Skip to main content

Elements of a Transmission Electron Microscope

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

Abstract

Not only does the gun of an electron microscope emit electrons into the vacuum and accelerate them between cathode and anode, but it is also required to produce an electron beam of high brightness and high temporal and spatial coherence. The conventional thermionic emission from a tungsten wire is limited in temporal coherence by an energy spread of the emitted electrons of the order of a few electronvolts and in spatial coherence by the gun brightness. Lanthanum hexaboride and field-emission cathodes are alternatives, for which the energy spread is less and the gun brightness higher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Haine, P.A. Einstein, P.H. Borcherds: Resistance bias characteristics of the electron microscope gun. Br. J. Appl. Phys. 9, 482 (1958)

    ADS  Google Scholar 

  2. L.W. Swanson, L.C. Crouser: Total-energy distribution of field-emitted electrons and single-plane work functions for tungsten. Phys. Rev. 163, 622 (1967)

    ADS  Google Scholar 

  3. H. Boersch: Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Phys. 139, 115 (1954)

    ADS  Google Scholar 

  4. K.H. Loeffler: Energy-spread generation in electron-optical instruments. Z. Angew. Phys. 27, 145 (1969)

    Google Scholar 

  5. R.W. Ditchfield, M.J. Whelan: Energy broadening of the electron beam in the electron microscope. Optik 48, 163 (1977)

    Google Scholar 

  6. H. Rose, R. Spehr: On the theory of the Boersch effect. Optik 57, 339 (1980)

    Google Scholar 

  7. H. Rose, R. Spehr: Energy broadening in high-density electron and ion beams: The Boersch effect, in Applied Charged Particle Optics, ed. by A. Septier (Academic, New York 1983) Pt.C., p.479

    Google Scholar 

  8. K.H. Gaukler, R. Speidel, F. Vorster: Energieverteilungen von Elektronen aus einer Feldemissionskathode. Optik 42, 391 (1975)

    Google Scholar 

  9. D.B. Langmuir: Theoretical limitations of cathode-ray tubes. Proc. IRE 25, 977 (1937)

    Google Scholar 

  10. J. Dosse: Theoretische und experimentelle Untersuchungen über Elektronenstrahler. Z. Phys. 115, 530 (1940)

    ADS  Google Scholar 

  11. W. Glaser: Grundlagen der Elektronenoptik (Springer, Wien 1952)

    MATH  Google Scholar 

  12. J.A. Swift, A.C. Brown: SEM electron source: pointed tungsten filaments with long life and high brightness. Scanning 2, 42 (1979)

    Google Scholar 

  13. A.N. Broers: Electron gun using long-life LaB6 cathode. J. Appl. Phys. 38, 1991 (1967)

    ADS  Google Scholar 

  14. A.N. Broers: Some experimental and estimated characteristics of the LaB6 rod cathode electron gun. J. Phys. E 2, 273 (1969)

    ADS  Google Scholar 

  15. H. Ahmed: The use of LaB6 and composite boride cathodes in electron optical instuments, in Electron Microscopy and Analysis, ed. by W.C. Nixon (IoP, London 1971) p.30

    Google Scholar 

  16. R. Vogt: Richtstrahlwert und Energieverteilung der Elektronen aus einem Elek-tronenstrahlerzeuger mith LaB6-Kathode. Optik 36, 262 (1972)

    Google Scholar 

  17. S.D. Ferris, D.C. Joy, H.J. Leamy, C.K. Crawford: A directly heated LaB6 electron source, in Scanning Electron Microscopy1975 ed. by O. Johari (HT Research Institute, Chicago 1976) p.11

    Google Scholar 

  18. S. Nakagawa, T. Yanaka: A highly stable electron probe obtained with LaB6 cathode electron gun, in Scanning Electron Microscopy 1975, ed. by O. Johari (HT Research Institute, Chicago 1975) p. 19

    Google Scholar 

  19. C.K. Crawford: Mounting methods and operating characteristics for LaB6 cathodes, in Scanning Electron Microscopy 1979 I, ed. by O. Johari (SEM, AMF O’Hare 1979) p. 19

    Google Scholar 

  20. P.H. Schmidt, D.C. Joy, L.D. Longinotti, H.J. Leamy, S.D. Ferris, Z. Fisk: Ani-sotropy of thermionic electron emission values of LaB6 single-crystal emitter cathodes. Appl. Phys. Lett. 29, 400 (1976)

    ADS  Google Scholar 

  21. M.E. Haine, P.A. Einstein: Characteristics of the hot cathode electron microscope gun. Br. J. Appl. Phys. 3, 40 (1952)

    ADS  Google Scholar 

  22. D.W. Tuggle, J.Z. Li, L.W. Swanson: Point cathodes for use in virtual source electron optics. J. Microsc. 140, 293 (1985)

    Google Scholar 

  23. D.W. Tuggle, L.W. Swanson: Emission characteristics of the ZrO/W thermal field electron source. J. Vac. Sci. Techn. B 3, 220 (1985)

    Google Scholar 

  24. A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter: Electron gun using a field emission source. Rev. Sci. Instrum. 39, 576 (1968)

    ADS  Google Scholar 

  25. E. Munro: Design of electrostatic lenses for field-emission electron guns, in Electron Microscopy 1972 (IoP, London 1972) p.22

    Google Scholar 

  26. D. Kern, D. Kurz, R. Speidel: Elektronenoptische Eigenschaften eines Strahler-zeugungssystemes mit Feldemissionskathode. Optik 52, 61 (1978)

    Google Scholar 

  27. G.H.N. Riddle: Electrostatic einzel lenses with reduced spherical aberration for use in field-emission gun. J. Vac. Sci. Technol. 15, 857 (1978)

    ADS  Google Scholar 

  28. J. Orloff, L.W. Swanson: An asymmetric lens for field-emission microprobe applications. J. Appl. Phys. 50, 2494 (1979)

    ADS  Google Scholar 

  29. F.H. Plomp, L. Veneklasen, B.M. Siegel: Development of a field emission electron source for an electron microscope, in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p. 141

    Google Scholar 

  30. L.H. Veneklasen, B.M. Siegel: A field emission illuminating system for transmission, in Electron Microscopy 1970, Vol.2, ed. by P. Favard (Société Française de Microscopie Electronique, Paris 1970) p.87

    Google Scholar 

  31. T. Someya, T. Goto, Y. Marada, M. Watanabe: Development of field emission electron gun for high resolution 100 kV electron microscope, in Electron Microscopy 1972 (IoP, London 1972) p.20

    Google Scholar 

  32. W. Engel, W. Kunath, S. Krause: Properties of three electrode accelerating lenses for field emission electron guns, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.118

    Google Scholar 

  33. J.R.A. Cleaver: Field emission electron gun system incorporating single-pole magnetic lenses. Optik 52, 293 (1979)

    Google Scholar 

  34. M. Troyon: A magnetic field emission electron probe forming system, in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980) p.56

    Google Scholar 

  35. M. Troyon: A survey of illuminating system and electron guns in E.M., in Electron Microscopy 1984, Vol.1, ed. by A. Csanady et al. (Budapest 1984) p. 11

    Google Scholar 

  36. M.E. Haine: The electron optical system of the electron microscope. J. Sci. Instrum. 24, 61 (1947)

    ADS  Google Scholar 

  37. W.D. Riecke: Zur Zentrierung des magnetischen Elektronenmikroskops. Optik 24, 397 (1966)

    Google Scholar 

  38. W.D. Riecke: Instrument Operation for microscopy and microdiffraction, in Electron Microscopy in Materials Science, Pt.1, ed. by U. Valdrè, E. Ruedl (Commission European Communities, Brussels 1976) p. 19

    Google Scholar 

  39. V.E. Cosslett: Probe size and probe current in the STEM. Optik 36, 85 (1972)

    Google Scholar 

  40. C. Colliex, C. Mory: Quantitative aspects of STEM, in Quantitative Electron Microscopy, ed. by J.N. Chapman and A. Craven (Scottish Univ. Summer School in Physics, Edinburgh 1984) p. 149

    Google Scholar 

  41. L.H. Veneklasen: Some general considerations concerning the optics of the field emission illumination system. Optik 36, 410 (1972)

    Google Scholar 

  42. J.R.A. Cleaver, K.C.A. Smith: Two-lens probe forming systems employing field emission guns, in Scanning Electron Microscopy 1973, ed. by O. Johari (IIT Research Inst., Chicago 1973) p.49

    Google Scholar 

  43. M. Müller, Th. Koller: Preparation of aluminium oxide films for high resolution electron microscopy. Optik 35, 287 (1972)

    Google Scholar 

  44. D. Dorignac, M.E.C. MacLachlan, B. Jouffrey: Low-noise boron supports for high resolution electron microscopy. Ultramicroscopy 4, 85 (1979)

    Google Scholar 

  45. S. Iijima: Thin graphite supporting films for high resolution electron microscopy. Micron 8, 41 (1977)

    Google Scholar 

  46. W. Baumeister, M.H. Hahn: Suppression of lattice periods in vermiculite single crystal specimen supports for high resolution electron microscopy. J. Microsc. 101, 111 (1974)

    Google Scholar 

  47. U. Valdrè, M.J. Goringe: Electron Microscopy in Material Science (Academic, New York 1971) p.207

    Google Scholar 

  48. U. Valdrè: General considerations on specimen stages, in Electron Microscopy 1972 (IoP, London 1972) p.317

    Google Scholar 

  49. J.A. Venables: In-situ experiments in electron microscopes, in Electron Microscopy 1972 (IoP, London 1972) p.344

    Google Scholar 

  50. P.R. Swann (ed.): Proc. Symp. on High Voltage Electron Microscope 1972, published in J. Microsc. 97, Parts 1 and 2 (1973)

    Google Scholar 

  51. P.R. Swann, C.J. Humphreys, M.J. Goringe (eds.): High Voltage Electron Microscopy (Academic, London 1974)

    Google Scholar 

  52. B. Jouffrey, P. Favard (eds.): Microscopie Electronique:72 Haute Tension (Société Française de Microscopie Electronique, Paris 1976)

    Google Scholar 

  53. T. Imura, H. Hashimoto (eds.): High Voltage Electron Microscopy (Jpn. Society of Electron Microscopy, Kyoto 1977)

    Google Scholar 

  54. P. Brederoo, J. van Landuyt (eds.): Electron Microscopy 1980, Vol.4: High Voltage (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980)

    Google Scholar 

  55. H.G. Heide: Principle of a TEM specimen device to meet highest requirements: specimen temperature 5–300 K, cryo transfer, condensation protection, specimen tilt, stage stability for highest resolution. Ultramicroscopy 6, 115 (1981) H.G. Heide: Design and operation of cold stages. Ultramicroscopy 10, 125 (1982)

    Google Scholar 

  56. J.E. Eades: A helium-cooled specimen stage for electron microscopy. J. Phys. E 15, 184 (1982)

    ADS  Google Scholar 

  57. D.F. Parsons, V.R. Matricardi, J. Subjeck, I Uydess, G. Wray: High-voltage electron microscopy of whet whole cancer and normal cells: Visualization of cytoplasmic structure and surface projections. Biochim. Biophys. Acta 290, 110 (1972)

    Google Scholar 

  58. J. Stabenow: Herstellung dünnwandiger Objektivaperturblenden für die Elektronenmikroskopie. Naturwissenschaften 54, 163 (1967)

    ADS  Google Scholar 

  59. J. Kala, J. Podbrdsky: Thin foil apertures with very small openings for electron microscopy. J. Phys. E 4, 609 (1971)

    ADS  Google Scholar 

  60. E. Schabtach: A method for the fabrication of thin foil apertures for electron microscopy. J. Microsc. 101, 121 (1974)

    Google Scholar 

  61. C.F. Oster, D.C Skillman: Determination and control of electron microscopic magnification, in Electron Microscopy 1962, 5th Int’l Congr. Electron Microscopy, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p.EE-3

    Google Scholar 

  62. G.F. Bahr, E. Zeitler: The determination, of magnification in the electron microscope. Lab. Invest. 14, 880 (1965)

    Google Scholar 

  63. P.F. Elbers, J. Pieters: Accurate magnification determination in the Siemens elmiskop I, in Electron Microscopy 1964, Proc. 3rd Europ. Reg. Conf., Vol.A, ed. by M. Titlbach (Czechoslovak Acad. Sci., Prague 1964) p.123

    Google Scholar 

  64. W.C.T. Dowell: Die Bestimmung der Vergrößerung des Elektronenmikroskops mittels Elektroneninterferenz. Optik 21, 26 (1964)

    Google Scholar 

  65. R. Luftig: An accurate measurement of the catalase crystal period and its use as an internal marker for electron microscopy. J. Ultrastruct. Res. 20, 91 (1967)

    Google Scholar 

  66. N.G. Wrigley: The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J. Ultrastruct. Res. 24, 454 (1968)

    Google Scholar 

  67. J. Porstendörfer, J. Heyder: Elektronenmikroskopische Untersuchungen an Latex-Teilchen. Optik 35, 73 (1972)

    Google Scholar 

  68. J.B. LePoole, P. Stam: An objective method for focusing, in Proc. 3rd Int’l Congr. Electron Microscopy London 1954, ed. by R. Ross (Royal Microscopical Soc, London 1956) p.666

    Google Scholar 

  69. H. Koike, K. Ueno, M. Suzuki: Scanning device combined with conventional electron microscope, in Proc. 29th Ann. Meeting of EMS A (Claytor’s Publ. Div., Baton Rouge LO 1971) p.28

    Google Scholar 

  70. L. Reimer, P. Hagemann: The use of transmitted and backscattered electrons in the scanning mode of a TEM, in Developments in Electron Microscopy and Analysis, ed. by D.L. Misell (IoP, London 1977) p.135

    Google Scholar 

  71. A.V. Crewe, J. Wall, L.M. Welter: A high-resolution STEM. J. Appl. Phys. 39, 5861 (1968)

    ADS  Google Scholar 

  72. A.V. Crewe, J. Wall: Contrast in a high-resolution STEM. Optik 30, 461 (1970)

    Google Scholar 

  73. A.V. Crewe, M. Isaacson, D. Johnson: A high-resolution electron spectrometer for use in transmission scanning electron microscopy. Rev. Sci. Instrum. 42, 411 (1971)

    ADS  Google Scholar 

  74. A.V. Crewe: Production of electron probes using a field emission source, in Progress in Optics, 11, 225 (North-Holland, Amsterdam 1973)

    Google Scholar 

  75. J.M. Cowley: Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58 (1969)

    ADS  Google Scholar 

  76. E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy. Optik 31, 258 and 359 (1970)

    Google Scholar 

  77. C. Colliex, A.J. Craven, C.J. Wilson: Fresnel fringes in STEM. Ultramicroscopy 2, 327 (1977)

    Google Scholar 

  78. D.C. Joy, D.M. Maher, A.G. Cullis: The nature of defocus fringes in STEM images. J. Microsc. 108, 185 (1976)

    Google Scholar 

  79. R. Broser-Warminsky, E. Ruska: Hochauflösende Leuchtschirme für die Elektronenmikroskopie, in Vierter Internationaler Kongreß für Elektronenmikroskopie, Vol.1, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen, 1960) p.104

    Google Scholar 

  80. V.E. Cosslett, G.L. Jones, R.A. Camps: Image viewing and recording in high voltage electron microscopy, in [Ref.4.48, p. 147]

    Google Scholar 

  81. H.G. Heide: Zur Vorevakuierung von Photomaterial für Elektronenmikroskopie. Z. Angew. Phys. 19, 348 (1965)

    Google Scholar 

  82. E. Guetter, M. Menzel: An external photographic system for electron microscopes, in Electron Microscopy 1978, Vol.1, ed. by S.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.92

    Google Scholar 

  83. H. Frieser, E. Klein: Die Eigenschaften photographischer Schichten bei Elektronenbestrahlung. Z. Angew. Phys. 10, 337 (1958)

    Google Scholar 

  84. H. Frieser, E. Klein, E. Zeitler: Das Verhalten photographischer Schichten bei Elektronenbestrahlung. Z. Angew. Phys. 11, 190 (1959)

    Google Scholar 

  85. R.C. Valentine: The response of photographic emulsions to electrons, in Advances in Optical and Electron Microscopy, Vol.1, ed. by R. Barer, V.E. Cosslett (Academic, London 1966) p.180

    Google Scholar 

  86. R.E. Bürge, D.F. Garrard: The resolution of photographic emulsions for electrons in the energy range 7–60 keV. J. Phys. E 1, 715 (1968)

    ADS  Google Scholar 

  87. R.E. Bürge, D.F. Garrard, M.T. Browne: The response of photographic emulsions to electrons in the energy range 7–60 keV. J. Phys. E 1, 707 (1968)

    ADS  Google Scholar 

  88. G.C. Farnell, R.B. Flint: The response of photographic materials to electrons with particular reference to electron micrography. J. Microsc. 97, 271 (1973)

    Google Scholar 

  89. W. Lippert: Erfahrungen mit der photographischen Methode bei der Massen-dickenbestimmung im Elektronenmikroskop. Optik 29, 372 (1969)

    Google Scholar 

  90. G.L. Jones, V.E. Cosslett: Sensitivity and resolution of photographic emulsions to electrons (60–700 keV), in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Française de Microscopie Electronique, Paris 1970) p.349

    Google Scholar 

  91. M. Fotino: Improved response of photographic emulsions for electron micrographs at higher voltages, in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p. 104

    Google Scholar 

  92. P.H. Broerse, P. Kramer, W. Kühl, H.F. Premsela: Electron microscopy at extremely low current densities in the specimen with a new light intensifier, in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.217

    Google Scholar 

  93. K.H. Hermann, D. Krahl, V. Rindfleisch: Use of TV image intensifiers in electron microscopy. Siemens Forsch. Entwicklungsber. 1, 67 (1972)

    Google Scholar 

  94. K.H. Herrmann, D. Krahl: Electronic image recording in conventional electron microscopy, in Adv. Opt. Electr. Microsc, Vol.8, ed. by R. Barer and V.E. Cosslett (Academic, London 1984) p.1

    Google Scholar 

  95. E.L. Thomas, S. Danyluck: A channelplate image intensifier for the electron microscope. J. Phys. E 4, 843 (1971)

    ADS  Google Scholar 

  96. D.A. Gedcke, J.B. Ayers, P.B. DeNee: A solid state backscattered electron detector capable of operating at TV scan rates, Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM Inc. AMF O’Hare 1978) p.581

    Google Scholar 

  97. M. Kikuchi, S. Takashima: Multi-purpose backscattered electron detector, in Electron Microscopy 1978, Vol.1, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.82

    Google Scholar 

  98. H. Shuman: Parallel recording of electron energy-loss spectra. Ultramicroscopy 6, 163 (1981)

    Google Scholar 

  99. P.T.E. Roberts, J.N. Chapman, A.M. MacLeod: A CCD-based image recording system for the CTEM. Ultramicroscopy 8, 385 (1982)

    Google Scholar 

  100. R.F. Egerton: Parallel-recording systems for electron energy-loss spectroscopy. J. Electron Microsc. Tech. 1, 37 (1984)

    Google Scholar 

  101. I. Daberkow, K.H. Hermann, L. Liu, W.D. Rau: Performance of electron image converters with YAG single crystal screens and CCD sensors. Ultramiroscopy 38, 215 (1991)

    Google Scholar 

  102. J. Pawley: Performance of SEM scintillation materials, in Scanning Electron Microscopy 1974, ed. by O. Johari (HT Research Institute, Chicago 1974) p.28

    Google Scholar 

  103. W. Baumann, A. Niemietz, L. Reimer, B. Volbert: Preparation of P-47 scintillators for STEM. J. Microsc. 122, 181 (1981)

    Google Scholar 

  104. R. Autrata, P. Walther, S. Kriz, M. Müller: A BSE scintillation detector in the S(TEM). Scanning 8, 3 (1986)

    Google Scholar 

  105. L. Reimer: Scanning Electron Microscopy, Physics of Image Formation and Microanalysis. Springer Ser. Opt. Sci., Vol.45, (Springer, Berlin, Heidelberg 1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1993). Elements of a Transmission Electron Microscope. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21556-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21556-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56849-0

  • Online ISBN: 978-3-662-21556-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics