Elements of a Transmission Electron Microscope

  • Ludwig Reimer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 36)


Not only does the electron gun of an electron microscope emit electrons into the vacuum and accelerate them between cathode and anode, but it is also required to produce an electron beam of high brightness and high temporal and spatial coherence. The conventional thermionic emission from a tungsten wire is limited in temporal coherence by an energy spread of the emitted electrons of the order of a few electronvolts and in spatial coherence by the gun brightness. Schottky-emission and field-emission guns are newer alternatives, for which the energy spread is less and the gun brightness higher.


Scan Transmission Electron Microscopy Condenser Lens Electron Spectroscopic Imaging Thermionic Cathode Scan Transmission Electron Microscopy Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    M.E. Haine, P.A. Einstein, P.H. Borcherds: Resistance bias characteristics for the electron microscope gun. Brit. J. Appl. Phys. 9, 482 (1958)ADSCrossRefGoogle Scholar
  2. 4.2
    M. Takeguchi, C. Hanging, Y. Kimura, T. Ando, R. Shimizu: Development of Zr-O/W(100) thermal field emission TEM. Optik 92, 83 (1992)Google Scholar
  3. 4.3
    L.W. Swanson, L.C. Crouser: Total-energy distribution of field-emitted electrons and single-plane work functions for tungsten. Phys. Rev. 163, 622 (1967)ADSCrossRefGoogle Scholar
  4. 4.4
    H. Boersch: Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Phys. 139, 115 (1954)ADSCrossRefGoogle Scholar
  5. 4.5
    K.H. Loeffler: Energy-spread generation in electron-optical instruments. Z. Angew. Phys. 27, 145 (1969)Google Scholar
  6. 4.6
    R.W. Ditchfield, M.J. Whelan: Energy broadening of the electron beam in the electron microscope. Optik 48, 163 (1977)Google Scholar
  7. 4.7
    H. Rose, R. Spehr: On the theory of the Boersch effect. Optik 57, 339 (1980)Google Scholar
  8. 4.8
    H. Rose, R. Spehr: Energy broadening in high-density electron and ion beams: The Boersch effect, in Applied Charged Particle Optics,ed. by A Septier (Academic, New York 1983) Pt.C, p.479Google Scholar
  9. 4.9
    M. Troyon, P. Zinzindohoué: Energy spread of different thermionic electron sources, in [Ref.1.59, Vol.1, p.273]Google Scholar
  10. 4.10
    P. Zinzindohoué, M. Troyon: Energy spread of different field emission electron beams, in [Ref.1.59, Vol.1, p.271]Google Scholar
  11. 4.11
    D.B. Langmuir: Theoretical limitations of cathode-ray tubes. Proc. IRE 25, 977 (1937)CrossRefGoogle Scholar
  12. 4.12
    J. Dosse: Theoretische and experimentelle Untersuchungen über Elektronenstrahler. Z. Phys. 115, 530 (1940)ADSCrossRefGoogle Scholar
  13. 4.13
    A.N. Broers: Electron gun using long-life LaB6 cathode. J. Appl. Phys. 38, 1991 (1967)Google Scholar
  14. 4.14
    A.N. Broers: Some experimental and estimated characteristics of the LaB6 rod cathode electron gun. J. Phys. E 2, 273 (1969)ADSCrossRefGoogle Scholar
  15. 4.15
    S.D. Ferris, D.C. Joy, H.J. Leamy, C.K. Crawford: A directly heated LaB6 electron source, in Scanning Electron Microscopy 1975, ed. by O. Johari ( IIT Research Institute, Chicago 1976 ) p. 11Google Scholar
  16. 4.16
    S. Nakagawa, T. Yanaka: A high stable electron probe obtained with LaB6 cathode electron gun, in Scanning Electron Microscopy 1975, ed. by O. Johari ( IIT Research Institute, Chicago 1976 ) p. 19Google Scholar
  17. 4.17
    C.K. Crawford: Mounting methods and operating characteristics for LaB6 cathodes, in Scanning Electron Microscopy 1979 I, ed. by O. Johari (SEM, AMF O’Hare 1979 ) p. 19Google Scholar
  18. 4.18
    P.H. Schmidt, D.C. Joy, L.D. Longinotti, H.J. Leamy, S.D. Ferris, Z. Fisk: Anisotropy of thermionic electron emission values of LaB6 single-crystal emitter cathodes. Appl. Phys. Lett. 29, 400 (1976)ADSCrossRefGoogle Scholar
  19. 4.19
    M.E. Haine, P.A. Einstein: Characteristics of the hot cathode electron microscope gun. Br. J. Appl. Phys. 3, 40 (1952)ADSCrossRefGoogle Scholar
  20. 4.20
    R. Lauer: Characteristics of triode electron guns, in Advances in Optical and Electron Microscopy, Vol. 8, ed. by R. Barer, V.E. Cosslett ( Academic, London 1982 ) p. 137Google Scholar
  21. 4.21
    D.W. Tuggle, J.Z. Li, L.W. Swanson: Point cathodes for use in virtual source electron optics. J. Microsc. 140, 293 (1985)CrossRefGoogle Scholar
  22. 4.22
    D.W. Tuggle, L.W. Swanson: Emission characteristics of the ZrO/W thermal field electron source. J. Vac. Sci. Techn. B 3, 220 (1985)Google Scholar
  23. 4.23
    E. Kasper: Field electron emission systems, in Advances in Optical and Electron Microscopy, Vol. 8, ed. by R. Barer, V.E. Cosslett ( Academic, London 1982 ) p. 207Google Scholar
  24. 4.24
    A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter: Electron gun using a field-emission source. Rev. Sci. Instr. 39, 576 (1968)ADSCrossRefGoogle Scholar
  25. 4.25
    E. Munro: Design of electrostatic lenses for field-emission guns, in Electron Microscopy 1972 (IoP, London 1972 ) p. 22Google Scholar
  26. 4.26
    D. Kern. D. Kurz, R. Speidel: Elektronenoptische Eigenschaften eines Strahlerzeugungssystemes mit Feldemissionskathode. Optik 52, 61 (1978)Google Scholar
  27. 4.27
    G.H.N. Riddle: Electrostatic einzel lenses with reduced spherical aberration for use in field-emisssion gun. J. Vac. Sci. Technol. 15, 857 (1978)ADSCrossRefGoogle Scholar
  28. 4.28
    J. Orloff, L.W. Swanson: An asymmetric lens for field-emission microprobe applications. J. Appl. Phys. 50, 2494 (1979)ADSCrossRefGoogle Scholar
  29. 4.29
    F.H. Plomp, L. Veneklasen, B. Siegel: Development of a field emission electron source for an electron microscope, in Electron Microscopy 1968, Vol.1., ed. by D.S. Bocciarelli ( Tipografia Poliglotta Vaticana, Rome 1968 ) p. 141Google Scholar
  30. 4.30
    L.H. Veneklasen, B.M. Siegel: A field emission illuminating system for transmission microscopy, in [Ref.1.55, Vol.2, p.87]Google Scholar
  31. 4.31
    T. Someya, T. Goto, Y. Harada, M. Watanabe: Development of field emission electron gun for high resolution 100 kV electron microscope, in Electron Microscopy 1972 (IoP, London 1972 ) p. 20Google Scholar
  32. 4.32
    W. Engel, W. Kunath, S. Krause: Properties of three electrode accelerating lenses for field emission guns, in [Ref.1.56, Vol.1, p.118]Google Scholar
  33. 4.33
    J.R.A. Cleaver: Field emission electron gun system incorporating single-pole magnetic lenses. Optik 52, 293 (1979)Google Scholar
  34. 4.34
    M. Troyon: A magnetic field emission electron probe forming system, in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Cong. on Electron Microscopy Foundation, Leiden 1980 ) p. 56Google Scholar
  35. 4.35
    W.D. Riecke: Zur Zentrierung des magnetischen Elektronenmikroskopes. Optik 24, 397 (1966)Google Scholar
  36. 4.36
    W.D. Riecke: Instrument operation for microscopy and microdiffraction, in [Ref.1.27, Pt.1, p.19]Google Scholar
  37. 4.37
    V.E. Cosslett: Probe size and probe current in the STEM. Optik 36, 85 (1972)Google Scholar
  38. 4.38
    L.H. Veneklasen: Some general consideration concerning the optics of the field emission illumination system. Optik 36, 410 (1972)Google Scholar
  39. 4.39
    J.R.A. Cleaver, K.C.A. Smith: Two-lens probe forming systems employing field emission guns, in Scanning Electron Microscopy 1973, ed. by O. Johari ( ITT Research Inst., Chicago 1973 ) p. 49Google Scholar
  40. 4.40
    G. Benner, W. Probst: Köhler illumination in the TEM: Fundamentals and advantages. J. Microsc. 174, 133 (1994)CrossRefGoogle Scholar
  41. 4.41
    M. Müller, Th. Koller: Preparation of aluminium oxide films for high resolution electron microscopy. Optik 35, 287 (1972)Google Scholar
  42. 4.42
    D. Dorignac, M.E.C. MacLachlan, B. Jouffrey: Low-noise boron supports for high resolution electron microscopy. Ultramicroscopy 4, 85 (1979)CrossRefGoogle Scholar
  43. 4.43
    S. Iijima: Thin graphite supporting films for high resolution electron microscopy. Micron 8, 41 (1977)Google Scholar
  44. 4.44
    W. Baumeister, M.H. Hahn: Suppression of lattice periods in vermiculite single crystal supports for high resolution electron microscopy. J. Microsc. 101, 111 (1974)CrossRefGoogle Scholar
  45. 4.45
    U. Valdrè, M.J. Goringe: Electron Microscopy in Materials Science ( Academic, New York 1971 ) p. 207Google Scholar
  46. 4.46
    U. Valdrè: General considerations on specimen stages, in Electron Microscopy 1972 (IoP, London 1972 ) p. 317Google Scholar
  47. 4.47
    J.A. Venables: In-situ experiments in electron microscopes, in Electron Microscopy 1972 (IoP, London 1972 ) p. 344Google Scholar
  48. 4.48
    U. Messerschmidt, M. Bartsch: High-temperature straining stage for in situ experiments in the high-voltage electron microscope. Ultramicroscopy 56, 163 (1994)CrossRefGoogle Scholar
  49. 4.49
    H.G. Heide: Principle of a TEM specimen device to meet highest requirements: specimen temperature 5–300 K, cryo transfer, condensation protection, specimen tilt, stage stability for highest resolution. Ultramicroscopy 6, 115 (1981)Google Scholar
  50. 4.50
    H.G. Heide: Design and operation of cold stages. Ultramicroscopy 10, 125 (1982)CrossRefGoogle Scholar
  51. 4.51
    J.E. Eades: A helium-cooled specimen stage for electron microscopy. J. Phys. E 15, 184 (1982)ADSCrossRefGoogle Scholar
  52. 4.52
    D.F. Parsons, V.R. Matricardi, J. Subjeck, I. Uydess, G. Wray: High-voltage electron microscopy of wet whole cancer and normal cells: Visualization of cytoplasmatic structure and surface projections. Biochim. Biophys. Acta 290, 110 (1972)CrossRefGoogle Scholar
  53. 4.53
    J. Stabenow: Herstellung dünnwandiger Objektivaperturblenden für die Elektronenmikroskopie. Naturwissenschaften 54, 163 (1967)ADSCrossRefGoogle Scholar
  54. 4.54
    J. Kala, J. Podbrdsky: Thin foil apertures with very small openings for electron microscopy. J. Phys. E 4, 609 (1971)ADSCrossRefGoogle Scholar
  55. 4.55
    E. Schabtach: A method for the fabrication of thin foil apertures for electron microscopy. J. Microsc. 101, 121 (1974)CrossRefGoogle Scholar
  56. 4.56
    C.F. Oster, D.C. Skillman: Determination and control of electron microscopic magnification, in [Ref.1.53, p.EE-3]Google Scholar
  57. 4.57
    G.F. Bahr, E. Zeitler: The determination of magnification in the electron microscope. Lab. Invest. 14, 880 (1965)Google Scholar
  58. 4.58
    P.F. Elbers, J. Pieters: Accurate magnification determination in the Siemens Elmiskop I, in Electron Microscopy 1964, Vol. A, ed. by M. Titlbach (Czechoslovak Acad. Sci., Prague 1964 ) p. 123Google Scholar
  59. 4.59
    P.J. Wilbrandt: A simple concept for better alignment and simplified operation of a TEM. Ultramicroscopy 52, 193 (1993)CrossRefGoogle Scholar
  60. 4.60
    J. Porstendörfer, J. Heyder: Elektronenmikroskopische Untersuchungen an Latex-Teilchen. Optik 35, 73 (1972)Google Scholar
  61. 4.61
    W.C.T. Dowell: Die Bestimmung der Vergrö erung des Elektronenmikroskops mittels Elektroneninterferenz. Optik 21, 26 (1964)Google Scholar
  62. 4.62
    R. Luftig: An accurate masurement of the catalase crystal period and its use as an internal marker for electron microscopy. J. Ultrastruct. Res. 20, 91 (1967)CrossRefGoogle Scholar
  63. 4.63
    N.G. Wrigley: The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J. Ultrastruct. Res. 24, 454 (1968)CrossRefGoogle Scholar
  64. 4.64
    J. McCaffrey, J.M. Baribeau: TEM calibration sample for all magnification, camera constant, and image-diffraction pattern rotation calibrations, in [Ref. 1.61, Vol.1, p.265]Google Scholar
  65. 4.65
    J.B. LePoole, P. Stam: An objective method for focusing, in [Ref.1.51, p.666]Google Scholar
  66. 4.66
    H. Koike, K. Ueno, M. Suzuki: Scanning device combined with conventional electron microscope, in Proc. 29th Ann. Meeting of EMSA (Claytor’s Publ. Div., Baton Rouge LO 1971 ) p. 28Google Scholar
  67. 4.67
    L. Reimer, P. Hagemann: The use of transmitted and backscattered electrons in the scanning mode of a TEM, in Developments in Electron Microscopy and Analysis, ed. by D.L. Misell (IoP, London 1977 ) p. 135Google Scholar
  68. 4.68
    S.J. Pennycook, L.M. Brown, A.J. Craven: Observation of cathodolumines- cence at single dislocations by STEM. Philos. Mag. A 41, 589 (1980)ADSCrossRefGoogle Scholar
  69. 4.69
    N. Yamamoto, J.C.H. Spence, D. Fathy: Cathodoluminescence and polarization studies from individual dislocations in diamonds. Philos. Mag. B 49, 609 (1984)CrossRefGoogle Scholar
  70. 4.70
    S.J. Pennycook, A. Howie: Study of single electron excitations by electron microscopy. Philos. Mag. A 41, 809 (1980)ADSCrossRefGoogle Scholar
  71. 4.71
    P.M. Petroff, D.V. Lang, J.L. Strudel, R.A. Logan: STEM techniques for simultaneous electronic analysis and observation of defects in semiconductors, in Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM, AMF O’Hare, IL 1978 ) p. 325Google Scholar
  72. 4.72
    M.J. Leamy: Charge collection scanning electron microscopy. J. Appl. Phys. 53, R51 (1982)ADSCrossRefGoogle Scholar
  73. 4.73
    H. Blumtritt, R. Gleichmann, J. Heydenreich, J. Johansen: Combined scanning (EBIC) and transmission electron microscopic investigations of dislocations in semiconductors. Phys. Status Solidi A 55, 1517 (1977)Google Scholar
  74. 4.74
    T.G. Sparrow, U. Valdrè: Application of STEM to semiconductor devices. Philos. Mag. 36, 1517 (1977)ADSCrossRefGoogle Scholar
  75. 4.75
    P.M. Petroff, D.V. Lang: A new spectroscopic technique for imaging the spatial distribution of nonradiative defects in a STEM. Appl. Phys. Lett. 31, 60 (1977)ADSCrossRefGoogle Scholar
  76. 4.76
    A.V. Crewe, J. Wall, L.M. Welter: A high-resolution STEM. J. Appl. Phys. 39, 5861 (1968)ADSCrossRefGoogle Scholar
  77. 4.77
    A.V. Crewe, J. Wall: Contrast in a high-resolution STEM. Optik 30, 461 (1970)Google Scholar
  78. 4.78
    A.V. Crewe, M. Isaacson, D. Johnson: A high-resolution electron spectrometer for use in transmission scanning electron microscopy. Rev. Sci. Instr. 42, 411 (1971)ADSCrossRefGoogle Scholar
  79. 4.79
    A.V. Crewe: Production of electron probes using a field emission source, in Progress in Optics, Vol. 11 ( North-Holland, Amsterdam 1973 ) p. 225Google Scholar
  80. 4.80
    J.M. Cowley: Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58 (1969)ADSCrossRefGoogle Scholar
  81. 4.81
    E. Zeitler, M.G.R. Thomson. Scanning transmission electron microscopy. Optik 31, 258 and 359 (1970)Google Scholar
  82. 4.82
    C. Colliex, A.J. Craven, C.J. Wilson: Fresnel fringes in STEM. Ultramicroscopy 2, 327 (1977)CrossRefGoogle Scholar
  83. 4.83
    D.C. Joy, D.M. Maher, A.G. Cullis: The nature of defocus fringes in STEM. J. Microsc. 108, 185 (1976)CrossRefGoogle Scholar
  84. 4.84
    A.V. Crewe, M. Isaacson, D. Johnson: A high resolution electron spectrometer for use in TEM. Rev. Sci. Instr. 42, 411 (1971)ADSCrossRefGoogle Scholar
  85. 4.85
    R.F. Egerton: A simple electron spectrometer for energy analysis in TEM. Ultramicroscopy 3, 39 (1978)CrossRefGoogle Scholar
  86. 4.86
    R.F. Egerton: Design of an aberration-corrected electron spectrometer for the TEM. Optik 57, 229 (1980)Google Scholar
  87. 4.87
    H. Shuman: Correction of the second-order aberrations of uniform field magnetic sectors. Ultramicroscopy 5, 45 (1980)CrossRefGoogle Scholar
  88. 4.88
    R.F. Egerton: The use of electron lenses between a TEM specimen and an electron spectrometer. Optik 56, 363 (1980)Google Scholar
  89. 4.89
    D.E. Johnson: Pre-spectrometer optics in CTEM/TEM. Ultramicroscopy 5, 163 (1980)CrossRefGoogle Scholar
  90. 4.90
    A.W. Blackstock, R.D. Birkhoff, M. Slater: Electron accelerator and high resolution analyser. Rev. Sci. Instr. 26, 274 (1955)ADSCrossRefGoogle Scholar
  91. 4.91
    J. Lohff: Charakteristische Energieverluste bei der Streuung mittelschneller Elektronen an Aluminium-Oberflächen. Z. Physik 171, 442 (1963)ADSCrossRefGoogle Scholar
  92. 4.92
    A.V. Crewe, J. Wall, L.M. Welter: A high resolution scanning transmission electron microscope. J. Appl. Phys. 39, 5861 (1968)ADSCrossRefGoogle Scholar
  93. 4.93
    H. Boersch, H. Miessner: Ein hochempfindlicher Gegenfeld-Energieanalysator für Elektronen. Z. Phys. 168, 298 (1962)ADSCrossRefGoogle Scholar
  94. 4.94
    H. Boersch, S. Schweda: Eine inverse Gegenfeldmethode zur Energieanalyse von Elektronen und Ionenstrahlen. Z. Phys. 167, 1 (1962)ADSCrossRefGoogle Scholar
  95. 4.95
    K. Brack: Uber eine Anordnung zur Filterung von Elektroneninterferenzen. Z. Naturforsch. A 17, 1066 (1962)ADSGoogle Scholar
  96. 4.96
    M.T. Browne, S. Lackovic, R.E. Burge: Instrumentation and recording for the vacuum generators HB5 STEM instrument, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 27Google Scholar
  97. 4.97
    W.H.J. Anderson, J.B. LePoole: A double Wien filter as a high resolution, high transmission electron energy analyser. J. Phys. E 3, 121 (1970)ADSCrossRefGoogle Scholar
  98. 4.98
    G.H. Curtis, J. Silcox: A Wien filter for use as an energy analyzer with an electron microscope. Rev. Sci. Instr. 42, 630 (1971)ADSCrossRefGoogle Scholar
  99. 4.99
    H. Boersch, J. Geiger, W. Stickel: Das Auflösungsvermögen des elektrostatischen-magnetischen Energieanalysators für schnelle Elektronen. Z. Phys. 180, 415 (1964)ADSCrossRefGoogle Scholar
  100. 4.100
    P.E. Batson: Prospects for high-resolution EELS experiments with the STEM. Ultramicroscopy 18, 125 (1985)CrossRefGoogle Scholar
  101. 4.101
    M. Terauchi, R. Kuzuo, F. Satoh, M. Tanaka, K. Tsuno, J. Ohyama: Performance of a new high-resolution electron energy-loss spectroscopy microscope. Microsc. Microanal. Microstruct. 2, 351 (1991)CrossRefGoogle Scholar
  102. 4.102
    G. Möllenstedt: Die elektrostatische Linse als hochauflösender Geschwindigkeitsanalysator. Optik 5, 499 (1949)Google Scholar
  103. 4.103
    K. Keck, H. Deichsel: Die Verwendung der Elektronen-Einzellinse als “licht- starkes” Energiefilter für Elektronenstrahlen. Optik 17, 401 (1960)Google Scholar
  104. 4.104
    A.J.F. Metherell: Energy analysing and energy selecting microscopes, in Advances in Optical and Electron Microscopy, Vol. 4, ed. by R. Barer, V.E. Cosslett ( Academic, London 1971 ) p. 263Google Scholar
  105. 4.105
    A.J.F. Metherell, R.F. Cook: Resolution and dispersion of the four classes of Möllenstedt electron energy analysers. Optik 34, 535 (1972)Google Scholar
  106. 4.106
    S. Kuwabara, T. Uefuji, Y. Takamatsu: A simple electrostatic energy filter for electron diffraction and electron microscopy. Jpn. J. Appl. Phys. 13, 1495 (1974)ADSCrossRefGoogle Scholar
  107. 4.107
    F. Lenz: Über das chromatische Auflösungsvermögen von Elektronenlinsen bei der Geschwindigkeitsanalyse. Optik 10, 439 (1953)Google Scholar
  108. 4.108
    K. Shirota, T. Yanaka: An energy analyser with rotation symmetrical lenses, in [Ref.1.56, Vol.1., p.368]Google Scholar
  109. 4.109
    L. Reimer, U. Riediger: Energieverlustspektroskopie mit einer modifizierten Kaustikmethode in einem 100 keV-TEM. Optik 46, 67 (1976)Google Scholar
  110. 4.110
    O.L. Krivanek, A.J. Gubbens, N. Dellby: Developments in EELS instrumentation for spectroscopy and imaging. Microsc. Microanal. Microstruct. 2, 315 (1991)CrossRefGoogle Scholar
  111. 4.111
    O.L. Krivanek, S.L. Friedman, A.J. Gubbens, B. Kraus: An imaging filter for biological applications. Ultramicroscopy 59, 267 (1995)CrossRefGoogle Scholar
  112. 4.112
    A.J. Gubbens, B. Kraus, O.L. Krivanek, P.E. Mooney: An imaging filter for high voltage electron microscopy. Ultramicroscopy 59, 255 (1995)CrossRefGoogle Scholar
  113. 4.113
    R. Castaing, L. Henry: Filtrage magnétique des vitesses en microscope électronique. C.R. Acad. Sci. Paris 225, 76 (1962)Google Scholar
  114. 4.114
    R. Castaing: Quelques application du filtrage magnétique des vitesses en microscopie électronique. Z. Angew. Phys. 27, 171 (1969)Google Scholar
  115. 4.115
    R.M. Henkelman, F.P. Ottensmeyer: An energy filter for biological electron microscopy. J. Microsc. 102, 79 (1979)CrossRefGoogle Scholar
  116. 4.116
    W. Egle, A. Rilk, F.P. Ottensmeyer: A new analytical TEM with imaging electron energy loss spectrometer, in Electron Microscopy 1984, Vol. I, ed. by A. Csanâdy et al., ( Motesz, Budapest 1984 ) p. 63Google Scholar
  117. 4.117
    L. Reimer, I. Fromm, R. Rennekamp: Operation modes of electron imaging and electron energy-loss spectroscopy in a TEM. Ultramicroscopy 24, 339 (1988)CrossRefGoogle Scholar
  118. 4.118
    L. Reimer: Energy-filtering transmission electron microscopy. Adv. Electron. Electron Phys. 81, 43 (1991)ADSCrossRefGoogle Scholar
  119. 4.119
    G. Zanchi, J.Ph. Pérez, J. Sevely: Adaption of a magnetic filtering device in a one megavolt electron microscope. Optik 43, 495 (1975)Google Scholar
  120. 4.120
    J.Ph. Pérez, J. Sirvin, A. Séguéla, J.C. Lacaze: Étude, au premier ordre, d’une sytéme dispersif, magnétique symmétric, de type alpha. J. Physique 45, C 2, Supp1. 2, 171 (1984)Google Scholar
  121. 4.121
    H. Rose, E. Plies: Entwurf eines fehlerarmen magnetischen Energie-Analysators. Optik 40, 336 (1974)Google Scholar
  122. 4.122
    S. Lanio: High-resolution imaging magnetic energy filter with simple structure. Optik 73, 99 (1986)Google Scholar
  123. 4.123
    H. Rose, W. Pejas: Optimisation of imaging magnetic energy filters free of second-order aberration. Optik 54, 235 (1979)Google Scholar
  124. 4.124
    A. Lanio, H. Rose, D. Krahl: Test and and improved design of a corrected imaging magnetic filter. Optik 73, 56 (1986)Google Scholar
  125. 4.125
    D. Krahl, H. Rose: Electron optics of imaging energy filters, in Energy-Filtering Transmission Electron Microscopy, ed. by L. Reimer, Springer Ser. in Opt. Sci. Vol. 71 ( Springer, Berlin, Heidelberg 1995 ) p. 43Google Scholar
  126. 4.126
    S. Uhlemann, H. Rose: The MANDOLINE-filter — a new high-performance imaging filter for sub-eV EFTEM. Optik 96, 163 (1994)Google Scholar
  127. 4.127
    C. Colliex, M. Tencé, E. Lefèvre, C. Mory, H. Gu, D. Bouchet, C. Jeanguillaume: Electron energy loss spectrometry mapping. Microchim Acta 114, 71 (1994)CrossRefGoogle Scholar
  128. 4.128
    L. Reimer: Electron spectroscopic imaging, in [Ref.1.74, p.347]Google Scholar
  129. 4.129
    V.E. Cosslett, G.L. Jones, R.A. Camps: Image viewing and recording in high voltage electron microscopy, in [Ref 1.78 p.147[Google Scholar
  130. 4.130
    H.G. Heide: Zur Vorevakuierung von Photomaterial für Elektronenmikroskopie. Z. Angew. Phys. 19, 348 (1965)Google Scholar
  131. 4.131
    H. Frieser, H. Klein: Die Eigenschaften photographischer Schichten bei Elektronenbestrahlung. Z. Angew. Phys. 10, 337 (1958)Google Scholar
  132. 4.132
    H. Frieser, H. Klein, E. Zeitler: Das Verhalten photographischer Schichten bei Elektronenbestrahlung. Z. Angew. Phys. 11, 190 (1959)Google Scholar
  133. 4.133
    R.C. Valentine: The response of photographic emulsions to electrons, in Advances in Optical and Electron Microscopy, Vol. 1, ed. by R. Barer, V.E. Cosslett ( Academic, London 1966 ) p. 180Google Scholar
  134. 4.134
    R.E. Burge, D.F. Garrard: The resolution of photographic emulsions for electrons in the energy range 7–60 keV. J. Phys. E 1, 715 (1968)ADSCrossRefGoogle Scholar
  135. 4.135
    R.E. Burge, D.F. Garrard, M.T. Browne: The response of photographic emulsions to electrons in the energy range 7–60 keV. J. Phys. E 1, 707 (1968)ADSCrossRefGoogle Scholar
  136. 4.136
    G.C. Farnell, R.B. Flint: The response of photographic materials to electrons with particular reference to electron micrography. J. Microsc. 97, 271 (1973)CrossRefGoogle Scholar
  137. 4.137
    W. Lippert: Erfahrungen mit der photographischen Methode bei der Massendickebestimmung im Elektronenmikroskop. Optik 29, 372 (1969)Google Scholar
  138. 4.138
    N. Mori, T. Oikawa, T. Katoh, J. Miyahara, Y. Harada: Application of the “imaging plate” to TEM image recording. Ultramicroscopy 25, 195 (1988)CrossRefGoogle Scholar
  139. 4.139
    D. Shindo, K. Hiraga, T. Oku: Quantification in high-resolution electron microscopy with the imaging plate. Ultramicroscopy 39, 50 (1991)CrossRefGoogle Scholar
  140. 4.140
    N. Ogura, K. Yoshida, Y. Kojima, H. Saito: Development of the 25 micron pixel imaging plate system for TEM, in [Ref.1.61, Vold, p.219]Google Scholar
  141. 4.141
    K.H. Herrmann, D. Krahl: Electronic image recording in conventional electron microscopy, in Advances in Optical and Electron Microscoscopy, Vol. 8, ed, by R. Barer, V.E. Cosslett ( Academic, London 1984 ) p. 1Google Scholar
  142. 4.142
    Z. Tang, R. Ho, Z. Xu, Z. Shao, A.P. Somlyo: A high-sensitivity CCD system for parallel EELS. J. Microsc. 175, 100 (1994)CrossRefGoogle Scholar
  143. 4.143
    H. Shuman: Parallel recording of electron energy-loss spectra. Ultramicroscopy 6, 163 (1981)Google Scholar
  144. 4.144
    P.T.E. Roberts, J.N. Chapman, A.M. MacLeod: A CCD-based image recording system for the CTEM. Ultramicroscopy 8, 385 (1982)CrossRefGoogle Scholar
  145. 4.145
    R.F. Egerton: Parallel-recording systems for electron energy-loss spectroscopy. J. Electron Microsc. Techn. 1, 37 (1984)CrossRefGoogle Scholar
  146. 4.146
    I. Daberkow, K.H. Herrmann, L. Liu, W.D. Rau: Performance of electron image converters with YAG single crystal screens and CCD sensors. Ultra-microscopy 38, 215 (1991)CrossRefGoogle Scholar
  147. 4.147
    S. Kujawa, D. Krahl: Performance of a low-noise CCD camera adapted to a TEM. Ultramicroscopy 46, 395 (1992)CrossRefGoogle Scholar
  148. 4.148
    O.L. Krivanek, P.E. Mooney: Applications of slow-scan CCD cameras in TEM. Ultramicroscopy 49, 95 (1993)CrossRefGoogle Scholar
  149. 4.149
    K. H. Herrmann, L. Liu: Performance of image converters using slow-scan CCDs in MeV electron microscopy. Optik 92, 48 (1992)Google Scholar
  150. 4.150
    G.Y. Fan, M.H. Ellisman: High-sensitivity lens-coupled slow-scan CCD camera for TEM. Ultramicroscopy 52, 21 (1993)CrossRefGoogle Scholar
  151. 4.151
    D.A. Gedcke, J.B. Ayers, P.B. DeNee: A solid state backscattered electron detector capable of operating at TV scan rates, in Scanning Electron Microscopy 1978/I, ed. by O. Johari ( SEM Inc., AMF O’Hare IL 1978 ) p. 581Google Scholar
  152. 4.152
    M. Kikuchi, S. Takashima: Multi-purpose backscattered electron detector, in [Ref.1.57, Vol.1, p.82]Google Scholar
  153. 4.153
    J. Pawley: Performance of STEM scintillation materials, in Scanning Electron Microscopy 1974, ed. by O. Johari ( IIT Research Inst., Chicago 1974 ) p. 28Google Scholar
  154. 4.154
    W. Baumann, A. Niemitz, L. Reimer, B. Volbert: Preparation of P-47 scintillators for STEM. J. Microsc. 122, 181 (1981)CrossRefGoogle Scholar
  155. 4.155
    R. Autrata, P. Walther, S. Kriz, M. Müller: A BSE scintillation detector in the STEM. Scanning 8, 3 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations