Skip to main content

Scattering and Phase Contrast for Amorphous Specimens

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

Abstract

Elastic scattering through angles larger than the objective aperture causes absorption of the electron at the objective diaphragm and a decrease of transmitted intensity. This scattering contrast can be explained by particle optics. The exponential decrease of transmission with increasing specimen thickness can be used for quantitative determination of mass-thickness or of the total mass of an amorphous particle, for example. The zero-loss mode of electron spectroscopic imaging allows us to increase the contrast by removing inelastically scattered electrons; alternatively the contrast can be increased by energy-filtering at higher energy losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Reimer: Deutung der Kontrastunterschiede von amorphen und kristallinen Objekten in der Elektronenmikroskopie. Z. Angew. Phys. 22, 287 (1967)

    Google Scholar 

  2. W. Lippert: Über die “elektronenmikroskopische Durchlässigkeit” dünner Schichten. Optik 13, 506 (1956)

    Google Scholar 

  3. L. Reimer: Zur Elektronenabsorption dünner Metallaufdampfschichten im Elektronenmikroskop. Z. Angew. Phys. 9, 34 (1957)

    Google Scholar 

  4. L. Reimer: Messung der Abhängigkeit des elektronenmikroskopischen Bildkontrastes von Ordnungszahl, Strahlspannung und Aperturblende. Z. Angew. Phys. 13, 432 (1961)

    Google Scholar 

  5. L. Reimer. K.H. Sommer: Messungen und Berechnungen zum elektronenmikroskopischen Streukontrast für 17–1200 keV Elektronen. Z. Naturforsch. A 23, 1569 (1968)

    Google Scholar 

  6. E. Zeitler, G.F. Bahr: Contributions to the quantitative interpretation of electron microscope pictures. Exp. Cell Res. 12, 44 (1957)

    Article  Google Scholar 

  7. W. Lippert: Bemerkungen zur elektronenmikroskopischen Dickenmessung von Kohleschichten. Z. Naturforsch B 17, 335 (1962)

    Google Scholar 

  8. W. Schwertfeger: Zur Kleinwinkelstreuung von mittelschnellen Elektronen beim Durchgang durch amorphe Festkörperschichten. Dissertation, Universität Tübingen (1974)

    Google Scholar 

  9. G. Dupouy, F. Ferrier, P. Verdier: Amélioration du contraste des images d’objets amorphes minces en microscopie électronique. J. Microscopie 5, 655 (1966)

    Google Scholar 

  10. R.F. Whiting, F.P. Ottensmeyer: Heavy atoms in model compounds and nucleic acids by dark field TEM. J. Mol. Biol. 67, 173 (1972)

    Article  Google Scholar 

  11. J. Dubochet, M. Ducommun, M. Zollinger, E. Kellenberger: A new preparation method for dark-field electron microscopy of biomacromolecules. J. Ultrastruct. Res. 35, 147 (1971)

    Article  Google Scholar 

  12. G.J. Brakenhoff, N. Nanninga, J. Pieters: Relative mass determination from dark-field electron micrographs, with an application to ribosomes. J. Ultrastruct. Res. 41, 238 (1972)

    Article  Google Scholar 

  13. W. Krakow, L.A. Howland: A method for producing hollow cone illumination electronically in the conventional transmission microscope. Ultramicroscopy 2, 53 (1976)

    Article  Google Scholar 

  14. L. Reimer, M. Ross-Messemer: Contrast in the electron spectroscopic imaging mode of a TEM. I. Influence of zero-loss filtering on scattering contrast. J. Microsc. 155, 169 (1989)

    Article  Google Scholar 

  15. R. Bauer: Electron spectroscopic imaging: an advanced technique for imaging and analysis in TEM, in Methods in Microbiology, Vol. 20, ed. by F. Mayer ( Academic, London 1988 ) p. 113

    Google Scholar 

  16. R. Bauer, U. Hezel, D. Kurz: High-resolution imaging of thick biological specimens with an imaging electron energy loss spectrometer. Optik 77, 171 (1987)

    Google Scholar 

  17. H.J. Wagner: Contrast tuning by electron spectroscopic imaging of halfmicrometer-thick sections of nervous tissue. Ultramicroscopy 32, 42 (1990)

    Article  Google Scholar 

  18. C. Colliex, C. Mory, A.L. Olins, D.E. Olins, M. Tencé: Energy-filtered STEM imaging of thick biological sections. J. Microsc. 153, 1 (1989)

    Article  Google Scholar 

  19. L. Reimer, R. Rennekamp, I. Fromm, M. Langenfeld: Contrast in the electron spectroscopic imaging mode of a TEM: IV. Thick specimens imaged by the most-probable energy loss. J. Microsc. 162, 3 (1991)

    Article  Google Scholar 

  20. E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy. Optik 31, 258 and 359 (1970)

    Google Scholar 

  21. L. Reimer, P. Gentsch, P. Hagemann: Anwendung eines Rasterzusatzes zu einem TEM. I. Grundlagen and Abbildung amorpher Objekte. Optik 43, 431 (1975)

    Google Scholar 

  22. E. Carlemalm, E. Kellenberger: The reproducible observation of unstained embedded cellular material in thin sections: Visualisation of an integral membrane protein by a new mode of imaging for STEM. EMBO J. 1, 63 (1982)

    Google Scholar 

  23. R. Reichelt, E. Carlemalm, A. Engel: Quantitative contrast evaluation for different STEM imaging modes, in Scanning Electron Microscopy 1984/111 ( SEM, AMF O’Hare, IL 1984 ) p. 1011

    Google Scholar 

  24. R.F. Egerton: Thickness dependence of the STEM ratio image. Ultramicroscopy 10, 297 (1982)

    Article  MathSciNet  Google Scholar 

  25. P.J. Andree, J.E. Mellema, R.W.H. Ruignek: Discrimination of heavy and light elements in a specimen by use of STEM. Ultramicroscopy 17, 237 (1985)

    Article  Google Scholar 

  26. W. Tichelaar, C. Ferguson, J.C. Olivo, K.R. Leonard, M. Haider: A novel method of Z-contrast imaging in STEM applied to double-labelling. J. Microsc. 175, 10 (1994)

    Article  Google Scholar 

  27. C.E. Hall: Electron densitometry of stained virus particles. J. Biophys. Biochem. Cytol. 1, 1 (1955)

    Article  Google Scholar 

  28. E. Krüger-Thiemer: Ein Verfahren für elektronenmikroskopische Massendickemessungen an nichtkristallinen Objekten. Z. Wiss. Mikr. 62, 444 (1955)

    Google Scholar 

  29. N.R. Silvester, R.E. Burge: A quantitative estimation of the uptake of two new electron stains by the cytoplasmic membrane of rat sperm. J. Biophys. Biochem. Cytol. 6, 179 (1959)

    Article  Google Scholar 

  30. L. Reimer, P. Hagemann: Recording of mass thickness in STEM. Ultramicroscopy 2, 297 (1977)

    Article  Google Scholar 

  31. M.K. Lamvik: Electron microscopic mass determination using photographic isodensity techniques. Ultramicroscopy 1, 187 (1976)

    Article  Google Scholar 

  32. A. Engel: Molecular weight determination by STEM. Ultramicroscopy 3, 273 (1978)

    Article  Google Scholar 

  33. S.A. Müller, K.N. Goldie, R. Bürki, R. Häring, A. Engel: Factors influencing the precision of quantitative STEM. Ultramicroscopy 46, 317 (1992)

    Article  Google Scholar 

  34. J. Trachtenberg, K.R. Leonard, W. Tichelaar: Radial mass density functions of vitrified helical specimens determined by STEM: Their potential use as substitutes for equatorial data. Ultramicroscopy 45, 307 (1992)

    Article  Google Scholar 

  35. P.W.J. Linders, P. Hagemann: Mass determination of the biological specimens using backscattered electrons. Ultramicroscopy 11, 13 ( 1983 ]

    Article  Google Scholar 

  36. E. Zeitler, G.F. Bahr: A photometric procedure for weight determination of submicroscopic particles. J. Appl. Phys. 33, 847 (1962)

    Article  ADS  Google Scholar 

  37. G.F. Bahr, E. Zeitler: The determination of dry mass in populations of isolated particles. Lab. Invest. 14, 955 (1965)

    Google Scholar 

  38. F.S. Sjöstrand: The importance of high resolution electron microscopy in tissue cell ultrastructure research. Sci. Tools 2, 25 (1955)

    Google Scholar 

  39. B. von Borries, F. Lenz: Über die Entstehung des Kontrastes im elektronenmikroskopischen Bild, in Electron Microscopy, Proc. Stockholm Conference 1956, ed. by F.J. Sjöstrand, J. Rhodin ( Almqvist and Wiksells, Stockholm 1957 ) p. 60

    Google Scholar 

  40. F. Thon: Zur Defokussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung. Z. Naturforsch. A 21, 476 (1966)

    ADS  Google Scholar 

  41. F. Lenz, W. Scheffels: Das Zusammenwirken von Phasen-und Amplitudenkontrast in der elektronenmikroskopischen Abbildung. Z. Naturforsch. A 13, 226 (1958)

    ADS  Google Scholar 

  42. A. Howie, O.L. Krivanek, M.L. Rudee: Interpretation of electron micrographs and diffraction patterns of amorphous materials. Philos. Mag. 27, 235 (1973)

    Article  ADS  Google Scholar 

  43. G.J. Brakenhoff: On the sub-nanometre structure visible in high-resolution dark-field electron microscopy. J. Microsc. 100, 283 (1974)

    Article  Google Scholar 

  44. A. Oberlin, M. Oberlin, M. Maubois: Study of thin amorphous and crystalline carbon films by electron microscopy. Philos. Mag. 32, 833 (1975)

    Article  ADS  Google Scholar 

  45. L. Reimer, H.Gilde: Scattering theory and image formation in the electron microscope, in [Ref.1.11, p.138]

    Google Scholar 

  46. L. Albert, R. Schneider, H. Fischer: Elektronenmikroskopische Sichtbarmachung von =10=A gro en Fremdstoffeinschlüssen in elektrolytisch abgeschiedenen Nickelschichten mittels Phasenkontrast durch Defokussierung. Z. Naturforsch. A 19, 1120 (1964)

    ADS  Google Scholar 

  47. M. Rühle, M. Wilkens: Defocusing contrast of cavities, in Electron Microscopy 1972 ( IoP, London 1972 ) p. 146

    Google Scholar 

  48. L. Reimer, H. Gilde: Electron optical phase contrast of small gold particles. Optik 41, 524 (1975)

    Google Scholar 

  49. P. Hirsch, L. Reimer: Influence of zero-loss filtering on electron optical phase contrast. J. Microsc. 174, 143 (1994)

    Article  Google Scholar 

  50. L. Reimer: Elektronenoptischer Phasenkontrast. Z. Naturforsch. A 24 377 (1969)

    Google Scholar 

  51. H. Niehrs: Optimale Abbildungsbedingungen und Bildintensitätsverlauf bei einer Elektronenmikroskopie von Atomen. Optik 30, 273 (1969);

    Google Scholar 

  52. H. Niehrs: Optimale Abbildungsbedingungen und Bildintensitätsverlauf bei einer Elektronenmikroskopie von Atomen. Optik 31, 51 (1970)

    Google Scholar 

  53. C.B. Eisenhandler, B.M. Siegel: Imaging of single atoms with the electron microscope by phase contrast. J. Appl. Phys. 37, 1613 (1966)

    Article  ADS  Google Scholar 

  54. R. Langer, W. Hoppe: Die Erhöhung von Auflösung und Kontrast im Elektronenmikroskop mit Zonenkorrekturplatten: Optik 24, 470 (1966); 25, 413 and 507 (1967)

    Google Scholar 

  55. D.L. Misell: Image formation in the electron microscope. J. Phys. A 4, 782 and 798 (1971)

    Google Scholar 

  56. D.L. Misell: Image resolution and image contrast in the electron microscope. J. Phys. A 6, 62, 205 and 218 (1973)

    Google Scholar 

  57. T. Kobayashi, L. Reimer: Computation of electron microscopical images of single organic molecules. Optik 43, 237 (1975)

    Google Scholar 

  58. W. Chiu, R.M. Glaeser: Single atom image contrast: conventional dark-field and bright-field electron microscopy. J. Microsc. 103, 33 (1975)

    Article  Google Scholar 

  59. H Hoch: Dunkelfeldabbildung von schwachen Phasenobjekten im Elektronenmikroskop. Optik 47 65 (1977)

    Google Scholar 

  60. W. Krakow: Computer experiments for tilted dark-field imaging. Ultramicroscopy 1, 203 (1976)

    Article  Google Scholar 

  61. K.J. Hanszen: Problems of image interpretation in electron microscopy with linear and nonlinear transfer. Z. Angew. Phys. 27, 125 (1969)

    Google Scholar 

  62. H. Hashimoto, A. Kumao, K. Hino, H. Yotsumoto, A. Ono: Images of Th atoms in TEM. Jpn. J. Appl. Phys. 10, 1115 (1971)

    Article  ADS  Google Scholar 

  63. R.M. Henkelman, F.P. Ottensmeyer: Visualization of single heavy atoms by dark field electron microscopy. Proc. Nat. Acad. Sci. USA 68, 3000 (1971)

    Article  ADS  Google Scholar 

  64. F.P. Ottensmeyer, E.E. Schmidt, T. Jack, J. Powell: Molecular architecture: the optical treatment of dark field electron micrographs of atoms. J. Ultrastruct. Res. 40, 546 (1972)

    Article  Google Scholar 

  65. F. Thon, D. Willasch: Imaging of heavy atoms in dark field electron microscopy using hollow cone illumination. Optik 36, 55 (1972)

    Google Scholar 

  66. K.J. Hanszen: The relevance of dark field illumination in conventional and scanning TEM. PTB-Bericht A Ph-7 ( Physikalisch-Technische Bundesanstalt, Braunschweig 1974 )

    Google Scholar 

  67. D.L. Misell: Image resolution in high voltage electron microscoy. J. Phys. D 6, 1409 (1973)

    Article  ADS  Google Scholar 

  68. H. Formanek, M. Müller, M.H. Hahn, T. Koller: Visualization of single heavy atoms with the electron microscope. Naturwissenschaften 58, 339 (1971)

    Article  ADS  Google Scholar 

  69. J.R. Parsons, H.M. Johnson, C.W. Hoelke, R.R. Hosbons: Imaging of uranium atoms with the electron microscope by phase contrast. Philos. Mag. 27, 1359 (1973)

    Article  ADS  Google Scholar 

  70. W. Baumeister, M.H. Hahn: Electron microscopy of monomolecular layers of thorium atoms. Nature 241, 445 (1973)

    Article  ADS  Google Scholar 

  71. S. Iijima: Observation of single and clusters of atoms in bright field electron microscopy. Optik 48, 193 (1977)

    Google Scholar 

  72. E.B. Prestridge, D.J.C. Yates: Imaging the rhodium atom with a conventional high resolution electron microscope. Nature 234, 345 (1971)

    Article  ADS  Google Scholar 

  73. D. Dorignac, B. Jouffrey: Atomic resolution at 3 MV, in [Ref.1.79, p.143]

    Google Scholar 

  74. D. Dorignac, B. Jouffrey: Iron single atom images, in Electron Microscopy1980, Vol. 1, ed. by P. Brederoo, G. Boom ( Seventh European Congr. On Electron Electron Microscopy Foundation, Leiden 1980 ) p. 112

    Google Scholar 

  75. M. Retsky: Observed single atom elastic cross sections in a scanning electron microsope. Optik 41, 127 (1974)

    Google Scholar 

  76. M. Isaacson, J.P. Langmore, H. Rose: Determination of the non-localization of the inelastic scattering of electrons by electron microscopy. Optik 41, 92 (1974)

    Google Scholar 

  77. A.V. Crewe, J.P. Langmore, M.S. Isaacson: Resolution and contrast in the STEM, in [Ref.1.12, p.47]

    Google Scholar 

  78. M. Isaacson, M. Utlaut, D. Kopf: Analog computer processing of STEM images, in [Ref.1.15, p.257]

    Google Scholar 

  79. A.V. Crewe, J. Langmore, M. Issacson, M. Retsky: Understanding single atoms in STEM, in [Ref.1.56, Vol.1, p.260]

    Google Scholar 

  80. M.S. Isaacson, J. Langmore, N.W. Parker, D. Kopf, M. Utlaut: The study of adsorption and diffusion of heavy atoms on light element substrates by means of the atomic resolution STEM. Ultramicroscopy 1, 359 (1976)

    Article  Google Scholar 

  81. J.S. Wall, J.F. Hainfeld, J.W. Bittner: Preliminary measurements of uranium atom motion on carbon films at low temperatures. Ultramicroscopy 3, 81 (1978)

    Article  Google Scholar 

  82. K.J. Hanszen, B. Morgenstern, K.J. Rosenbruch: Aussagen der optischen Übertragungstheorie über Auflösung and Kontrast im elektronenmikroskopischen Bild. Z. Angew. Phys. 16, 477 (1964)

    Google Scholar 

  83. K.J. Hanszen, B. Morgenstern: Die Phasenkontrast und Amplitudenkontrast-Übertragung des elektronenmikroskopischen Objektivs. Z. Angew. Phys. 19, 215 (1965)

    Google Scholar 

  84. K.J. Hanszen: Contrast transfer and image processing, in [Ref.1.11, p.16]

    Google Scholar 

  85. K.J. Hanszen, L. Trepte: Der Einflu von Strom-und Spannungsschwankungen sowie der Energiebreite der Strahlelektronen auf Kontrastübertragung und Auflösung des Elektronenmikroskopes. Optik 32, 519 (1971)

    Google Scholar 

  86. K.J. Hanszen, L. Trepte: Die Kontrastübertragung im Elektronenmikroskop bei partiell kohärenter Beleuchtung. Optik 33, 166 and 182 (1971)

    Google Scholar 

  87. J. Frank: The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38, 519 (1973)

    Google Scholar 

  88. R.H. Wade, J. Frank: Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49, 81 (1977)

    Google Scholar 

  89. W.O. Saxton: Spatial coherence in axial high resolution conventional electron microscopy. Optik 49, 51 (1977)

    Google Scholar 

  90. H. Yoshida, A. Ohshita, H. Tomita: Determination of spatial and temporal coherence functions from a single astigmatic image. Jpn. J. Appl. Phys. 20, 2427 (1981)

    Article  ADS  Google Scholar 

  91. P.W. Hawkes: Coherence in electron optics, in Advances in Optical and Electron Microscopy, Vol. 7, ed. by R. Barer, V.E. Cosslett ( Academic, London 1978 ) p. 101

    Google Scholar 

  92. W. Hoppe, D. Köstler, D. Typke, N. Hunsmann: Kontrastübertragung für die Hellfeld-Bildrekonstruktion mit gekippter Beleuchtung in der Elektronenmikroskopie. Optik 42, 43 (1975)

    Google Scholar 

  93. K.H. Downing: Note on transfer function in electron microscopy with tilted illumination. Optik 43, 199 (1975)

    Google Scholar 

  94. S.C. McFarlane: The imaging of amorphous specimens in a tilted-beam electron microscope. J. Phys. C 8, 2819 (1975)

    Article  ADS  Google Scholar 

  95. R.H. Wade: Concerning tilted beam electron microscope transfer functions. Optik 45, 87 (1976)

    Google Scholar 

  96. P.W. Hawkes: Electron microscope transfer functions in closed form with tilted illumination. Optik 55, 207 (1980)

    Google Scholar 

  97. W. Krakow: Calculation and observation of atomic structure for tilted beam dark-field microscopy, in Development of Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 261

    Google Scholar 

  98. W. Hoppe, Towards three-dimensional electron microscopy at atomic resolution. Naturwissenschaften 61, 239 (1974)

    Article  ADS  Google Scholar 

  99. W. Kunath: Signal-to-noise enhancement by superposition of bright-field images obtained under different illumination tilts. Ultramicroscopy 4, 3 (1979)

    Article  Google Scholar 

  100. W. Kunath, F. Zemlin, K. Weiss: Apodization in phase-contrast electron microscopy realised with hollow-cone illumination. Ultramicroscopy 16, 123 (1985)

    Article  Google Scholar 

  101. O. Scherzer: Zur Theorie der Abbildung einzelner Atome in dicken Objekten. Optik 38, 387 (1973)

    Google Scholar 

  102. W.O. Saxton, W.K. Jenkins, L.A. Freeman, D.J. Smith: TEM observations using bright field hollow cone illumination. Optik 49, 505 (1978)

    Google Scholar 

  103. H. Rose: Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251 (1977)

    Article  Google Scholar 

  104. J. Fertig, H. Rose: On the theory of image formation in the electron microscope. Optik 54, 165 (1979)

    Google Scholar 

  105. H. Rose: Phase contrast in STEM. Optik 39, 416 (1974)

    Google Scholar 

  106. N.H. Dekkers, H. de Lang: Differential phase contrast in STEM. Optik 41, 452 (1974)

    Google Scholar 

  107. W.C. Stewart: On differential phase contrast with an extended illumination source. J. Opt. Soc. Am. 66, 813 (1976)

    Article  ADS  Google Scholar 

  108. H. Rose: Image formation by inelastically scattered electrons in electron microscopy. Optik 45, 139 (1976)

    Google Scholar 

  109. P.W. Hawkes: Half-plane apertures in TEM, split detectors in STEM and ptychography. J. Optique (Paris) 9, 235 (1978)

    Article  ADS  Google Scholar 

  110. G.R. Morrison, J.N. Chapman: STEM imaging with a quadrant detector, in Electron Microscopy 1981, ed. by M.J. Goringe ( IoP, London 1981 ) p. 329

    Google Scholar 

  111. I. Daberkow, K.H. Herrmann, F. Lenz: A configurable angle-resolving detector for STEM. Ultramicroscopy 50, 75 (1993)

    Article  Google Scholar 

  112. M. Haider, A. Epstein, P. Jarron, C. Boulin: A versatile, software configurable multichannel STEM detector for angle-resolved imaging. Ultramicroscopy 54, 41 (1994)

    Article  Google Scholar 

  113. M. Hammel, H. Rose: Optimum rotationally symmetric detector configurations for phase-contrast imaging in STEM. Ultramicroscopy 58, 403 (1995)

    Article  Google Scholar 

  114. H. Kohl, H. Rose: Theory of image formation by inelastically scattered electrons in the electron microscope. Adv. Electron. Electron Physics 65, 173 (1985)

    Article  Google Scholar 

  115. J.M. Martin, J.L. Mansot, M. Hallouis: Energy filtered electron microscopy of overbased reverse micelles. Ultramicroscopy 30, 321 (1989)

    Article  Google Scholar 

  116. A.J. Craven, C. Colliex: The effect of energy loss on phase contrast, in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell ( IoP, Bristol 1977 ) p. 271

    Google Scholar 

  117. P. Hirsch, L. Reimer: Influence of zero-loss filtering on electron optical phase contrast. J. Microsc. 174, 143 (1994)

    Article  Google Scholar 

  118. W. Hoppe: Ein neuer Weg zur Erhöhung des Auflösungsvermögens des Elektronenmikroskopes. Naturwissenschaften 48, 736 (1961)

    Article  ADS  Google Scholar 

  119. F. Lenz: Zonenplatten zur Offnungsfehlerkorrektur und zur Kontrasterhöhung. Z. Phys. 172, 498 (1963)

    Article  ADS  MATH  Google Scholar 

  120. K.H. Müller: Phasenplatten für Elektronenmikroskope. Optik 45, 73 (1976) 6.120 D. Willasch: High resolution electron microscopy with profiled phase plates. Optik 44, 17 (1975)

    Google Scholar 

  121. L. Reimer, H.G. Badde, E. Drewes, H. Gilde, H. Kappert, H.J. Höhling, D.B. von Bassewitz, A. Rössner: Laserbeugung an elektronenmikroskopischen Aufnahmen Forschungsber. Landes Nordrhein Westfalen Nr. 2314 ( Westdeutscher Verlag, Opladen 1973 )

    Google Scholar 

  122. J.R. Berger, D. Harker: Optical diffractometer for production of Fourier transforms of electron micrographs. Rev. Sci. Instr. 38, 292 (1967)

    Article  ADS  Google Scholar 

  123. T. Isshiki, K. Nishio, H. Saijo, M. Shiojiri: Real-time Fourier transformation of electron microscopy images on liquid crystal display panel by optical diffraction, in [Ref.1.61, Voll, p.263]

    Google Scholar 

  124. O.L. Krivanek: A method of determining the coefficient of spherical aberration from a single electron micrograph. Optik 45, 97 (1976)

    Google Scholar 

  125. W. Krakow, K.H. Downing, B.M. Siegel: The use of tilted specimens to obtain the contrast transfer characteristics of an electron microscope imaging system. Optik 40, 1 (1974)

    Google Scholar 

  126. L. Reimer, H.G. Heine, R.A. Ajeian: Optimalbedingungen für den Beugungsnachweis von Defokussierungsstrukturen in elektronenmikroskopischen Aufnahmen Z Naturforsch. A 24, 1846 (1969)

    ADS  Google Scholar 

  127. L. Reimer, H. Kappert: Bestimmung der Domänenwanddicke aus defokussierten elektronenoptischen Aufnahmen von ferromagnetischen Schichten. Z. Angew. Phys. 26, 58 (1969)

    Google Scholar 

  128. J. Frank: Nachweis von Objektbewegungen im lichtoptischen Diffraktogramm von elektronenmikroskopischen Aufnahmen. Optik 30, 171 (1969)

    Google Scholar 

  129. J. Frank: Observation of the relative phases of electron microscopic phase contrast zones with the aid of the optical diffractometer. Optik 35, 608 (1972)

    Google Scholar 

  130. L. Reimer, B. Volbert, P. Bracker: Quality control of SEM micrographs by laser diffractometry. Scanning 1, 233 (1978)

    Article  Google Scholar 

  131. D. Gabor: Microscopy by reconstructed wavefronts. Proc. Roy. Soc. (London) A 197, 454 (1949);

    Article  ADS  MATH  Google Scholar 

  132. D. Gabor: Microscopy by reconstructed wavefronts. Proc. Phys. Soc. B 64, 449 (1950)

    Article  ADS  Google Scholar 

  133. K.J. Hanszen: Holographische Rekonstruktionsverfahren in der Elektronenmikroskopie und ihre kontrastübertragungstheoretische Deutung. Optik 32, 74 (1970)

    Google Scholar 

  134. A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda: Optical reconstruction of image from Fraunhofer electron hologram. Jpn. J. Appl. Phys. 7, 295 (1968)

    Article  ADS  Google Scholar 

  135. J. Munch: Experimental electron holography. Optik 43, 79 (1975)

    Google Scholar 

  136. K.J. Hanszen, G. Ade, R. Lauer: Genauere Angaben über sphärische Längsaberration, Verzeichnung in der Pupillenebene und über die Wellenaberration von Elektronenlinsen. Optik 35, 567 (1972)

    Google Scholar 

  137. K.J. Hanszen: Neuere theoretische Erkenntnisse und praktische Erfahrungen über die holographische Rekonstruktion elektronenmikroskopischer Aufnahmen, PTB-Bericht A Ph-4 (Physikalisch-Technische Bundesanstalt, Braunschweig 1973 )

    Google Scholar 

  138. G. Ade: Erweiterung der Kontrastübertragungstheorie auf nicht-isoplanatische Abbildungen. Optik 50, 143 (1978)

    Google Scholar 

  139. A. Lohmann: Optische Einseitenbandübertragung angewandt auf das Gabor-Mikroskop. Opt. Acta 3, 97 (1956)

    Article  ADS  Google Scholar 

  140. K.J. Hanszen: Einseitenband-Holographie. Z. Naturforsch. A 24, 1849 (1969)

    ADS  Google Scholar 

  141. W. Hoppe, R. Langer, F. Thon: Verfahren zur Rekonstruktion komplexer Bildfunktionen in der Elektronenmikroskopie. Optik 30, 538 (1970)

    Google Scholar 

  142. W. Hoppe: Zur Abbildung komplexer Bildfunktionen in der Elektronenmikroskopie. Z. Naturforsch. A 26, 1155 (1971)

    ADS  Google Scholar 

  143. K.H. Downing: Compensation of lens aberrations by single-sideband holography, in Proc. 30th Ann. EMSA Meeting (Claitor’s Publ. Div., Baton Rouge, LO 1972 ) p. 562

    Google Scholar 

  144. P. Sieber: High resolution electron microscopy with heated apertures and reconstruction of single-sideband micrographs, in [Ref.1.56, Vol.1, p.274]

    Google Scholar 

  145. K.H. Downing, B.M. Siegel: Discrimination of heavy and light components in electron microscopy using single-sideband holographic techniques. Optik 42, 155 (1975)

    Google Scholar 

  146. E.N. Leith, J. Upatnieks: Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123 (1962)

    Article  ADS  Google Scholar 

  147. G. Möllenstedt, H. Wahl: Elektronenholographie und Rekonstruktion mit Laserlicht. Naturwissenschaften 55, 340 (1968)

    Article  ADS  Google Scholar 

  148. H. Lichte: Electron holography approaching atomic resolution. Ultramicroscopy 20, 293 (1986)

    Article  Google Scholar 

  149. E. Völkl, H. Lichte: Electron holograms for sub-Angstrom point resolution. Ultramicroscopy 32, 177 (1990)

    Article  Google Scholar 

  150. Th. Leuthner, H. Lichte, H.H. Herrmann: STEM holography using the electron biprism. Phys. Status Solidi (a) 116, 113 (1989)

    Article  ADS  Google Scholar 

  151. H. Banzhof, K.H. Herrmann: Reflection electron holography. Ultramicroscopy 48, 475 (1993)

    Article  Google Scholar 

  152. N. Osakabe, T. Matsuda, J. Endo, A. Tonomura: Reflection electron holographic observation of surface displacement field. Ultramicroscopy 48, 483 (1993)

    Article  Google Scholar 

  153. A. Tonomura, J. Endo, T. Matsuda: An application of electron holography to interference microscopy. Optik 53, 143 (1979)

    Google Scholar 

  154. J. Endo, T. Matsuda, A. Tonomura: Interference electron microscopy by means of holography. Jpn. J. Appl. Phys. 18, 2291 (1979)

    Article  ADS  Google Scholar 

  155. A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Direct observation of fine structure of magnetic domain walls by electron holography. Phys. Rev. Lett. 44, 1430 (1980)

    Article  ADS  Google Scholar 

  156. N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fujiwara, A. Tonomura: Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746 (1983)

    Article  ADS  Google Scholar 

  157. K.J. Hanszen, R. Lauer, G. Ade: Discussions of the possibilities and limitations of in-line and off-axis holography in electron microscopy. PTB-Bericht A Ph-15 ( Physikalisch-Technische Bundesanstalt, Braunschweig 1980 )

    Google Scholar 

  158. K.H. Hanszen: Methods of off-axis holography and investigations of the phase structure in crystals. J. Phys. D 19, 373 (1986)

    Article  ADS  Google Scholar 

  159. K.J. Hanszen: Holography in electron microscopy. Adv. Electron. Electron Phys. 59, 1 (1982)

    Article  Google Scholar 

  160. K.J. Hanszen: Lichtoptische Anordnungen mit Laser-Lichtquellen als Hilfsmittel für die Elektronenmikroskopie, in Electron Microcopy 1968, Vol. 1, ed. by D.S. Bocciarelli ( Tipografia Poliglotta Vaticana, Rome 1968 ) p. 153

    Google Scholar 

  161. K.J. Hanszen: Holographische Rekonstruktionsverfahren in der Elektronenmikroskopie und ihre kontrastübertragungstheoretische Deutung. Optik 32, 74 (1970)

    Google Scholar 

  162. A. Maréchal, P. Croce: Un filtre de fréquences spatiales pour l’amélioration du contraste des images optiques. C. R. Acad. Sci. Paris 237, 607 (1953)

    Google Scholar 

  163. M.H. Hahn: Eine optische Ortsfrequenzfilter-und Korrelationsanlage für elektronenmikroskopische Aufnahmen. Optik 35, 326 (1972)

    Google Scholar 

  164. G.W. Stroke, M. Halioua, F. Thon, D. Willasch: Image improvement in high resolution electron microscopy using holographic image deconvolution. Optik 41, 319 (1974)

    Google Scholar 

  165. R.E. Burge, R.F. Scott: Binary filters for high resolution electron microscopy. Optik 43, 53 (1975); ibid. 44, 159 (1976)

    Google Scholar 

  166. S. Boseck, H. Hager: Beseitigung des spatialen Rauschens in elektronenmikroskopischen Aufnahmen durch lichtoptische Filterung. Optik 28, 602 (1968)

    Google Scholar 

  167. S. Boseck, R. Lange: Ausschöpfung des Informationsgehaltes von elektronenmikroskopischen Aufnahmen biologischer Objekte mit Hilfe des Abbéschen Beugungsapparates, gezeigt am Beispiel kristallartiger Strukturen. Z. Wiss. Mikr. 70, 66 (1970)

    Google Scholar 

  168. J.B. Bancroft, G.J. Hills, R. Markham: A study of the self-assembly process in a small spherical virus. Virology 31, 354 (1967)

    Article  Google Scholar 

  169. A. Klug, D.J. deRosier: Optical filtering of electron micrographs: reconstruction of one-sided images. Nature 212, 29 (1966)

    Article  ADS  Google Scholar 

  170. C.A. Taylor, J.K. Ranniko: Problems in the use of selective optical spatial filtering to obtain enhanced information from electron micrographs. J. Microsc. 100, 307 (1974)

    Article  Google Scholar 

  171. R. Markham, J.H. Hitchborn, G.J. Hills, S. Frey: The anatomy of tobacco mosaic virus. Virology 22, 342 (1964)

    Article  Google Scholar 

  172. R.C. Warren, R.M. Hicks: A simple method of linear integration for resolving structures in periodic lattices. J. Ultrastruct. Res. 36, 861 (1971)

    Article  Google Scholar 

  173. R. Markham, S. Frey, G.J. Hills: Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology 20, 88 (1963)

    Article  Google Scholar 

  174. P.W. Hawkes: Processing electron images, in Quantitative Electron Microscopy, ed. by J.N. Chapman, A.J. Craven ( Scottish Univ. Summer School Publ., Edinburg 1984 ) p. 351

    Google Scholar 

  175. R. Hegerl: A brief survey of software packages for image processing in biological electron microscopy. Ultramicroscopy 46, 417 (1992)

    Article  Google Scholar 

  176. D.L. Misell: The phase problem in electron microscopy, in Advances in Optical and Electron Microscopy, Vol. 7, ed. by R. Barer, V.E. Cosslett ( Academic, London 1978 ) p. 185

    Google Scholar 

  177. W.O. Saxton: Computer techniques for image processing in electron microscopy. Adv. Electron. Electron Phys. Suppl. 10, 289 (1978)

    ADS  Google Scholar 

  178. W.O. Saxton: Recovery of specimen information for strongly scattering objects, in [Ref.1.15, p.35]

    Google Scholar 

  179. R.W. Gerchberg, W.O. Saxton: Phase determination from image and diffraction plane pictures in the electron microscope. Optik 34, 275 (1971)

    Google Scholar 

  180. R.W. Gerchberg, W.O. Saxton: A practical algorithm for the determination of phase from image and diffraction plane picture. Optik 35, 237 (1972)

    Google Scholar 

  181. J. Frank: A remark on phase determination in electron microscopy. Optik 38, 582 (1973)

    Google Scholar 

  182. R.W. Gerchberg: Holography without fringes in the electron microscope. Nature 240, 404 (1972)

    Article  ADS  Google Scholar 

  183. J.N. Chapman: The application of iterative techniques to the investigation of strong phase objects in the electron microscope. Philos. Mag. 32, 527 and 541 (1975)

    Google Scholar 

  184. D.L. Misell: An examination of an iterative method for the solution of the phase problem in optics and electron optics. J. Phys. D 6, 2200 and 2217 (1973)

    Google Scholar 

  185. P. Schiske: Phase determination from a focal series and the corresponding diffraction pattern in electron microscopy for strongly scattering objects. J. Phys. D 8, 1372 (1975)

    Article  ADS  Google Scholar 

  186. W.O. Saxton: What is the focus variation method? Is it new? Is it direct?. Ultramicroscopy 55, 171 (1994)

    Article  Google Scholar 

  187. D. Van Dyck, M. Op de Beeck: A new approach to object wavefunction reconstruction in electron microscopy. Optik 93, 103 (1993)

    Google Scholar 

  188. W.O. Saxton, W.M. Stobbs: BF/DF image subtraction for image linearization. In Electron Microscopy 1984, Vol.1, ed. by A. Csanâdy, P. Röhlich, D. Szabo ( MOTESZ, Budapest 1984 ) p. 287

    Google Scholar 

  189. P. van Toorn, A.M.J. Huiser, H.A. Ferwerda: Proposals for solving the phase retrieval problem for semi-weak objects from noisy electron micrographs. Optik 51, 309 (1978)

    Google Scholar 

  190. R. Langer, J. Frank, A. Feltynowski, W. Hoppe: Anwendung des Bilddifferenzverfahrens auf die Untersuchung von Strukturänderungen dünner Kohlefolien bei Elektronenbestrahlung. Ber. Bunsenges. Phys. Chem. 74, 1120 (1970)

    Google Scholar 

  191. J. Frank: Two-dimensional correlation functions in electron microscope image analysis, in Electron Microscopy 1972 (IoP, London 1972 ) p. 622

    Google Scholar 

  192. M. van Heel, M. Schatz, E. Orlova: Correlation functions revisited. Ultramicroscopy 46, 307 (1992)

    Article  Google Scholar 

  193. W. Hoppe, R. Langer, J. Frank, A. Feltynowski: Bilddifferenzverfahren in der Elektronenmikroskopie. Naturwissenschaften 56, 267 (1969)

    Article  ADS  Google Scholar 

  194. J. Frank, P. Bu ler, R. Langer, W. Hoppe: Einige Erfahrungen mit der rechnerischen Analyse and Synthese von elektronenmikroskopischen Bildern hoher Auflösung. Ber. Bunsenges. Phys. Chem. 74, 1105 (1970)

    Google Scholar 

  195. T.A. Welton: A computational critique of an algorithm for image enhancement in bright field electron microscopy. Adv. Electron. Electron Phys. 48 37 (1978)

    Article  Google Scholar 

  196. R.A. Crowther, L.A. Amos: Harmonic analysis of electron microscope images with rotational symmetry. J. Mol. Biol. 60, 123 (1971)

    Article  Google Scholar 

  197. B.K. Jap, M. Zulauf, T. Scheybani, A. Hefti, W. Baumeister, U. Aebi, A. Engel: 2D crystallization: from art to science. Ultramicroscopy 46, 45 (1992)

    Article  Google Scholar 

  198. R. Dürr: Displacement field analysis: calculation of distortion measures from displacement maps. Ultramicroscopy 38, 135 (1991)

    Article  Google Scholar 

  199. W.O. Saxton, R. Dürr, W. Baumeister: From lattice distortion to molecular distortion: characterising and exploiting crystal deformation. Ultramicroscopy 46, 287 (1992)

    Article  Google Scholar 

  200. H.P. Erikson, A. Klug: Measurements and compensation of defocusing and aberrations by Fourier processing of electron micrographs. Philos. Trans. B 261, 105 (1971)

    Article  Google Scholar 

  201. A.M. Kuo, R.M. Glaeser: Development of methodology for low exposure, high resolution electron microscopy of biological specimens. Ultramicroscopy 1, 53 (1975)

    Article  Google Scholar 

  202. P.N.T. Unwin, R. Henderson: Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425 (1975)

    Article  Google Scholar 

  203. H. Gross, Th. Müller, I. Wildhaber, H. Winkler: High resolution metal replication, quantified by image processing of periodic test specimens. Ultra-microscopy 16, 287 (1985)

    Article  Google Scholar 

  204. I Wildhaber, H. Gross, H. Moor: Comparative studies of very thin shadowing films produced by atom beam sputtering and electron beam evaporation. Ultramicroscopy 16 321 (1985)

    Google Scholar 

  205. W.O. Saxton, J. Frank: Motif detection in quantum noise-limited electron micrographs by cross-correlation. Ultramicroscopy 2, 219 (1976)

    Article  Google Scholar 

  206. J. Frank: Averaging of low exposure electron micrographs of nonperiodic objects. Ultramicroscopy 1, 159 (1975)

    Article  Google Scholar 

  207. J. Frank: Optimal use of image formation using signal detection and averaging techniques. Ann. New York Acad. Sci. 306, 112 (1978)

    Article  ADS  Google Scholar 

  208. J. Frank, W. Goldfarb, D. Eisenberg, T.S. Baker: Reconstruction of glutamine synthease using computer averaging. Ultramicroscopy 3, 283 (1978)

    Article  Google Scholar 

  209. J. Frank, A. Verschoor, M. Boublik: Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214, 1356 (1981)

    Article  ADS  Google Scholar 

  210. M. van Heel: Detection of objects in quantum-noise-limited images. Ultra-microscopy 7, 331 (1982)

    Article  Google Scholar 

  211. M. van Heel, J. Frank: Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6, 187 (1981)

    Google Scholar 

  212. J. Frank: The role of multivariate image analysis in solving the architecture of the Limulus polyphemus hemocyanin molecule. Ultramicroscopy 13, 153 (1984)

    Article  Google Scholar 

  213. M. van Heel: Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy 13, 165 (1984)

    Article  Google Scholar 

  214. J.G. Helmcke: Theorie and Praxis der elektronenmikroskopischen Stereoaufnahme. Optik 11, 201 (1954); 12, 253 (1955)

    Google Scholar 

  215. R.I. Garrod, J.F. Nankivell: Some remarks on the accuracy obtainable in electron stereomicroscopy. Optik 16, 27 (1959)

    Google Scholar 

  216. R.A. Crowther, D.J. deRosier, A. Klug: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. Roy. Soc. (London) A 317, 319 (1970)

    Article  ADS  Google Scholar 

  217. G.N. Ramachandran, A.V. Lakshminarayanan: Three-dimensional reconstruction from radiographs and electron micrographs.. Proc. Nat. Acad. Sci. USA 68, 2236 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  218. M. van Heel, W. Keegstra: IMAGIC: a fast, flexible and friendly image analysis software system. Ultramicroscopy 7, 113 (1981)

    Article  Google Scholar 

  219. R.A. Crowther, A. Klug: ART and Science or conditions for three-dimensional structure from projections and its application to electron microscopy. J. Theor. Biol. 32, 199 (1971)

    Article  Google Scholar 

  220. R. Gordon, R. Bender, G.T. Herman: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29, 471 (1970)

    Article  Google Scholar 

  221. P.F.C. Gilbert: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II Direct methods. Proc. Roy. Soc. (London) B 182, 89 (1972)

    Article  ADS  Google Scholar 

  222. E. Zeitler: The reconstruction of objects from their projections. Optik 39, 396 (1974)

    Google Scholar 

  223. W. Hoppe, H.J. Schramm, M. Sturm, N. Hunsmann, J. Ga mann: Three-dimensional electron microscopy of individual biological objects. Z. Naturforschg. A 31, 645, 1370 and 1380 (1976)

    Google Scholar 

  224. M. Zwick, E. Zeitler: Image reconstruction from projections. Optik 38, 550 (1973)

    Google Scholar 

  225. M. Carazo, J. Carrascosa: Information recovery in missing angular data cases: an approach by the convex projections method in three dimensions. J. Microsc. 145, 23 (1987)

    Article  Google Scholar 

  226. M. Carazo, J. Carrascosa: Restoration of direct Fourier three-dimensional reconstruction of crystalline specimens by the method of convex projections. J. Microsc. 145, 159 (1987)

    Article  Google Scholar 

  227. M.I. Sezan: An overview of convex projections theory and its application to image recovery problems. Ultramicroscopy 40, 55 (1992)

    Article  Google Scholar 

  228. D.P. Barnard, J.N. Turner, J. Frank, B.F. McEwen: A 360° single-axis tilt stage for the HVEM. J. Microsc. 167, 39 (1992)

    Article  Google Scholar 

  229. M. Radermacher, T. Wagenknecht, A. Verschoor, J. Frank: Three-dimensional reconstruction from single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113 (1987)

    Article  Google Scholar 

  230. J. Frank (ed.): Electron Tomography ( Plenum, New York 1992 )

    Google Scholar 

  231. J. Frank, M. Rademacher: Three-dimensional reconstruction of single particles negatively stained or in vitreous ice. Ultramicroscopy 46, 241 (1992)

    Article  Google Scholar 

  232. M. Schatz, M. van Heel: Invariant recognition of molecular projections in vitreous ice. Ultramicroscopy 45, 15 (1992)

    Article  Google Scholar 

  233. K. Dierksen, D. Typke, R. Hegerl, A.J. Koster, W. Baumeister: Towards automatic electron tomography. Ultramicroscopy 40, 71 (1992)

    Article  Google Scholar 

  234. K. Dierksen, D. Typke, R. Hegerl, W. Baumeister: Towards automatic tomography. II. Implementation of autofocus and low-dose procedures. Ultra-microscopy 49, 109 (1993)

    Article  Google Scholar 

  235. J.N. Chapman: The investigation of magnetic domain structures in thin foils by electron microscopy. J. Phys. D 17, 623 (1984)

    Article  ADS  Google Scholar 

  236. P.J. Grundy, R.S. Tebble: Lorentz electron microscopy. Adv. Phys. 17, 153 (1968)

    Article  ADS  Google Scholar 

  237. R.H. Wade: Lorentz microscopy or electron phase microscopy of magnetic objects, in Advances in Optical and Electron Microscopy, Vol. 5, ed. by R. Barer, V.E. Cosslett ( Academic, London 1973 ) p. 239

    Google Scholar 

  238. J.P. Jakubovics: Lorentz microscopy and application (TEM and SEM), in Ref.1.27, Part IV, p. 1303

    Google Scholar 

  239. K. Tsuno, T. Taoka: Magnetic-field-free objective lens around the specimen for observing fine structure of ferromagnetic materials in TEM. Jpn. J. Appl. Phys. 22, 1041 (1983)

    Article  ADS  Google Scholar 

  240. E. Fuchs: Magnetische Strukturen in dünnen ferromagnetischen Schichten, untersucht mit dem Elektronenmikroskop. Z. Angew. Phys. 14, 203 (1962)

    Google Scholar 

  241. K. Schaffernicht: Messung der Magnetisierungsverteilungen in dünnen Eisenschichten durch die Ablenkung von Elektronen. Z. Angew. Phys. 15, 275 (1963)

    Google Scholar 

  242. D.H. Warrington, J.M. Rodgers, R.S. Tebble: The use of ferromagnetic domain structure to determine the thickness of iron films in TEM. Philos. Mag. 7, 1783 (1962)

    Article  ADS  Google Scholar 

  243. R.H. Wade: Electron diffraction from a magnetic phase grating. Phys. Status Solidi 19, 847 (1967)

    Article  Google Scholar 

  244. M.J. Goringe, J.P. Jakubovics: Electron diffraction from periodic magnetic fields. Philos. Mag. 15, 393 (1967)

    Article  ADS  Google Scholar 

  245. H. Boersch, H. Raith: Elektronenmikroskopische Abbildung Wei scher Bezirke in dünnen ferromagnetischen Schichten. Naturwissenschaften 46, 574 (1959)

    Article  ADS  Google Scholar 

  246. H.W. Fuller, M.E. Hale: Domains in thin magnetic films observed by electron microscopy. J. Appl. Phys. 31, 1699 (1960)

    Article  ADS  Google Scholar 

  247. J. Podbrdsky: High resolution in-focus Lorentz electron microscopy. J. Microsc. 101, 231 (1974)

    Article  Google Scholar 

  248. W. Rollwagen, Ch. Schwink: Die Empfindlichkeit einfacher elektronenoptischer Schlierenanordnungen. Optik 10, 525 (1953)

    Google Scholar 

  249. Ch. Schwink: Über neue quantitative Verfahren der elektronenoptischen Schattenmethode. Optik 12, 481 (1955)

    Google Scholar 

  250. A.G. Cullis, D.M. Maher: High-resolution topographical imaging by direct TEM. Philos. Mag. 30, 447 (1974)

    Article  ADS  Google Scholar 

  251. H.W. Fuller, M.E. Hale: Determination of magnetization distribution in thin films using electron microscopy. J. Appl. Phys. 31, 238 (1960)

    Article  ADS  Google Scholar 

  252. H. Boersch, H. Hamisch, D. Wohlleben, K. Grohmann: Antiparallele Weißsche Bezirke als Biprisma für Elektroneninterferenzen. Z. Phys. 159, 397 (1960)

    Article  ADS  Google Scholar 

  253. D. Wohlleben: Diffraction effects in Lorentz microscopy. J. Appl. Phys. 38, 3341 (1967)

    Article  ADS  Google Scholar 

  254. L. Reimer, H. Kappert: Elektronen-Kleinwinkelstreuung und Bildkontrast in defokussierten Aufnahmen magnetischer Bereichsgrenzen. Z. Angew. Phys. 27, 165 (1969)

    Google Scholar 

  255. R.H. Wade: The determination of domain wall thickness in ferromagnetic films by electron microscopy. Proc. Phys. Soc. 79, 1237 (1962)

    Article  ADS  Google Scholar 

  256. T. Suzuki, A. Hubert: Determination of ferromagnetic domain wall widths by means of high voltage Lorentz microscopy. Phys. Status Solidi 35, K5 (1970)

    Article  ADS  Google Scholar 

  257. T. Suzuki, M. Wilkens: Lorentz-electron microscopy of ferromagnetic specimens at high voltages. Phys. Status Solidi A 3, 43 (1970)

    Article  ADS  Google Scholar 

  258. H. Gong, J.N. Chapman: On the use of divergent wall images in the Fresnel mode of Lorentz microscopy for the measurement of the widths of very narrow domain walls. J. Magn. Magn. Mat. 67, 4 (1987)

    Article  ADS  Google Scholar 

  259. D.S. Hothersall: The investigation of domain walls in thin sections of iron by the electron interference method. Philos. Mag. 20, 89 (1969)

    Article  ADS  Google Scholar 

  260. D.C. Hothersall: Electron images of domain walls in Co foils. Philos. Mag. 24, 241 (1971)

    Article  ADS  Google Scholar 

  261. D.C. Hothersall: Electron images of two-dimensional domain walls. Phys. Status Solidi B 51, 529 (1972)

    Article  ADS  Google Scholar 

  262. P. Schwellinger: The analysis of magnetic domain wall structures in the transition region of Néel and Bloch walls by Lorentz microscopy. Phys. Status Solidi A 36, 335 (1976)

    Article  ADS  Google Scholar 

  263. C.G. Harrison, K.D. Leaver: A second domain wall parameter measurable by Lorentz microscopy. Phys. Status Solidi A 12, 413 (1972)

    Article  ADS  Google Scholar 

  264. R. Ajeian, H. Kappert, L. Reimer: Fraunhofer-Beugung an Lorentz-mikroskopischen Aufnahmen des Magnetisierungs-Ripple. Z. Angew. Phys. 30, 80 (1970)

    Google Scholar 

  265. T. Susuki: Investigations into ripple wavelength in evaporated thin films by Lorentz microscopy. Phys. Status Solidi 37, 101 (1970)

    Article  Google Scholar 

  266. C. Mory, C. Colliex: Inelastic effects in Lorentz microscopy Philos. Mag. 33, 97 (1976)

    Google Scholar 

  267. M. Blackman, A.E. Curzon, A.T. Pawlowicz: Use of an electron beam for detecting superconducting domains of lead in its intermediate state. Nature 200, 157 (1963)

    Article  ADS  Google Scholar 

  268. G. Pozzi, U. Valdrè: Study of electron shadow patterns of the intermediate state of superconducting lead. Philos. Mag. 23, 745 (1971)

    Article  ADS  Google Scholar 

  269. J.P. Jacubovics: The effect of magnetic domain structure on Bragg reflection in TEM. Philos. Mag. 10, 277 (1964)

    Article  ADS  Google Scholar 

  270. J.N. Chapman, E.H. Darlington: The application of STEM to the study of thin ferromagnetic films J Phys. E 7, 181 (1974)

    Article  ADS  Google Scholar 

  271. J.N. Chapman, E.M. Waddell, P.E. Batson, R.P. Ferrier: The Fresnel mode of Lorentz microscopy using a STEM. Ultramicroscopy 4, 283 (1979)

    Article  Google Scholar 

  272. J.N. Chapman, P.E. Batson, E.M. Waddell, R.P. Ferrier: The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3, 203 (1978)

    Article  Google Scholar 

  273. J.N. Chapman, P. Ploessl, D.M. Donnet: Differential phase contrast microscopy of magnetic materials. Ultramicroscopy 47, 331 (1992)

    Article  Google Scholar 

  274. A. Olivei: Holography and interferometry in electron Lorentz microscopy. Optik 30, 27 (1969)

    Google Scholar 

  275. A. Olivei: Magnetic inhomogeneties and holographic methods in electron Lorentz microscopy. Optik 33, 93 (1971)

    Google Scholar 

  276. M.S. Cohen, K.J. Harte: Domain wall profiles in magnetic films. J. Appl. Phys. 40, 3597 (1969)

    Article  ADS  Google Scholar 

  277. J.E. Bonevich, K. Harada, T. Matsuda, H. Kasai, T. Yoshida, G. Pozzi, A. Tonomura: Electron holography observation of vortex lattices in a superconductor. Phys. Rev. Lett. 70, 2952 (1993)

    Article  ADS  Google Scholar 

  278. V.I. Petrov, G.V. Spivak: On a stroboscopic Lorentz microscope. Z. Angew. Phys. 27, 188 (1969)

    Google Scholar 

  279. O. Bostanjoglo, Th. Rosin: Resonance oscillations of magnetic domain walls and Bloch lines observed by stroboscopic electron microscopy. Phys. Status Solidi A 57, 561 (1980)

    Article  ADS  Google Scholar 

  280. H. Mahl, W. Weitsch: Nachweis von fluktuierenden Ladungen in isolierenden Filmen bei Elektronenbestrahlung. Optik 17, 107 (1960)

    Google Scholar 

  281. H. Mahl, W. Weitsch: Versuche zur Beseitigung von Aufladungen auf Durchstrahlungsobjekten durch zusätzliche Bestrahlung mit langsamen Elektronen. Z. Naturforsch. A 17, 146 (1962)

    ADS  Google Scholar 

  282. G.H. Curtis, R.P. Ferrier: The electric charging of electron microscopical specimens. J. Phys D 2, 1035 (1969)

    Article  ADS  Google Scholar 

  283. D.H. Warrington: A simple charge neutralizer for the electron microscope. J. Sci. Instr. 43, 77 (1966)

    Article  ADS  Google Scholar 

  284. L. Reimer: Aufladung kleiner Teilchen im Elektronenmikroskop. Z. Naturforsch. A 20, 151 (1965)

    ADS  Google Scholar 

  285. V. Drahos, J. Komrska, M. Lenc: Shadow images of charged spherical particles, in Electron Microscopy 1968, Vol. 1, ed. by D.S. Bocciarelli ( Tipografia Poliglotta Vaticana, Rome 1968 ) p. 157

    Google Scholar 

  286. C. Jönsson, H. Hoffmann: Der Einflu von Aufladungen auf die Stromdichteverteilung im Elektronenschattenbild dünner Folien. Optik 21, 432 (1964)

    Google Scholar 

  287. H. Pfisterer, E. Fuchs, W. Liesk: Elektronenmikroskopische Abbildung ferroelektrischer Domänen in dünnen BaTiO3-Einkristallschichten. Naturwissenschaften 49, 178 (1962)

    Article  ADS  Google Scholar 

  288. H. Blank, S. Amelinckx: Direct observation of ferroelectric domains in BaTiO3 by means of the electron microscope. Appl. Phys. Lett. 2, 140 (1963)

    Article  ADS  Google Scholar 

  289. E. Fuchs, W. Liesk: Elektronenmikroskopische Beobachtung von Domänenkonfigurationen and von Umpolarisationsvorgängen in dünnen BaTiO3-Einkristallen. J. Phys. Chem. Solidi 25, 845 (1964)

    Article  ADS  Google Scholar 

  290. R. Ayroles, J. Torres, J. Aubree, C. Roucau, M. Tanaka: Electron-microscope observation of structure domains in the ferroelectric phase of lead phosphate. Appl. Phys. Lett. 34, 4 (1979)

    Article  ADS  Google Scholar 

  291. C. Manolikas, S Amelinckx: Phase transitions in ferroelastic lead orthovanadate as observed by means of electron microscopy and electron diffraction. Phys. Status Solidi A 60, 607 (1980)

    Article  ADS  Google Scholar 

  292. M. Tanaka, G. Honjo: Electron optical studies of BaTiO3 single crystal films J. Phys. Soc. Jpn. 19, 954 (1964)

    Article  ADS  Google Scholar 

  293. J.M. Titchmarsh, G.R. Booker: The imaging of electric field regions associated with p-n junctions, in Electron Microscopy 1972 ( IoP, London 1972 ) p. 540

    Google Scholar 

  294. P.G. Merli, G.F. Missiroli, G. Pozzi: TEM observations of p-n junctions. Phys. Status Solidi A 30, 699 (1975)

    Article  ADS  Google Scholar 

  295. C. Capiluppi, P.G. Merli, G. Pozzi, I. Vecchi: Out-of focus observations of p-n junctions by high-voltage microscopy. Phys. Status Solidi A 35, 165 (1976)

    Article  ADS  Google Scholar 

  296. S. Frabboni, G. Matencci, G. Pozzi: Electron holographic observation of the electrostatic field associated with thin reverse-biased p-n junctions. Phys. Rev. Lett. 55, 2196 (1985)

    Article  ADS  Google Scholar 

  297. G. Matteucci, G.F. Missiroli, G. Pozzi: Electron holography of electrostatic fields. J. Electron Microscopy 45, 19 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1997). Scattering and Phase Contrast for Amorphous Specimens. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-14824-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-14824-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14826-6

  • Online ISBN: 978-3-662-14824-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics