particle optics. The exponential decrease of transmission with increasing specimen thickness can be used for quantitative determination of mass-thickness or of the total mass of an amorphous particle, for example.


Spatial Frequency Phase Contrast Single Atom Spherical Aberration Objective Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    L. Reimer: Deutung der Kontrastunterschiede von amorphen und kristallinen Objekten in der Elektronenmikrosopie. Z. Angew. Phys. 22, 287 (1967)Google Scholar
  2. 6.2
    F. Lenz: Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z. Naturforsch. A 9, 185(1954)ADSMATHGoogle Scholar
  3. 6.3
    C.E. Hall: Scattering phenomena in electron microscope image formation. J. Appl. Phys. 22, 655 (1951)ADSGoogle Scholar
  4. 6.4
    W. Lippert: Experimentelle Studien über den Kontrast im Elektronenmikroskop. Optik 11, 412 (1954)Google Scholar
  5. 6.5
    W. Lippert: Über die “elektronenmikroskopische Durchlässigkeit” dünner Schichten. Optik 13, 506 (1956)Google Scholar
  6. 6.6
    L. Reimer: Zur Elektronenabsorption dünner Metallaufdampfschichten im Elektronenmikroskop. Z. Angew. Phys. 9, 34 (1957)Google Scholar
  7. 6.7
    L. Reimer: Messung der Abhängigkeit des elektronenmikroskopischen Bildkontrastes von Ordnungszahl, Strahlspannung und Aperturblende. Z. Angew. Phys. 13, 432(1961)Google Scholar
  8. 6.8
    L. Reimer, K.H. Sommer: Messungen und Berechnungen zum elektronenmikroskopischen Streukontrast für 17–1200 keV Elektronen. Z. Naturforsch. A 23, 1569 (1968)Google Scholar
  9. 6.9
    E. Zeitler, G.F. Bahr: Contributions to the quantitative interpretation of electron microscope pictures. Exp. Cell Res. 12, 44 (1957)Google Scholar
  10. 6.10
    W. Lippert: Bemerkungen zur elektronenmikroskopischen Dickenmessung von Kohleschichten. Z. Naturforsch. B 17, 335 (1962)Google Scholar
  11. 6.11
    W. Schwertfeger: Zur Kleinwinkelstreuung von mittelschnellen Elektronen beim Durchgang durch amorphe Festkörperschichten. Dissertation, Universität Tübingen (1974)Google Scholar
  12. 6.12
    W. Lippert: Zur Brauchbarkeit der Bornschen Nährung bei der Berechnung der Elektronenstreuung für den Bereich der Elektronenmikroskopie. Naturwissenschaften 49, 534 (1962)ADSGoogle Scholar
  13. 6.13
    W. Lippert, W. Friese: Zur Darstellbarkeit des Kontrastes mit Hilfe der Lenzschen Theorie, in Electron Microscopy 1962, 5th Int’l Congr. Electron Microscopy, ed. by S.S. Breese (Academic, New York 1962) p.AA-1Google Scholar
  14. 6.14
    V.E. Cosslett: High voltage electron microscopy: Increase in penetration with voltage, in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.59Google Scholar
  15. 6.15
    G. Dupouy, F. Perrier, P. Verdier: Amélioration du contraste des images d’objets amorphes minces en microscopie électronique. J. Microscopie 5, 655 (1966)Google Scholar
  16. 6.16
    R.F. Whiting, F.P. Ottensmeyer: Heavy atoms in model compounds and nucleic acids imaged by dark field TEM. J. Mol. Biol. 67, 173 (1972)Google Scholar
  17. 6.17
    J. Dubochet, M. Ducommun, M. Zollinger, E. Kellenberger: A new preparation method for dark-field electron microscopy of biomacromolecules. J. Ultrastruct. Res. 35, 147 (1971)Google Scholar
  18. 6.18
    G.J. Brakenhoff, N. Nanninga, J. Pieters: Relative mass determination from dark-field electron micrographs, with an application to ribosomes. J. Ultrastruct. Res. 41, 238 (1972)Google Scholar
  19. 6.19
    W. Krakow, L.A. Howland: A method for producing hollow cone illumination electronically in the conventional transmission microscope. Ultramicroscopy 2, 53 (1976)Google Scholar
  20. 6.20
    E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy. Optik 31, 258 and 359 (1970)Google Scholar
  21. 6.21
    L. Reimer, P. Gentsch, P. Hagemann: Anwendung eines Rasterzusatzes zu einem TEM. I. Grundlagen und Abbildung amorpher Objekte. Optik 43, 431 (1975)Google Scholar
  22. 6.22
    E. Carlemalm, E. Kellenberger: The reproducible observation of unstained embedded cellular material in thin sections: Visualisation of an integral membrane protein by a new mode of imaging for STEM. EMBO J. 1, 63 (1982)Google Scholar
  23. R. Reichelt, E. Carlemalm, A. Engel. Quantitative contrast evaluation for different scanning transmission electron microscope imaging modes, in Scanning Electron Microscopy 1984 III (SEM, AMF O’Hare, IL 1984) p.1011Google Scholar
  24. 6.23
    P.J. Andree, J.E. Mellema, R.W.H. Ruignek. Discrimination of heavy and light elements in a specimen by use of STEM. Ultramicroscopy 17, 237 (1985)Google Scholar
  25. 6.24
    C.E. Hall: Electron densitometry of stained virus particles. J. Biophys. Biochem. Cytol. 1, 1 (1955)Google Scholar
  26. 6.24a
    E. Krüger-Thiemer: Ein Verfahren für elektronenmikroskopische Massendik-kemessungen an nichtkristallinen Objekten. Z. Wiss. Mikr. 62, 444 (1955)Google Scholar
  27. 6.24b
    N.R. Silvester, R.E. Burge: A quantitative estimation of the uptake of two new electron stains by the cytoplasmic membrane of ram sperm. J. Biophys. Biochem. Cytol. 6, 179 (1959)Google Scholar
  28. 6.25
    L. Reimer, P. Hagemann: Recording of mass thickness in STEM. Ultramicroscopy 2, 297 (1977)Google Scholar
  29. 6.26
    M.K. Lamvik: Electronmicroscopic mass determination using photographic isodensity techniques. Ultramicroscopy 1, 187 (1976)Google Scholar
  30. 6.27
    A. Engel. Molecular weight determination by STEM. Ultramicroscopy 3, 273 (1978)Google Scholar
  31. 6.28
    P.W.J. Linders, P. Hagemann. Mass determination of the biological specimens using backscattered electrons. Ultramicroscopy 11, 13 (1983)Google Scholar
  32. 6.29
    E. Zeitler, G.F. Bahr: A photometric procedure for weight determination of submicroscopic particles. J. Appl. Phys. 33, 847 (1962)ADSGoogle Scholar
  33. 6.29a
    G.F. Bahr, E. Zeitler: The determination of the dry mass in populations of isolated particles. Lab. Invest. 14, 955 (1965)Google Scholar
  34. 6.30
    F.S. Sjöstrand: The importance of high resolution electron microscopy in tissue cell ultrastructure research. Sci. Tools 2, 25 (1955)Google Scholar
  35. 6.31
    B. von Borries, F. Lenz: Über die Entstehung des Kontrastes im elektronenmikroskopischen Bild, in Electron Microscopy, Proc. Stockholm Conference 1956, ed. by F.J. Sjöstrand, J. Rhodin (Almqvist and Wiksells, Stockholm 1957) p.60Google Scholar
  36. 6.32
    F. Thon: Elektronenmikroskopische Untersuchungen an dünnen Kohlefolien. Z. Naturforsch. A 20, 154 (1965)ADSGoogle Scholar
  37. 6.33
    F. Thon: Zur Defokussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung. Z. Naturforsch. A 21, 476 (1966)ADSGoogle Scholar
  38. 6.34
    F. Lenz, W. Scheffels: Das Zusammenwirken von Phasen- und Amplitudenkontrast in der elektronenmikroskopischen Abbildung. Z. Naturforsch. A 13, 226 (1958)ADSGoogle Scholar
  39. 6.35
    A. Howie, O.L. Krivanek, M.L. Rudee: Interpretation of electron micrographs and diffraction patterns of amorphous materials. Philos. Mag. 27, 235 (1973)ADSGoogle Scholar
  40. 6.36
    G.J. Brakenhoff: On the sub-nanometre structure visible in high-resolution dark-field electron microscopy. J. Microsc. 100, 283 (1974)Google Scholar
  41. 6.37
    A. Oberlin, M. Oberlin, M. Maubois: Study of thin amorphous and crystalline carbon films by electron microscopy. Philos. Mag. 32, 833 (1975)ADSGoogle Scholar
  42. 6.38
    L. Reimer, H. Gilde: Scattering theory and image formation in the electron microscope, in Image Processing and Computer-Aided Design in Electron Optics, ed. by P.W. Hawkes (Academic, London 1973) p. 138Google Scholar
  43. 6.39
    L. Albert, R. Schneider, H. Fischer: Elektronenmikroskopische Sichtbarmachung von ≤10 :80 großen Fremdstoffeinschlüssen in elektrolytisch abgeschiedenen Nickelschichten mittels Phasenkontrast durch Defokussierung. Z. Naturforsch. A 19, 1120 (1964)ADSGoogle Scholar
  44. 6.40
    M. Rühle, M. Wilkens: Defocusing contrast of cavities, in Electron Microscopy 1972 (IoP, London 1972) p.146Google Scholar
  45. 6.41
    L. Reimer, H. Gilde: Electron optical phase contrast of small gold particles. Optik 41, 524 (1975)Google Scholar
  46. 6.42
    O. Scherzer: The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20 (1949)ADSMATHGoogle Scholar
  47. 6.43
    M.E. Haine: Contrast arising from elastic and inelastic scattering in the electron microscope. J. Sci. Instrum. 34, 9 (1957)ADSGoogle Scholar
  48. 6.44
    R.D. Heidenreich, R.W. Hamming: Numerical evaluation of electron microscopical image phase contrast. Bell Syst. Tech. J. 44, 207 (1965)Google Scholar
  49. 6.45
    C.B. Eisenhandler, B.M. Siegel: Imaging of single atoms with the electron microscope by phase contrast. J. Appl. Phys. 37, 1613 (1966)ADSGoogle Scholar
  50. 6.46
    R. Langer, W. Hoppe: Die Erhöhung von Auflösung und Kontrast im Elektronenmikroskop mit Zonenkorrekturplatten. Optik 24, 470 (1966);Google Scholar
  51. 6.46a
    R. Langer, W. Hoppe: Die Erhöhung von Auflösung und Kontrast im Elektronenmikroskop mit Zonenkorrekturplatten. Optik 25, 413 and 507 (1967)Google Scholar
  52. 6.47
    L. Reimer: Elektronenoptischer Phasenkontrast. Z. Naturforsch. A 24, 377 (1969)ADSGoogle Scholar
  53. 6.48
    H. Niehrs: Optimale Abbildungsbedingungen und Bildintensitätsverlauf bei einer Elektronenmikroskopie von Atomen. Optik 30, 273 (1969);Google Scholar
  54. 6.48a
    H. Niehrs: Optimale Abbildungsbedingungen und Bildintensitätsverlauf bei einer Elektronenmikroskopie von Atomen. Optik 31, 51 (1970)Google Scholar
  55. 6.49
    D.L. Misell: Image formation in the electron microscope. J. Phys. A 4, 782 and 798 (1971)ADSGoogle Scholar
  56. 6.50
    D.L. Misell: Image resolution and image contrast in the electron microscope. J. Phys. A 6, 62, 205 and 218 (1973)ADSGoogle Scholar
  57. 6.51
    T. Kobayashi, L. Reimer: Computation of electron microscopical images of single organic molecules. Optik 43, 237 (1975)Google Scholar
  58. 6.52
    W. Chiu, R.M. Glaeser: Single atom image contrast: conventional dark-field and bright-field electron microscopy. J. Microsc. 103, 33 (1975)Google Scholar
  59. 6.53
    A. Pitt: Dark field image calculation, in Electron Microscopy and Analysis 1979, ed. by T. Mulvey (IoP, London 1980) p.269Google Scholar
  60. 6.54
    H. Hoch: Dunkelfeldabbildung von schwachen Phasenobjekten im Elektronenmikroskop. Optik 47, 65 (1977)Google Scholar
  61. 6.55
    W. Krakow: Computer experiments for tilted beam dark-field imaging. Ultra-microscopy 1, 203 (1976)Google Scholar
  62. 6.56
    H. Hashimoto, A. Kumao, K. Hino, H. Yotsumoto, A. Ono: Images of Th atoms in TEM. Jpn. J. Appl. Phys. 10, 1115 (1971)ADSGoogle Scholar
  63. 6.57
    R.M. Henkelman, F.P. Ottensmeyer: Visualization of single heavy atoms by dark field electron microscopy. Proc. Nat. Acad. Sci. USA 68, 3000 (1971)ADSGoogle Scholar
  64. 6.58
    F.P. Ottensmeyer, E.E. Schmidt, T. Jack, J. Powell: Molecular architecture: the optical treatment of dark field electron micrographs of atoms. J. Ultrastruct. Res. 40, 546 (1972)Google Scholar
  65. 6.59
    F. Thon, D. Willasch: Imaging of heavy atoms in dark field electron microscopy using hollow cone illumination. Optik 36, 55 (1972)Google Scholar
  66. 6.60
    K.J. Hanszen: Problems of image interpretation in electron microscopy with linear and nonlinear transfer. Z. Angew. Phys. 27, 125 (1969)Google Scholar
  67. 6.61
    K.J. Hanszen: The relevance of dark field illumination in conventional and scanning TEM. PTB-Bericht A Ph-7 (Physikalisch-Technische Bundesanstalt, Braunschweig 1974)Google Scholar
  68. 6.62
    D.L. Misell: Image resolution in high voltage electron microscopy. J. Phys. D 6, 1409 (1973)ADSGoogle Scholar
  69. 6.63
    H. Formanek, M. Müller, M.H. Hahn, T. Koller: Visualization of single heavy atoms with the electron microscope. Naturwissenschaften 58, 339 (1971)ADSGoogle Scholar
  70. 6.64
    J.R. Parsons, H.M. Johnson, C.W. Hoelke, R.R. Hosbons: Imaging of uranium atoms with the electron microscope by phase contrast. Philos. Mag. 27, 1359 (1973)ADSGoogle Scholar
  71. 6.65
    W. Baumeister, M.H. Hahn: Electron microscopy of monomolecular layers of thorium atoms. Nature 241, 445 (1973)ADSGoogle Scholar
  72. 6.66
    S. Iijima: Observation of single and clusters of atoms in bright field electron microscopy. Optik 48, 193 (1977)Google Scholar
  73. 6.67
    E.B. Prestridge, D.J.C. Yates: Imaging the rhodium atom with a conventional high resolution electron microscope. Nature 234, 345 (1971)ADSGoogle Scholar
  74. 6.68
    D. Dorignac, B. Jouffrey: Atomic resolution at 3 MV, in Microscopie Electronique’72, Haute Tension, ed. by B. Jouffrey, P. Favard (Société Francaise de Microscopie Electronique, Paris 1976) p. 143Google Scholar
  75. 6.69
    D. Dorignac, B. Jouffrey: Iron single atom images, in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980) p. 112Google Scholar
  76. 6.70
    M. Retsky: Observed single atom elastic cross sections in a scanning electron microscope. Optik 41, 127 (1974)Google Scholar
  77. 6.71
    M. Isaacson, J.P. Langmore, H. Rose: Determination of the non-localization of the inelastic scattering of electrons by electron microscopy. Optik 41, 92 (1974)Google Scholar
  78. 6.72
    A.V. Crewe, J.P. Langmore, M.S. Isaacson: Resolution and contrast in the STEM, in Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. by B. Siegel, D.R. Beaman (Wiley, New York 1975) p.47Google Scholar
  79. 6.73
    M. Isaacson, M. Utlaut, D. Kopf: Analog computer processing of STEM images, in Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes, Topics Curr. Phys., Vol.13 (Springer, Berlin, Heidelberg 1980) p.257Google Scholar
  80. 6.74
    A.V. Crewe, J. Langmore, M. Isaacson, M. Retsky: Understanding single atoms in STEM, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.260Google Scholar
  81. 6.75
    M.S. Isaacson, J. Langmore, N.W. Parker, D. Kopf, M. Utlaut: The study of the adsorption and diffusion of heavy atoms on light element substrates by means of the atomic resolution STEM. Ultramicroscopy 1, 359 (1976)Google Scholar
  82. 6.76
    J.S. Wall, J.F. Hainfeld, J.W. Bittner: Preliminary measurements of uranium atom motion on carbon films at low temperatures. Ultramicroscopy 3, 81 (1978)Google Scholar
  83. 6.77
    K.J. Hanszen, B. Morgenstern, K.J. Rosenbruch: Aussagen der optischen Übertragungstheorie über Auflösung und Kontrast in elektronenmikroskopischen Bild. Z. Angew. Phys. 16, 477 (1964)Google Scholar
  84. 6.78
    K.J. Hanszen, B. Morgenstern: Die Phasenkontrast- und Amplitudenkontrast-Übertragung des elektronenmikroskopischen Objektivs. Z. Angew. Phys. 19, 215 (1965)Google Scholar
  85. 6.79
    K.J. Hanszen: Generalisierte Angaben über die Phasenkontrast- und Amplitudenkontrast-Übertragungsfunktionen für elektronenmikroskopische Objektive. Z. Angew. Phys. 20, 427 (1966)Google Scholar
  86. 6.80
    K.J. Hanszen: The optical transfer theory of the electron microscope: fundamental principles and applications, in Advances in Optical and Electron Microscopy, Vol.4, ed. by R. Barer, V.E. Cosslett (Academic, London 1971) p.1Google Scholar
  87. 6.81
    K.J. Hanszen: Contrast transfer and image processing, in Image Processing and Computer-Aided Design in Electron Optics, ed. by P.W. Hawkes (Academic, London 1973) p. 16Google Scholar
  88. 6.82
    P.W. Hawkes: Coherence in electron optics, in Advances in Optical and Electron Microscopy, Vol.7, ed. by R. Barer, V.E. Cosslett (Academic, London 1978) p.101Google Scholar
  89. 6.83
    P.W. Hawkes: Electron image processing: A survey. Computer Graphics and Image Processing 8, 406 (1978);Google Scholar
  90. 6.83a
    P.W. Hawkes: Electron image processing: A survey. Computer Graphics and Image Processing 18, 58 (1982)Google Scholar
  91. 6.84
    K.J. Hanszen, L. Trepte: Der Einfluß von Strom- und Spannungsschwankungen sowie der Energiebreite der Strahlelektronen auf Kontrastübertragung und Auflösung des Elektronenmikroskopes. Optik 32, 519 (1971)Google Scholar
  92. 6.85
    K.J. Hanszen, L. Trepte: Die Kontrastübertragung im Elektronenmikroskop bei partiell kohärenter Beleuchtung. Optik 33, 166 and 182 (1971)Google Scholar
  93. 6.86
    J. Frank: The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38, 519 (1973)Google Scholar
  94. 6.87
    R.H. Wade, J. Frank: Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49, 81 (1977)Google Scholar
  95. 6.88
    W.O. Saxton: Spatial coherence in axial high resolution conventional electron microscopy. Optik 49, 51 (1977)Google Scholar
  96. 6.89
    H. Yoshida, A. Ohshita, H. Tomita: Determination of spatial and temporal coherence functions from a single astigmatic image. Jpn. J. Appl. Phys. 20, 2427 (1981)ADSGoogle Scholar
  97. 6.90
    W. Hoppe, D. Köstler, D. Typke, N. Hunsmann: Kontrastübertragung für die Hellfeld-Bildrekonstruktion mit gekippter Beleuchtung in der Elektronenmikroskopie. Optik 42, 43 (1975)Google Scholar
  98. 6.91
    K.H. Downing: Note on transfer functions in electron microscopy with tilted illumination. Optik 43, 199 (1975)Google Scholar
  99. 6.92
    S.C. McFarlane: The imaging of amorphous specimens in a tilted-beam electron microscope. J. Phys. C 8, 2819 (1975)ADSGoogle Scholar
  100. 6.93
    R.H. Wade: Concerning tilted beam electron microscope transfer functions. Optik 45, 87 (1976)Google Scholar
  101. 6.94
    P.W. Hawkes: Electron microscope transfer functions in closed form with tilted illumination. Optik 55, 207 (1980)Google Scholar
  102. 6.95
    W. Krakow: Calculation and observation of atomic structure for tilted beam dark-field microscopy, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.261Google Scholar
  103. 6.96
    W. Hoppe: Towards three-dimensional electron microscopy at atomic resolution. Naturwissenschaften 61, 239 (1974)ADSGoogle Scholar
  104. 6.97
    W.K. Jenkins, R.H. Wade: Contrast transfer in the electron microscope for tilted and conical bright field illumination, in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (IoP, London 1977) p.115Google Scholar
  105. 6.98
    W. Kunath: Signal-to-noise enhancement by superposition of bright-field images obtained under different illumination tilts. Ultramicroscopy 4, 3 (1979)Google Scholar
  106. 6.99
    W. Kunath, F. Zemlin, K. Weiss. Apodization in phase-contrast electron microscopy realised with hollow-cone illumination. Ultramicroscopy 16, 123 (1985)Google Scholar
  107. 6.100
    O. Scherzer: Zur Theorie der Abbildung einzelner Atome in dicken Objekten. Optik 38, 387 (1973)Google Scholar
  108. 6.101
    W.O. Saxton, W.K. Jenkins, L.A. Freeman, D.J. Smith: TEM observations using bright field hollow cone illumination. Optik 49, 505 (1978)Google Scholar
  109. 6.102
    H. Rose: Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251 (1977)Google Scholar
  110. 6.103
    J. Fertig, H. Rose: On the theory of image formation in the electron microscope. Optik 54, 165 (1979)Google Scholar
  111. 6.104
    H. Rose: Phase contrast in STEM. Optik 39, 416 (1974)Google Scholar
  112. 6.105
    N.H. Dekkers, H. deLang: Differential phase contrast in a STEM. Optik 41, 452 (1974)Google Scholar
  113. 6.106
    W.C. Stewart: On differential phase contrast with an extended illumination source. J. Opt. Soc. Am. 66, 813 (1976)ADSGoogle Scholar
  114. 6.107
    H. Rose: Image formation by inelastically scattered electrons in electron microscopy. Optik 45, 139 (1976)Google Scholar
  115. 6.108
    P.W. Hawkes: Half-plane apertures in TEM, split detectors in STEM and ptychography. J. Opt. (Paris) 9, 235 (1978)ADSGoogle Scholar
  116. 6.109
    G.R. Morrison, J.N. Chapman: STEM imaging with a quadrant detector, in Electron Microscopy 1981, ed. by M.J. Goringe (IoP, London 1981) p.329Google Scholar
  117. 6.110
    W. Hoppe: Ein neuer Weg zur Erhöhung des Auflösungsvermögens des Elektronenmikroskops. Naturwissenschaften 48, 736 (1961)ADSGoogle Scholar
  118. 6.111
    F. Lenz: Zonenplatten zur Öffnungsfehlerkorrektur und zur Kontrasterhöhung. Z. Phys. 172, 498 (1963)ADSMATHGoogle Scholar
  119. 6.112
    F. Thon, B.M. Siegel: Zonal filtering in optical reconstruction of high resolution phase contrast images, in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p. 13Google Scholar
  120. 6.113
    H. Tochigi, H. Nakatsuka, A. Fukami, K. Kanaya: The improvement of the image contrast by using the phase plate in the TEM, in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscope Electronique, Paris 1970) p.73Google Scholar
  121. 6.114
    H.M. Johnson, D.F. Parsons: In-focus phase contrast electron microscopy, in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.71Google Scholar
  122. 6.115
    P.N.T. Unwin: An electrostatic phase plate for the electron microscope. Ber. Bunsenges. Phys. Chem. 74, 1137 (1970)Google Scholar
  123. 6.116
    W. Krakow, B.M. Siegel: Phase contrast in electron microscope images with an electrostatic phase plate. Optik 42, 245 (1975)Google Scholar
  124. 6.117
    G. Möllenstedt, R. Speidel, W. Hoppe, R. Langer, K.-H. Katerbau, F. Thon: Electron microscopical imaging using zonal correction plates, in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.125Google Scholar
  125. 6.118
    F. Thon, D. Willasch: Hochauflösungs-Elektronenmikroskopie mit Spezialaper-turblenden und Phasenplatten, in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.3Google Scholar
  126. 6.119
    K.-H. Müller: Phasenplatten für Elektronenmikroskope. Optik 45, 73 (1976)Google Scholar
  127. 6.120
    H.G. Badde, L. Reimer: Der Einfluß einer streuenden Phasenplatte auf das elektronenmikroskopische Bild. Z. Naturforsch. A 25, 760 (1970)ADSGoogle Scholar
  128. 6.121
    D. Willasch: High resolution electron microscopy with profile phase plates Optik 44, 17 (1975)Google Scholar
  129. 6.122
    L. Reimer, H.G. Badde, E. Drewes, H. Gilde, H. Kappert, H.J. Höhling, D.B. von Bassewitz, A. Rössner: Laserbeugung an elektronenmikroskopischen Aufnahmen. Forschungsber. Landes Nordrhein Westfalen Nr.2314 (Westdeutscher Verlag, Opladen 1973)Google Scholar
  130. 6.123
    J.R. Berger, D. Harker: Optical diffractometer for production of Fourier transforms of electron micographs. Rev. Sci. Instrum. 38, 292 (1967)ADSGoogle Scholar
  131. 6.124
    O.L. Krivanek: A method for determining the coefficient of spherical aberration from a single electron micrograph. Optik 45, 97 (1976)Google Scholar
  132. 6.125
    W. Krakow, K.H. Downing, B.M. Siegel: The use of tilted specimens to obtain the contrast transfer characteristics of an electron microscope imaging system. Optik 40, 1, (1974)Google Scholar
  133. 6.126
    L. Reimer, H.G. Heine, R.A. Ajeian: Optimalbedingungen für den Beugungsnachweis von Defokussierungsstrukturen in elektronenmikroskopischen Aufnahmen. Z. Naturforsch. A 24, 1846 (1969)ADSGoogle Scholar
  134. 6.127
    L. Reimer, H. Kappert: Bestimmung der Domänenwanddicke aus defokussierten elektronenoptischen Aufnahmen von ferromagnetischen Schichten. Z. Angew. Phys. 26, 58 (1969)Google Scholar
  135. 6.128
    J. Frank: Nachweis von Objektbewegungen im lichtoptischen Diffraktogramm von elektronenmikroskopischen Aufnahmen. Optik 30, 171 (1969)Google Scholar
  136. 6.129
    J. Frank: Observation of the relative phases of electron microscopic phase contrast zones with the aid of the optical diffractometer. Optik 35, 608 (1972)Google Scholar
  137. 6.130
    L. Reimer, B. Volbert, P. Bracker: Quality control of SEM micrographs by laser diffractometry. Scanning 1, 233 (1978)Google Scholar
  138. 6.131
    K.H. Herrmann, D. Krahl: ‘Real-time’-Elektronenbildwandlung mit Thermoplastschichten. Optik 45, 231 (1976)Google Scholar
  139. 6.132
    P. Bonhomme, A. Beorchia, B. Meunier, F. Dumont, D. Rossier: Incoherent reading light tests of a Pockels-effect imaging device used in an ‘in-line’ optical processor of microscopical electron images. Optik 45, 159 (1976)Google Scholar
  140. 6.133
    A. Beorchia, P. Bonhomme, N. Bonnet: Modulation transfer function and detective quantum efficiency of Electrotitus. Optik 55, 11 (1980)Google Scholar
  141. 6.134
    D. Gabor: Microscopy by reconstructed wave-fronts. Proc. Roy. Soc. A 197, 454 (1949);ADSMATHGoogle Scholar
  142. 6.134a
    D. Gabor: Microscopy by reconstructed wave-fronts. Proc. Phys. Soc. B 64, 449 (1950)ADSGoogle Scholar
  143. 6.135
    A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda: Optical reconstuction of image from Fraunhofer electron-hologram. Jpn. J. Appl. Phys. 7, 295 (1968)ADSGoogle Scholar
  144. 6.136
    J. Munch: Experimental electron holography. Optik 43, 79 (1975)Google Scholar
  145. 6.137
    K.J. Hanszen, G. Ade, R. Lauer: Genauere Angaben über spärische längsaber-ration, Verzeichnung in der Pupillenebene und über die Wellenaberration von Elektronenlinsen. Optik 35, 567 (1972)Google Scholar
  146. 6.138
    K.J. Hanszen: Neuere theoretische Erkenntnisse und praktische Erfahrungen über die holographische Rekonstruktion elektronenmikroskopischer Aufnahmen, PTB-Bericht A Ph-4 (Physikalisch-Technische Bundesanstalt, Braunschweig 1973)Google Scholar
  147. 6.139
    G. Ade: Erweiterung der Kontrastübertragungstheorie auf nicht-isoplanatische Abbildungen. Optik 50, 143 (1978)Google Scholar
  148. 6.140
    K.J. Hanszen: Holographische Rekonstruktionsverfahren in der Elektronenmikroskopie und ihre kontrastübertragungstheoretische Deutung. Optik 32, 74 (1970)Google Scholar
  149. 6.141
    A. Lohmann: Optische Einseitenbandübertragung angewandt auf das Gabor-Mikroskop. Opt. Acta 3, 97 (1956)ADSGoogle Scholar
  150. 6.142
    K.J. Hanszen: Einseitenband-Holographie. Z. Naturforsch. A 24, 1849 (1969)ADSGoogle Scholar
  151. 5.143
    W. Hoppe, R. Langer, F. Thon: Verfahren zur Rekonstruktion komplexer Bildfunktionen in der Elektronenmikroskopie. Optik 30, 538 (1970)Google Scholar
  152. 6.144
    W. Hoppe: Zur ‘Abbildung’ komplexer Bildfunktionen in der Elektronenmikroskopie. Z. Naturforsch. A 26, 1155 (1971)ADSGoogle Scholar
  153. 6.145
    F. Thon: Hochauflösende elektronenmikroskopische Abbildung amorpher Objekte mittels Zweistrahlinterferenzen, in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p. 127Google Scholar
  154. 6.146
    K.H. Downing: Compensation of lens aberrations by single-sideband holography, in Proc. 30th Ann. EMSA Meeting (Claitor’s Publ. Div., Baton Rouge, LO 1972) p.562Google Scholar
  155. 6.147
    P. Sieber: High resolution electron microscopy with heated apertures and reconstruction of single-sideband micrographs, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.274Google Scholar
  156. 6.148
    K.H. Downing, B.M. Siegel: Discrimination of heavy and light components in electron microscopy using single-sideband holographic techniques. Optik 42, 155 (1975)Google Scholar
  157. 6.149
    E.N. Leith, J. Upatnieks: Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123 (1962)ADSGoogle Scholar
  158. 6.150
    G. Möllenstedt, H. Wahl: Elektronenholographie und Rekonstruktion mit Laserlicht. Naturwissenschaften 55, 340 (1968)ADSGoogle Scholar
  159. 6.151
    H. Lichte. Electron holography approaching atomic resolution. Ultramicroscopy 20, 293 (1986)Google Scholar
  160. 6.152
    E. Völkl, H. Lichte: Electron holograms for subÅangstrom point resolution. Ultramicroscopy 32, 177 (1990)Google Scholar
  161. 6.153
    A. Tonomura, T. Matsuda, T. Kawasaki, J. Endo, N. Osakawa. Sensitivity-enhanced electron-hologram interferometry and thickness-measurement application at atomic scale. Phys. Rev. Lett. 54, 60 (1985)ADSGoogle Scholar
  162. 6.154
    A. Tonomura, J. Endo, T. Matsuda: An application of electron holography to interference microscopy. Optik 53, 143 (1979)Google Scholar
  163. J. Endo, T. Matsuda, A. Tonomura: Interference electron microscopy by means of holography. Jpn. J. Appl. Phys. 18, 2291 (1979)ADSGoogle Scholar
  164. 6.155
    A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Minama: Direct observation of fine structure of magnetic domain walls by electron holography. Phys. Rev. Lett. 44, 1430 (1980)ADSGoogle Scholar
  165. 6.155a
    N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fuijiwara, A. Tonomura: Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746 (1983)ADSGoogle Scholar
  166. 6.155b
    A. Tonomura: Electron Holography, Springer Ser. Opt. Sci., Vol.70 (Springer, Berlin, Heidelberg 1993)Google Scholar
  167. 6.156
    K.J. Hanszen: Experience and results obtained in electron miscroscopical holography by using a reference beam in the light optical reconstruction step, in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (7th Europ. Congr. on Electron Microscopy Foundation, Leiden 1980) p. 136Google Scholar
  168. 6.157
    K.J. Hanszen, R. Lauer, G. Ade: Discussions of the possibilities and limitations of in-line and off-axis holography in electron microscopy, PTB-Bericht A Ph-15 (Physikalisch-Technische Bundesanstalt, Braunschweig 1980)Google Scholar
  169. 6.158
    K.J. Hanszen: Methods of off-axis holography and investigations of the phase structure in crystals. J. Phys. D 19, 373 (1986)ADSGoogle Scholar
  170. 6.159
    K.H. Hanszen: Holography in electron microscopy. Adv. Electron. Electron Phys. 59, 1 (1982)Google Scholar
  171. 6.160
    K.J. Hanszen: Lichtoptische Anordnungen mit Laser-Lichtquellen als Hilfmittel für die Elektronenmikroskopie, in Electron Microscopy1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p. 153Google Scholar
  172. 6.161
    J. Rogers: The design and use of an optical model of the electron microscope, in Proc. of the ICO-11 Conference (Madrid, 1978)Google Scholar
  173. 6.162
    A. Maréchal, P. Croce: Un filtre de fréquences spatiales pour l’amélioration du contraste des images optiques. C. R. Acad. Sci. Paris 237, 607 (1953)Google Scholar
  174. 6.163
    M.H. Hahn: Eine optische Ortsfrequenzfilter- und Korrelationsanlage für elektronenmikroskopische Aufnahmen. Optik 35, 326 (1972)Google Scholar
  175. 6.164
    G.W. Stroke, M. Halioua: Attainment of diffraction-limited imaging in high-resolution electron microscopy by ‘a posteriori’ holographic image sharpening. Opik 35, 50 (1972)Google Scholar
  176. 6.165
    G.W. Stroke, M. Halioua: Image deblurring holographic deconvolution with partially-coherent low-contrast objects and application to electron microscopy. Optik 35, 489 (1972)Google Scholar
  177. 6.166
    G.W. Stroke, M. Halioua: Image improvement in high-resolution electron microscopy with coherent illumination (low-contrast objects) using holographic image-deblurring deconvolution. Optik 37, 192 and 249 (1973)Google Scholar
  178. 6.167
    G.W. Stroke, M. Halioua, F. Thon, D. Willasch: Image improvement in high resolution electron microscopy using holographic image deconvolution. Optik 41, 319 (1974)Google Scholar
  179. 6.168
    A.W. Lohmann, D.P. Paris: Computer generated spatial filters for coherent optical data processing. Appl. Opt. 7, 651 (1968)ADSGoogle Scholar
  180. 6.169
    A.W. Lohmann, D.P. Paris: Binary Fraunhofer holograms, generated by computer. Appl. Opt. 6, 1739 (1967)ADSGoogle Scholar
  181. 6.170
    R.E. Burge, R.F. Scott: Binary filters for high resolution electron microscopy. Optik 43, 53 (1975);Google Scholar
  182. 6.170
    R.E. Burge, R.F. Scott: Binary filters for high resolution electron microscopy. Optik 44, 159 (1976)Google Scholar
  183. 6.171
    S. Boseck, H. Hager: Beseitung des spatialen Rauschens in elektronenmikroskopischen Aufnahmen durch lichtoptische Filterung. Optik 28, 602 (1968)Google Scholar
  184. S. Boseck, R. Lange: Ausschöpfung des Informationsgehaltes von elektronenmikroskopischen Aufnahmen biologischer Objekte mit Hilfe des Abbeschen Beugungsapparates, gezeigt am Beispiel kristallartiger Strukturen. Z. Wiss. Mikr. 70, 66 (1970)Google Scholar
  185. 6.172
    J.B. Bancroft, G.J. Hills, R. Markham: A study of the self-assembly process in a small spherical virus. Virology 31, 354 (1967)Google Scholar
  186. 6.173
    A. Klug, D.J. deRosier: Optical filtering of electron micrographs: reconstruction of one-sided images. Nature 212, 29 (1966)ADSGoogle Scholar
  187. 6.174
    C.A. Taylor, J.K. Ranniko: Problems in the use of selective optical spatial filtering to obtain enhanced information from electron micrographs. J. Microsc. 100, 307 (1974)Google Scholar
  188. 6.175
    R. Markham, J.H. Hitchborn, G.J. Hills, S. Frey: The anatomy of tobacco mosaic virus. Virology 22, 342 (1964)Google Scholar
  189. 6.176
    R.C. Warren, R.M. Hicks: A simple method of linear integration for resolving structures in periodic lattices. J. Ultrastruct. Res. 36, 861 (1971)Google Scholar
  190. 6.177
    R. Markham, S Frey, G.J. Hills: Methods for the enhancement of image detail and accentuation of stucture in electron microscopy. Virology 20, 88 (1963)Google Scholar
  191. 6.178
    P.W. Hawkes. Processing electron images, in Quantitative Electron Microscopy, ed. by J.N. Chapman, A.J. Craven. Scottish Univ. Summer School Publ. Edinburgh (1984) p.351Google Scholar
  192. 6.179
    D.L. Misell: The phase problem in electron microscopy, in Advances in Optical and Electron Microscopy, Vol.7, ed. by R. Barer, V.E. Cosslett (Academic, London 1978) p.185Google Scholar
  193. 6.180
    W.O. Saxton: Computer techniques for image processing in electron microscopy. Adv. Electron. Electron Phys. Suppl. 10, 289 (1978)ADSGoogle Scholar
  194. 6.181
    W.O. Saxton: Recovery of specimen information for strongly scattering objects, in Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes, Topics Curr. Phys., Vol.13 (Springer, Berlin, Heidelberg 1980) p.35Google Scholar
  195. 6.182
    R.W. Gerchberg, W.O. Saxton: Phase determination from image and diffraction plane pictures in the electron microscope. Optik 34, 275 (1971)Google Scholar
  196. 6.183
    R.W. Gerchberg, W.O. Saxton: A practical algorithm for the determination of phase from image and diffraction plane picture. Optik 35, 237 (1972)Google Scholar
  197. 6.184
    J. Frank: A remark on phase determination in electron microscopy. Optik 38, 582 (1973)Google Scholar
  198. 6.185
    R.W. Gerchberg: Holography without fringes in the electron microscope. Nature 240, 404 (1972)ADSGoogle Scholar
  199. 6.186
    J.N. Chapman: The application of iterative techniques to the investigation of strong phase objects in the electron microscope. Philos. Mag. 32, 527 and 541 (1975)ADSGoogle Scholar
  200. 6.187
    D.L. Misell: An examination of an iterative method for the solution of the phase problem in optics and electron optics. J. Phys. D 6, 2200 and 2217 (1973)ADSGoogle Scholar
  201. 6.188
    P. Schiske: Phase determination from, a focal series and the corresponding diffraction pattern in electron microscopy for strongly scattering objects. J. Phys. D 8, 1372 (1975)ADSGoogle Scholar
  202. 6.189
    D.A. Ansley: Determining the phase of line objects by measuring their intensity in dark field and bright field illumination. Opt. Commun. 8, 140 (1973)ADSGoogle Scholar
  203. 6.190
    P. van Toorn, A.M.J. Huiser, H.A. Ferwerda: Proposals for solving the phase retrieval problem for semi-weak objects from noisy electron micrographs. Optik 51, 309 (1978)Google Scholar
  204. 6.191
    R. Langer, J. Frank, A. Feltynowski, W. Hoppe: Anwendung des Bilddifferenzverfahrens auf die Untersuchung von Strukturänderungen dünner Kohlefolien bei Elektronenbestrahlung. Ber. Bunsenges. Phys. Chem. 74, 1120 (1970)Google Scholar
  205. 6.192
    J. Frank: Two-dimensional correlation functions in electron microscope image analysis, in Electron Microscopy 1972 (IoP, London 1972) p.622Google Scholar
  206. 6.193
    L.S. Al-Ali: Translational alignment of differently defocused micrographs using cross-correlation, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.225Google Scholar
  207. 6.194
    W. Hoppe, R. Langer, J. Frank, A. Feltynowski: Bilddifferenzverfahren in der Elektronenmikroskopie. Naturwissenschaften 56, 267 (1969)ADSGoogle Scholar
  208. 6.195
    R.A. Crowther, L.A. Amos: Harmonic analysis of electron microscope images with rotational symmetry. J. Mol. Biol. 60, 123 (1971)Google Scholar
  209. 6.196
    H.P. Erickson, A. Klug: Measurements and compensation of defocusing and aberrations by Fourier processing of electron micrographs. Philos. Trans. B 261, 105 (1971)Google Scholar
  210. 6.197
    A.M. Kuo, R.M. Glaeser: Development of methodology for low exposure, high resolution electron microscopy of biological specimens. Ultramicroscopy 1, 53 (1975)Google Scholar
  211. 6.198
    P.N.T. Unwin, R. Henderson: Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425 (1975)Google Scholar
  212. 6.199
    J.L. Harris: Image evaluation and restoration. J. Opt. Soc. Am. 56, 569 (1966)ADSGoogle Scholar
  213. 6.200
    J. Frank, P. Bußler, R. Langer, W. Hoppe: Einige Erfahrungen mit der rechnerischen Analyse und Synthese von elektronenmikroskopischen Bildern hoher Auflösung. Ber. Bunsenges. Phys. Chem. 74, 1105 (1970)Google Scholar
  214. 6.201
    T.A. Welton: Computational correction of aberrations in electron microscopy, in Proc. 29th Annual Meeting of EMSA (Claitor’s Publ. Div. Baton Rouge, LO 1971) p.94Google Scholar
  215. 6.202
    T.A. Welton: A computational critique of an algorithm for image enhancement in bright field electron microscope. Adv. Electron. Electron Phys. 48, 37 (1978)Google Scholar
  216. 6.203
    W.O. Saxton, J. Frank: Motif detection in quantum noise-limited electron micrographs by cross-correlation. Ultramicroscopy 2, 219 (1977)Google Scholar
  217. 6.204
    J. Frank: Averaging of low exposure electron micrographs of nonperiodic objects. Ultramicroscopy 1, 159 (1979);Google Scholar
  218. 6.204a
    J. Frank: Optimal use of image information using signal detection and averaging techniques. Ann. NY Acad. Sci. 306, 112 (1978)ADSGoogle Scholar
  219. 6.204b
    J. Frank: Reconstruction of non-periodic objects using correlation methods, in Electron Microscopy1978, Vol.3, ed. by J.M. Sturgess (Microscopial Soc. Canada, Toronto 1978) p.87Google Scholar
  220. 6.204c
    J. Frank: The role of correlation techniques in computer image processing, in Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes, Topics Curr. Phys., Vol.13 (Springer, Berlin, Heidelberg 1980) p. 187Google Scholar
  221. 6.205
    J. Frank, W. Goldfarb, D. Eisenberg, T.S. Baker: Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3, 283 (1978)Google Scholar
  222. 6.206
    J. Frank, A. Verschoor, M. Boublik: Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214, 1356 (1981)ADSGoogle Scholar
  223. 6.207
    M. van Heel: Detection of objects in quantum-noise-limited images. Ultramicroscopy 7, 331 (1982)Google Scholar
  224. 6.208
    M. van Heel, J. Frank: Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6, 187 (1981)Google Scholar
  225. J. Frank: The rule of multivariate image analysis in solving the architecture of the Limulus polyphemus hemocyanin molecule. Ultramicroscopy 13, 153 (1984)Google Scholar
  226. M. van Heel: Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy 13, 165 (1984)Google Scholar
  227. 6.209
    H. Gross, Th. Müller, I. Wildhaber, H. Winkler. High resolution metal replication, quantified by image processing of periodic test specimens. Ultramicroscopy 16, 287 (1985)Google Scholar
  228. 6.210
    I. Wildhaber, H. Gross, H. Moor. Comparative studies of very thin shadowing films produced by atom beam sputtering and electron beam evaporation. Ultramicroscopy 16, 321 (1985)Google Scholar
  229. 6.211
    P.R. Smith: An integrated set of computer programs for processing electron micrographs of biological structures. Ultramicroscopy 3, 153 (1978)Google Scholar
  230. 6.212
    W.O. Saxton, T.J. Pitt, M. Horner: Digital image processing: the SEMPER system. Ultramicroscopy 4, 343 (1979)Google Scholar
  231. 6.213
    J. Frank, B. Shinkin, H. Dowse: SPIDER — a modular software system for electron image processing. Ultramicroscopy 6, 343 (1981)Google Scholar
  232. 6.214
    M. van Heel, W. Keegstra: IMAGIC: a fast, flexible and friendly image analysis software system. Ultramicroscopy 7, 113 (1981)Google Scholar
  233. 6.215
    J.G. Helmcke: Theorie und Praxis der elektronenmikroskopischen Stereoaufnahme. Optik 11, 201 (1954)Google Scholar
  234. 6.215a
    J.G. Helmcke: Theorie und Praxis der elektronenmikroskopischen Stereoaufnahme. Optik 12 253 (1955)Google Scholar
  235. 6.216
    J.G. Helmcke, HJ. Orthmann: Fehler bei der Tiefenbestimmung elektronenmikroskopischer Stereoaufnahmen. Optik 11, 562 (1954)Google Scholar
  236. 6.217
    R.I. Garrod, J.F. Nankivell: Sources of error in electron stereomicroscopy. Br. J. Appl. Phys. 9, 214 (1958)ADSGoogle Scholar
  237. 6.218
    R.I. Garrod, J.F. Nankivell: Some remarks on the accuracy obtainable in electron stereomicroscopy. Optik 16, 27 (1959)Google Scholar
  238. 6.219
    R.A. Crowther, D.J. deRosier, A. Klug: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. Roy. Soc. A 317, 319 (1970)ADSGoogle Scholar
  239. 6.220
    G.N. Ramachandran, A.V. Lakshminarayanan: Three-dimensional reconstruction from radiograph and electron micrographs. Proc. Nat. Acad. Sci. USA 68, 2236 (1971)MathSciNetADSGoogle Scholar
  240. 6.221
    R.A. Crowther, A. Klug: ART and Science or conditions for three-dimensional structure from projections and its application to electron microscopy. J. Theor. Biol. 32, 199 (1971)Google Scholar
  241. 6.222
    R. Gordon, R. Bender, G.T. Herman: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471 (1970)Google Scholar
  242. 6.223
    B.K. Vainshtein: Finding the structure of objects from projections. Sov. Phys. Cryst. 15, 781 (1971)Google Scholar
  243. 6.224
    P. Gilbert: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105 (1972)Google Scholar
  244. 6.225
    P.F.C. Gilbert: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II. Direct methods. Proc. Roy. Soc. B 182, 89 (1972)ADSGoogle Scholar
  245. 6.226
    E. Zeitler: The reconstruction of objects from their projections. Optik 39, 396 (1974)Google Scholar
  246. 6.227
    W. Hoppe, H.J. Schramm, M. Sturm, N. Hunsmann, J. Gaßmann: Three-dimensional electron microscopy of individual biological objects. Z. Naturforsch. A 31, 645, 1370 and 1380 (1976)ADSGoogle Scholar
  247. 6.228
    J.A. Lake: Reconstruction of three-dimensional structures from electron micrographs: The equivalence of two methods, in Proc. 29th Annual Meeting of EMSA (Claitor’s Publ. Div. Baton Rouge, LO 1971) p.90Google Scholar
  248. 6.229
    M. Zwick, E. Zeitler: Image reconstruction from projections. Optik 38, 550 (1973)Google Scholar
  249. 6.230
    A. Klug, F.H.C. Crick, H.W. Wyckoff: Diffraction by helical structures. Acta Cryst. 11, 199 (1958)Google Scholar
  250. 6.231
    M. Radermacher, T. Wagenknecht, A. Verschoor, J. Frank: Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113 (1987)Google Scholar
  251. D.J. deRosier, A. Klug: Reconstruction of three-dimensional structures from electron micrographs. Nature 217, 130 (1968)ADSGoogle Scholar
  252. 6.232
    B.K. Vainshtein: Electron microscopical analysis of the three-dimensional structure of biological macromolecules, in Advances in Optical and Electron Microscopy, Vol.7, ed. by R. Barer, V.E. Cosslett (Academic, London 1978) p.281Google Scholar
  253. 6.233
    N.A. Kiselev: Reconstruction of the structure of enzymes from their images, in Electron Microscopy1978, Vol.3, ed. by J.M. Sturgess (Microscopical Soc. of Canada, Toronto 1978) p.94Google Scholar
  254. 6.234
    D.L. Misell: Image analysis, enhancement and interpretation, in Practical Methods in Electron Microscopy, Vol.7, ed. by A.M. Glauert (North-Holland, Amsterdam 1978)Google Scholar
  255. 6.235
    W.O. Saxton: Digital processing of electron images — a survey of motivations and methods, in Electron Microscopy1980, Vol.1, ed. by P. Brederoo, G. Boom (7th Infi Congr. on Electron Microscopy Foundation, Leiden 1980) p.486Google Scholar
  256. 6.236
    J.E. Mellema: Computer reconstruction of regular biological objects, in Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes, Topics Curr. Phys., Vol.13 (Springer, Berlin, Heidelberg 1980) p.89Google Scholar
  257. 6.237
    W. Hoppe, R. Hegerl: Three-dimensional structure determination by electron microscopy (nonperiodic specimens), in Computer Processing of Electron Microscope Images, ed. by P.W. Hawkes, Topics Curr. Phys., Vol.13 (Springer, Berlin, Heidelberg 1980) p.127Google Scholar
  258. 6.238
    J.N. Chapman: The investigation of magnetic domain structures in thin foils by electron microscopy. J. Phys. D 17, 623 (1984)ADSGoogle Scholar
  259. 6.239
    P.J. Grundy, R.S. Tebble: Lorentz electron microscopy. Adv. Phys. 17, 153 (1968)ADSGoogle Scholar
  260. 6.240
    R.H. Wade: Lorentz microscopy or electron phase microscopy of magnetic objects, in Advances in Optical and Electron Microscopy, Vol.5, ed. by R. Barer, V.E. Cosslett (Academic, London 1973) p.239Google Scholar
  261. 6.241
    J.P. Jacubovics: Lorentz microscopy and application (TEM and SEM), in Electron Microscopy in Materials Science, Part IV, ed. by U. Valdrè, E. Ruedl (Commission of the Europ. Communites, Brussels 1976) p. 1303Google Scholar
  262. 6.242
    H. Boersch, W. Raith, H. Weber: Die magnetische Ablenkung von Elektronenstrahlen in dünnen Fe-Schichten. Z. Phys. 161, 1 (1961)ADSGoogle Scholar
  263. 6.243
    K. Schaffernicht: Messung der Magnetisierungsverteilungen in dünnen Fe-Schichten durch die Ablenkung von Elektronen. Z. Angew. Phys. 15, 275 (1963)Google Scholar
  264. 6.244
    D.H. Warrington, J.M. Rodgers, R.S. Tebble: The use of ferromagnetic domain structure to determine the thickness of iron foils in TEM. Philos. Mag. 7, 1783 (1962)ADSGoogle Scholar
  265. 6.245
    R.H. Wade: Electron diffraction from a magnetic phase grating. Phys. Status Solidi 19, 847 (1967)Google Scholar
  266. 6.246
    M.J. Goringe, J.P. Jakubovics: Electron diffraction from periodic magnetic fields. Philos. Mag. 15, 393 (1967)ADSGoogle Scholar
  267. 6.247
    H. Boersch, H. Raith: Elektronenmikroskopische Abbildung Weißscher Bezirke in dünnen ferromagnetischen Schichten. Naturwissenschaften 46, 574 (1959)ADSGoogle Scholar
  268. 6.248
    H.W. Fuller, M.E. Hale: Domains in thin magnetic films observed by electron microscopy. J. Appl. Phys. 31, 1699 (1960)ADSGoogle Scholar
  269. 6.249
    J. Podbrdsky: High resolution in-focus Lorentz electron microscopy. J. Microsc. 101, 231 (1974)Google Scholar
  270. 6.250
    M.J. Bowman, V.H. Meyer: Magnetic phase contrast from thin ferromagnetic films in the TEM. J. Phys. E 3, 927 (1970)ADSGoogle Scholar
  271. 6.251
    L. Marton: Electron optical observation of magnetic fields. J. Appl. Phys. 19, 863 (1948)ADSGoogle Scholar
  272. 6.252
    L. Marton, S.H. Lachenbruch: Electron optical mapping of electromagnetic fields. J. Appl. Phys. 20, 1171 (1949)ADSGoogle Scholar
  273. 6.253
    L. Marton, J.A. Simpson, S.H. Lachenbruch: Electron optical shadow method of magnetic field mapping. J. Res. NBS 52, 97 (1954)MATHGoogle Scholar
  274. 6.254
    M. von Ardenne: Zur Sichtbarmachung von Störungen oder Inhomogenitäten magnetischer und elektrischer Felder mit der elektronenoptischen Schneidenmethode. Phys. Z. 45, 312 (1945)Google Scholar
  275. 6.255
    W. Rollwagen, Ch. Schwink: Die Empfindlichkeit einfacher elektronenoptischer Schlierenanordnungen. Optik 10, 525 (1953)Google Scholar
  276. 6.256
    Ch. Schwink: Über neue quantitative Verfahren der elektronenoptischen Schattenmethode, Optik 12, 481 (1955)Google Scholar
  277. 6.257
    Ch. Schwink, O. Schärpf: Electron-optic investigation of the magnetic stray field above Bloch walls in cylindric Ni crystals. Phys. Status Solidi 30, 637 (1968)Google Scholar
  278. 6.258
    A.G. Cullis, D.M. Maher: High-resolution topographical imaging by direct transmission electron microscopy. Philos. Mag. 30, 447 (1974)ADSGoogle Scholar
  279. 6.259
    M.E. Hale, H.W. Fuller, H. Rubinstein: Magnetic domain observations by electron microscopy. J. Appl. Phys. 30, 789 (1959)ADSGoogle Scholar
  280. 6.260
    H.W. Fuller, M.E. Hale: Determination of magnetization distribution in thin films using electron microscopy. J. Appl. Phys. 31, 238 (1960)ADSGoogle Scholar
  281. 6.261
    H. Boersch, H. Harnisch, D. Wohlleben, K. Grohmann: Antiparallele Weißsche Bereiche als Biprisma für Elektroneninterferenzen. Z. Phys. 159, 397 (1960);ADSGoogle Scholar
  282. 6.261a
    H. Boersch, H. Harnisch, D. Wohlleben, K. Grohmann: Antiparallele Weißsche Bereiche als Biprisma für Elektroneninterferenzen. Z. Phys. 167, 72 (1962)ADSGoogle Scholar
  283. 6.262
    D. Wohlleben: Diffraction effects in Lorentz microscopy. J. Appl. Phys. 38, 3341 (1967)ADSGoogle Scholar
  284. 6.263
    L. Reimer, H. Kappert: Elektronen-Kleinwinkelstreuung und Bildkontrast in defokussierten Aufnahmen magnetischer Bereichsgrenzen. Z. Angew. Phys. 27, 165 (1969)Google Scholar
  285. 6.264
    J.P. Guigay, R.H. Wade: Mainly on the Fresnel mode in Lorentz microscopy. Phys. Status Solidi 29, 799 (1968)Google Scholar
  286. 6.265
    E. Fuchs: Magnetische Strukturen in dünnen ferromagnetischen Schichten, untersucht mit dem Elektronenmikroskop. Z. Angew. Phys. 14, 203 (1962)Google Scholar
  287. 6.266
    R.H. Wade: The determination of domain wall thickness in ferromagnetic films by electron microscopy. Proc. Phys. Soc. 79, 1237 (1962);ADSGoogle Scholar
  288. 6.266a
    R.H. Wade: Investigation of the geometrical-optical theory of magnetic structure imaging in the electron microscopy. J. Appl. Phys. 37, 366 (1966)ADSGoogle Scholar
  289. 6.267
    H. Gong, J.N. Chapman: On the use of divergent wall images in the Fresnel mode of Lorentz microscopy for the measurement of the widths of very narrow domain walls. J. Magn. Magn. Mat. 67, 4 (1987)ADSGoogle Scholar
  290. 6.268
    T. Suzuki, A. Hubert: Determination of ferromagnetic domain wall widths by means of high voltage Lorentz microscopy. Phys. Status Solidi 38, K5 (1970)Google Scholar
  291. 6.269
    T. Suzuki, M. Wilkens: Lorentz-electron microscopy of ferromagnetic specimens at high voltages. Phys. Status Solidi A 3, 43 (1970)ADSGoogle Scholar
  292. 6.270
    D.S. Hothersall: The investigation of domain walls in thin sections of iron by the electron interference method. Philos. Mag. 20, 89 (1969)ADSGoogle Scholar
  293. 6.271
    D.C. Hothersall: Electron images of domain walls in Co foils. Philos. Mag. 24, 241 (1971)ADSGoogle Scholar
  294. 6.272
    D.C. Hothersall: Electron images of two-dimensional domain walls. Phys. Status Solidi B 51, 529 (1972)ADSGoogle Scholar
  295. 6.273
    P. Schweninger: The analysis of magnetic domain wall structures in the transition region of Néel and Bloch walls by Lorentz microscopy. Phys. Status Solidi A 36, 335 (1976)ADSGoogle Scholar
  296. 6.274
    J.N. Chapman, R.P. Ferrier, N. Toms: Strong stripe domains. Philos. Mag. 28, 561 and 581 (1973)ADSGoogle Scholar
  297. 6.275
    CG. Harrison, K.D. Leaver: A second domain wall parameter measurable by Lorentz microscopy. Phys. Status Solidi A 12, 413 (1972)ADSGoogle Scholar
  298. 6.276
    R. Ajeian, H. Kappert, L. Reimer: Fraunhofer-Beugung an Lorentz-mikroskopischen Aufnahmen des Magnetisierungs-Ripple. Z. Angew. Phys. 30, 80 (1970)Google Scholar
  299. 6.277
    H.G. Badde, H. Kappert, L. Reimer: Wellenoptische Theorie des Ripple-Kon-trastes in der Lorentzmikroskopie. Z. Angew. Phys. 30, 83 (1970)Google Scholar
  300. 6.278
    T. Suzuki: Investigations into ripple wavelength in evaporated thin films by Lorentz microscopy. Phys. Status Solidi 37, 101 (1970)Google Scholar
  301. 6.279
    M. Blackman, A.E. Curzon, A.T. Pawlowicz: Use of an electron beam for detecting superconducting domains of lead in its intermediate state. Nature 200, 157 (1963)ADSGoogle Scholar
  302. 6.280
    G. Pozzi, U. Valdrè: Study of electron shadow patterns of the intermediate state of superconducting lead. Philos. Mag. 23, 745 (1971)ADSGoogle Scholar
  303. 6.281
    E. Fuchs: Abbildung Weißscher Bezirke in dünnen ferromagnetischen Schichten mit dem elektromagnetischen Elektronenmikroskop. Naturwissenschaften 47, 392 (1960)ADSGoogle Scholar
  304. 6.282
    L. Reimer: Die Struktur der magnetischen Bereichsgrenzen in grobkristallinen Eisenschichten. Z. Angew. Phys. 18, 373 (1965)Google Scholar
  305. 6.283
    W. Pitsch: Elektronenmikroskopische Beobachtung magnetischer Elementarbereiche in gealterten Eisen-Stickstoff-Legierungen. Arch. Eisenhüttenwesen 36, 737 (1965)Google Scholar
  306. 6.284
    W. Liesk: Magnetische Strukturen in dünnen Schichten, beobachtet im Elektronenmikroskop. Z. Angew. Phys. 14, 200 (1962)Google Scholar
  307. K. Tsuno, T. Taoka: Magnetic-field-free objective lens around a specimen for observing fine structure of ferromagnetic materials in a TEM. Jpn. J. Appl. Phys. 22, 1041 (1983)ADSGoogle Scholar
  308. 6.285
    J.P. Jacubovics: The effect of magnetic domain structure on Bragg reflection in TEM. Philos. Mag. 10, 277 (1964)ADSGoogle Scholar
  309. 6.286
    J.N. Chapman, E.H. Darlington: The application of STEM to the study of thin ferromagnetic films. J. Phys. E 7, 181 (1974)ADSGoogle Scholar
  310. 6.287
    J.N. Chapman, E.M. Waddell, P.E. Batson, R.P. Ferrier: The Fresnel-mode of Lorentz microscopy using a STEM. Ultramicroscopy 4, 283 (1979)Google Scholar
  311. 6.288
    J.N. Chapman, P.E. Batson, E.M. Waddell, R.P. Ferrier: The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicoscopy 3, 203 (1978)Google Scholar
  312. 6.289
    A. Olivei: Holography and interferometry in electron Lorentz microscopy Optik 30, 27 (1969)Google Scholar
  313. 6.290
    A. Olivei: Magnetic inhomogeneties and holographic methods in electron Lorentz microscopy. Optik 33, 93 (1971)Google Scholar
  314. 6.291
    M.S. Cohen, K.J. Harte: Domain wall profiles in magnetic films. J. Appl. Phys. 40, 3597 (1969)ADSGoogle Scholar
  315. 6.292
    V.I. Petrov, G.V. Spivak, O.P. Pavluchenko: Transmission electron microscope observation of domain pattern of speedily remagnetized thin ferromagnetic films, in Electron Microscopy1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.615Google Scholar
  316. 6.293
    V.l. Petrov, G.V. Spivak: On a stroboscopic Lorentz microscope. Z. Angew. Phys. 27, 188 (1969)Google Scholar
  317. 6.294
    O. Bostanjoglo, Th. Rosin: Resonance oscillations of magnetic domain walls and Bloch lines observed by stroboscopic electron microscopy. Phys. Status Solidi A 57, 561 (1980)ADSGoogle Scholar
  318. 6.295
    O. Bostanjoglo, Th. Rosin. Resonance oscillations of Bloch lines in permalloy films. Phys. Status Solidi A 66, K5 (1981)ADSGoogle Scholar
  319. 6.296
    G.S. Plows, W.C. Nixon: Stroboscopic scanning electron microscopy. J. Phys. E 1, 595 (1968)ADSGoogle Scholar
  320. 6.297
    E. Menzel, E. Kubalek: Electron beam chopping system in the SEM, in Scanning Electron Microscopy 1979 I, ed. by O. Johari (IIT Research Inst. Chicago 1979) p.305Google Scholar
  321. 6.298
    G.V. Saparin, G.V. Spivak: Application of stroboscopic cathodoluminescence microscopy, in Scanning Electron Microscopy 1979 I, ed. by O. Johari (SEM, AMF O’Hare, IL 1979) p.305Google Scholar
  322. 6.299
    G.V. Spivak, G.V. Saparin, L.F. Komolova: The physical fundamentals of the resolution enhancement in the SEM for CL and EBIC modes, in Scanning Electron Microscopy 1977 I, ed. by O. Johari (IIT Research Inst. Chicago 1977) p.191Google Scholar
  323. 6.300
    H. Mahl, W. Weitsch: Nachweis von fluktuierenden Ladungen in isolierenden Filmen bei Elektronenbestrahlung. Optik 17, 107 (1960)Google Scholar
  324. 6.301
    H. Mahl, W. Weitsch: Versuche zur Beseitigung von Aufladungen auf Durchstrahlungsobjekten durch zusätzliche Bestrahlung mit langsamen Elektronen. Z. Naturforsch. A 17, 146 (1962)ADSGoogle Scholar
  325. 6.302
    G.H. Curtis, R.P. Ferrier: The electric charging of electron microscopical specimens. J. Phys. D 2, 1035 (1969)ADSGoogle Scholar
  326. 6.303
    D.H. Warrington: A simple charge neutralizer for the electron microscope. J. Sci. Instrum. 43, 77 (1966)ADSGoogle Scholar
  327. 6.304
    L. Reimer: Aufladung kleiner Teilchen im Elektronenmikroskop. Z. Naturforsch. A 20, 151 (1965)ADSGoogle Scholar
  328. 6.305
    V. Drahos, J. Komrska, M. Lenc: Shadow images of charged spherical particles, in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p. 157Google Scholar
  329. 6.306
    C. Jönsson, H. Hoffmann: Der Einfluß von Aufladungen auf die Stromdichteverteilung im Elektronenschattenbild dünner Folien. Optik 21, 432 (1964)Google Scholar
  330. 6.307
    H. Pfisterer, E. Fuchs, W. Liesk: Elektronenmikroskopische Abbildung ferro-elektrischer Domänen in dünnen BaTiO3-Einkristallschichten. Naturwissenschaften 49, 178 (1962)ADSGoogle Scholar
  331. 6.308
    H. Blank, S. Amelinckx: Direct observation of ferroelectric domains in BaTiO3 by means of the electron microscope. Appl. Phys. Lett. 2, 140 (1963)ADSGoogle Scholar
  332. 6.309
    E. Fucks, W. Liesk: Elektronenmikroskopische Beobachtung von Domänenkonfigurationen und von Umpolarisationsvorgängen in dünnen BaTiO3-Einkristallen. J. Phys. Chem. Solidi 25, 845 (1964)ADSGoogle Scholar
  333. 6.310
    R. Ayroles, J. Torres, J. Aubree, C. Roucau, M. Tanaka: Electron-microscope Observation of structure domains in the ferroelastic phase of lead phosphate. Pb3(PO4)2. Appl. Phys. Lett. 34, 4 (1979)ADSGoogle Scholar
  334. 6.311
    C. Manolikas, S. Amelinckx: Phase transitions in ferroelastic lead orthovanadate as observed by means of electron microscopy and electron diffraction. Phys. Status Solidi A 60, 607 (1980)ADSGoogle Scholar
  335. 6.312
    M. Tanaka, G. Honjo: Electron optical studies of BaTiO3 single crystal films. J. Phys. Soc. Jpn. 19, 954 (1964)ADSGoogle Scholar
  336. 6.313
    J.M. Titchmarsh, G.R. Booker: The imaging of electric field regions associated with p-n junctions, in Electron Microscopy 1972 (IoP, London 1972) p.540Google Scholar
  337. 6.314
    P.G. Merli, G.F. Missiroli, G. Pozzi: TEM observations of p-n junctions. Phys. Status Solidi A 30, 699 (1975)ADSGoogle Scholar
  338. 6.315
    C. Capiluppi, P.G. Merli, G. Pozzi, I. Vecchi: Out-of-focus observations of p-n junctions by high-voltage microscopy. Phys. Status Solidi A 35, 165 (1976)ADSGoogle Scholar
  339. 6.316
    S. Frabboni, G. Matencci, G. Pozzi: Electron holographic observation of the electrostatic field associated with thin reverse-biased p-n junctions. Phys. Rev. Lett. 55, 2196 (1985)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations