Skip to main content

Elements of a Transmission Electron Microscope

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

Abstract

Not only does the electron gun of an electron microscope emit electrons into the vacuum and accelerate them between cathode and anode, but it is also required to produce an electron beam of high brightness and high temporal and spatial coherence. The conventional thermionic emission from a tungsten wire is limited in temporal coherence by an energy spread of the emitted electrons of the order of a few electronvolts and in spatial coherence by the gun brightness. Schottky-emission and field-emission guns are newer alternatives, for which the energy spread is less and the gun brightness higher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Haine, P.A. Einstein, P.H. Borcherds: Resistance bias characteristics for the electron microscope gun. Brit. J. Appl. Phys. 9, 482 (1958)

    Article  ADS  Google Scholar 

  2. M. Takeguchi, C. Hanging, Y. Kimura, T. Ando, R. Shimizu: Development of Zr-O/W(100) thermal field emission TEM. Optik 92, 83 (1992)

    Google Scholar 

  3. L.W. Swanson, L.C. Crouser: Total-energy distribution of field-emitted electrons and single-plane work functions for tungsten. Phys. Rev. 163, 622 (1967)

    Article  ADS  Google Scholar 

  4. H. Boersch: Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Phys. 139, 115 (1954)

    Article  ADS  Google Scholar 

  5. K.H. Loeffler: Energy-spread generation in electron-optical instruments. Z. Angew. Phys. 27, 145 (1969)

    Google Scholar 

  6. R.W. Ditchfield, M.J. Whelan: Energy broadening of the electron beam in the electron microscope. Optik 48, 163 (1977)

    Google Scholar 

  7. H. Rose, R. Spehr: On the theory of the Boersch effect. Optik 57, 339 (1980)

    Google Scholar 

  8. H. Rose, R. Spehr: Energy broadening in high-density electron and ion beams: The Boersch effect, in Applied Charged Particle Optics,ed. by A Septier (Academic, New York 1983) Pt.C, p.479

    Google Scholar 

  9. M. Troyon, P. Zinzindohoué: Energy spread of different thermionic electron sources, in [Ref.1.59, Vol.1, p.273]

    Google Scholar 

  10. P. Zinzindohoué, M. Troyon: Energy spread of different field emission electron beams, in [Ref.1.59, Vol.1, p.271]

    Google Scholar 

  11. D.B. Langmuir: Theoretical limitations of cathode-ray tubes. Proc. IRE 25, 977 (1937)

    Article  Google Scholar 

  12. J. Dosse: Theoretische and experimentelle Untersuchungen über Elektronenstrahler. Z. Phys. 115, 530 (1940)

    Article  ADS  Google Scholar 

  13. A.N. Broers: Electron gun using long-life LaB6 cathode. J. Appl. Phys. 38, 1991 (1967)

    Google Scholar 

  14. A.N. Broers: Some experimental and estimated characteristics of the LaB6 rod cathode electron gun. J. Phys. E 2, 273 (1969)

    Article  ADS  Google Scholar 

  15. S.D. Ferris, D.C. Joy, H.J. Leamy, C.K. Crawford: A directly heated LaB6 electron source, in Scanning Electron Microscopy 1975, ed. by O. Johari ( IIT Research Institute, Chicago 1976 ) p. 11

    Google Scholar 

  16. S. Nakagawa, T. Yanaka: A high stable electron probe obtained with LaB6 cathode electron gun, in Scanning Electron Microscopy 1975, ed. by O. Johari ( IIT Research Institute, Chicago 1976 ) p. 19

    Google Scholar 

  17. C.K. Crawford: Mounting methods and operating characteristics for LaB6 cathodes, in Scanning Electron Microscopy 1979 I, ed. by O. Johari (SEM, AMF O’Hare 1979 ) p. 19

    Google Scholar 

  18. P.H. Schmidt, D.C. Joy, L.D. Longinotti, H.J. Leamy, S.D. Ferris, Z. Fisk: Anisotropy of thermionic electron emission values of LaB6 single-crystal emitter cathodes. Appl. Phys. Lett. 29, 400 (1976)

    Article  ADS  Google Scholar 

  19. M.E. Haine, P.A. Einstein: Characteristics of the hot cathode electron microscope gun. Br. J. Appl. Phys. 3, 40 (1952)

    Article  ADS  Google Scholar 

  20. R. Lauer: Characteristics of triode electron guns, in Advances in Optical and Electron Microscopy, Vol. 8, ed. by R. Barer, V.E. Cosslett ( Academic, London 1982 ) p. 137

    Google Scholar 

  21. D.W. Tuggle, J.Z. Li, L.W. Swanson: Point cathodes for use in virtual source electron optics. J. Microsc. 140, 293 (1985)

    Article  Google Scholar 

  22. D.W. Tuggle, L.W. Swanson: Emission characteristics of the ZrO/W thermal field electron source. J. Vac. Sci. Techn. B 3, 220 (1985)

    Google Scholar 

  23. E. Kasper: Field electron emission systems, in Advances in Optical and Electron Microscopy, Vol. 8, ed. by R. Barer, V.E. Cosslett ( Academic, London 1982 ) p. 207

    Google Scholar 

  24. A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter: Electron gun using a field-emission source. Rev. Sci. Instr. 39, 576 (1968)

    Article  ADS  Google Scholar 

  25. E. Munro: Design of electrostatic lenses for field-emission guns, in Electron Microscopy 1972 (IoP, London 1972 ) p. 22

    Google Scholar 

  26. D. Kern. D. Kurz, R. Speidel: Elektronenoptische Eigenschaften eines Strahlerzeugungssystemes mit Feldemissionskathode. Optik 52, 61 (1978)

    Google Scholar 

  27. G.H.N. Riddle: Electrostatic einzel lenses with reduced spherical aberration for use in field-emisssion gun. J. Vac. Sci. Technol. 15, 857 (1978)

    Article  ADS  Google Scholar 

  28. J. Orloff, L.W. Swanson: An asymmetric lens for field-emission microprobe applications. J. Appl. Phys. 50, 2494 (1979)

    Article  ADS  Google Scholar 

  29. F.H. Plomp, L. Veneklasen, B. Siegel: Development of a field emission electron source for an electron microscope, in Electron Microscopy 1968, Vol.1., ed. by D.S. Bocciarelli ( Tipografia Poliglotta Vaticana, Rome 1968 ) p. 141

    Google Scholar 

  30. L.H. Veneklasen, B.M. Siegel: A field emission illuminating system for transmission microscopy, in [Ref.1.55, Vol.2, p.87]

    Google Scholar 

  31. T. Someya, T. Goto, Y. Harada, M. Watanabe: Development of field emission electron gun for high resolution 100 kV electron microscope, in Electron Microscopy 1972 (IoP, London 1972 ) p. 20

    Google Scholar 

  32. W. Engel, W. Kunath, S. Krause: Properties of three electrode accelerating lenses for field emission guns, in [Ref.1.56, Vol.1, p.118]

    Google Scholar 

  33. J.R.A. Cleaver: Field emission electron gun system incorporating single-pole magnetic lenses. Optik 52, 293 (1979)

    Google Scholar 

  34. M. Troyon: A magnetic field emission electron probe forming system, in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Cong. on Electron Microscopy Foundation, Leiden 1980 ) p. 56

    Google Scholar 

  35. W.D. Riecke: Zur Zentrierung des magnetischen Elektronenmikroskopes. Optik 24, 397 (1966)

    Google Scholar 

  36. W.D. Riecke: Instrument operation for microscopy and microdiffraction, in [Ref.1.27, Pt.1, p.19]

    Google Scholar 

  37. V.E. Cosslett: Probe size and probe current in the STEM. Optik 36, 85 (1972)

    Google Scholar 

  38. L.H. Veneklasen: Some general consideration concerning the optics of the field emission illumination system. Optik 36, 410 (1972)

    Google Scholar 

  39. J.R.A. Cleaver, K.C.A. Smith: Two-lens probe forming systems employing field emission guns, in Scanning Electron Microscopy 1973, ed. by O. Johari ( ITT Research Inst., Chicago 1973 ) p. 49

    Google Scholar 

  40. G. Benner, W. Probst: Köhler illumination in the TEM: Fundamentals and advantages. J. Microsc. 174, 133 (1994)

    Article  Google Scholar 

  41. M. Müller, Th. Koller: Preparation of aluminium oxide films for high resolution electron microscopy. Optik 35, 287 (1972)

    Google Scholar 

  42. D. Dorignac, M.E.C. MacLachlan, B. Jouffrey: Low-noise boron supports for high resolution electron microscopy. Ultramicroscopy 4, 85 (1979)

    Article  Google Scholar 

  43. S. Iijima: Thin graphite supporting films for high resolution electron microscopy. Micron 8, 41 (1977)

    Google Scholar 

  44. W. Baumeister, M.H. Hahn: Suppression of lattice periods in vermiculite single crystal supports for high resolution electron microscopy. J. Microsc. 101, 111 (1974)

    Article  Google Scholar 

  45. U. Valdrè, M.J. Goringe: Electron Microscopy in Materials Science ( Academic, New York 1971 ) p. 207

    Google Scholar 

  46. U. Valdrè: General considerations on specimen stages, in Electron Microscopy 1972 (IoP, London 1972 ) p. 317

    Google Scholar 

  47. J.A. Venables: In-situ experiments in electron microscopes, in Electron Microscopy 1972 (IoP, London 1972 ) p. 344

    Google Scholar 

  48. U. Messerschmidt, M. Bartsch: High-temperature straining stage for in situ experiments in the high-voltage electron microscope. Ultramicroscopy 56, 163 (1994)

    Article  Google Scholar 

  49. H.G. Heide: Principle of a TEM specimen device to meet highest requirements: specimen temperature 5–300 K, cryo transfer, condensation protection, specimen tilt, stage stability for highest resolution. Ultramicroscopy 6, 115 (1981)

    Google Scholar 

  50. H.G. Heide: Design and operation of cold stages. Ultramicroscopy 10, 125 (1982)

    Article  Google Scholar 

  51. J.E. Eades: A helium-cooled specimen stage for electron microscopy. J. Phys. E 15, 184 (1982)

    Article  ADS  Google Scholar 

  52. D.F. Parsons, V.R. Matricardi, J. Subjeck, I. Uydess, G. Wray: High-voltage electron microscopy of wet whole cancer and normal cells: Visualization of cytoplasmatic structure and surface projections. Biochim. Biophys. Acta 290, 110 (1972)

    Article  Google Scholar 

  53. J. Stabenow: Herstellung dünnwandiger Objektivaperturblenden für die Elektronenmikroskopie. Naturwissenschaften 54, 163 (1967)

    Article  ADS  Google Scholar 

  54. J. Kala, J. Podbrdsky: Thin foil apertures with very small openings for electron microscopy. J. Phys. E 4, 609 (1971)

    Article  ADS  Google Scholar 

  55. E. Schabtach: A method for the fabrication of thin foil apertures for electron microscopy. J. Microsc. 101, 121 (1974)

    Article  Google Scholar 

  56. C.F. Oster, D.C. Skillman: Determination and control of electron microscopic magnification, in [Ref.1.53, p.EE-3]

    Google Scholar 

  57. G.F. Bahr, E. Zeitler: The determination of magnification in the electron microscope. Lab. Invest. 14, 880 (1965)

    Google Scholar 

  58. P.F. Elbers, J. Pieters: Accurate magnification determination in the Siemens Elmiskop I, in Electron Microscopy 1964, Vol. A, ed. by M. Titlbach (Czechoslovak Acad. Sci., Prague 1964 ) p. 123

    Google Scholar 

  59. P.J. Wilbrandt: A simple concept for better alignment and simplified operation of a TEM. Ultramicroscopy 52, 193 (1993)

    Article  Google Scholar 

  60. J. Porstendörfer, J. Heyder: Elektronenmikroskopische Untersuchungen an Latex-Teilchen. Optik 35, 73 (1972)

    Google Scholar 

  61. W.C.T. Dowell: Die Bestimmung der Vergrö erung des Elektronenmikroskops mittels Elektroneninterferenz. Optik 21, 26 (1964)

    Google Scholar 

  62. R. Luftig: An accurate masurement of the catalase crystal period and its use as an internal marker for electron microscopy. J. Ultrastruct. Res. 20, 91 (1967)

    Article  Google Scholar 

  63. N.G. Wrigley: The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J. Ultrastruct. Res. 24, 454 (1968)

    Article  Google Scholar 

  64. J. McCaffrey, J.M. Baribeau: TEM calibration sample for all magnification, camera constant, and image-diffraction pattern rotation calibrations, in [Ref. 1.61, Vol.1, p.265]

    Google Scholar 

  65. J.B. LePoole, P. Stam: An objective method for focusing, in [Ref.1.51, p.666]

    Google Scholar 

  66. H. Koike, K. Ueno, M. Suzuki: Scanning device combined with conventional electron microscope, in Proc. 29th Ann. Meeting of EMSA (Claytor’s Publ. Div., Baton Rouge LO 1971 ) p. 28

    Google Scholar 

  67. L. Reimer, P. Hagemann: The use of transmitted and backscattered electrons in the scanning mode of a TEM, in Developments in Electron Microscopy and Analysis, ed. by D.L. Misell (IoP, London 1977 ) p. 135

    Google Scholar 

  68. S.J. Pennycook, L.M. Brown, A.J. Craven: Observation of cathodolumines- cence at single dislocations by STEM. Philos. Mag. A 41, 589 (1980)

    Article  ADS  Google Scholar 

  69. N. Yamamoto, J.C.H. Spence, D. Fathy: Cathodoluminescence and polarization studies from individual dislocations in diamonds. Philos. Mag. B 49, 609 (1984)

    Article  Google Scholar 

  70. S.J. Pennycook, A. Howie: Study of single electron excitations by electron microscopy. Philos. Mag. A 41, 809 (1980)

    Article  ADS  Google Scholar 

  71. P.M. Petroff, D.V. Lang, J.L. Strudel, R.A. Logan: STEM techniques for simultaneous electronic analysis and observation of defects in semiconductors, in Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM, AMF O’Hare, IL 1978 ) p. 325

    Google Scholar 

  72. M.J. Leamy: Charge collection scanning electron microscopy. J. Appl. Phys. 53, R51 (1982)

    Article  ADS  Google Scholar 

  73. H. Blumtritt, R. Gleichmann, J. Heydenreich, J. Johansen: Combined scanning (EBIC) and transmission electron microscopic investigations of dislocations in semiconductors. Phys. Status Solidi A 55, 1517 (1977)

    Google Scholar 

  74. T.G. Sparrow, U. Valdrè: Application of STEM to semiconductor devices. Philos. Mag. 36, 1517 (1977)

    Article  ADS  Google Scholar 

  75. P.M. Petroff, D.V. Lang: A new spectroscopic technique for imaging the spatial distribution of nonradiative defects in a STEM. Appl. Phys. Lett. 31, 60 (1977)

    Article  ADS  Google Scholar 

  76. A.V. Crewe, J. Wall, L.M. Welter: A high-resolution STEM. J. Appl. Phys. 39, 5861 (1968)

    Article  ADS  Google Scholar 

  77. A.V. Crewe, J. Wall: Contrast in a high-resolution STEM. Optik 30, 461 (1970)

    Google Scholar 

  78. A.V. Crewe, M. Isaacson, D. Johnson: A high-resolution electron spectrometer for use in transmission scanning electron microscopy. Rev. Sci. Instr. 42, 411 (1971)

    Article  ADS  Google Scholar 

  79. A.V. Crewe: Production of electron probes using a field emission source, in Progress in Optics, Vol. 11 ( North-Holland, Amsterdam 1973 ) p. 225

    Google Scholar 

  80. J.M. Cowley: Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58 (1969)

    Article  ADS  Google Scholar 

  81. E. Zeitler, M.G.R. Thomson. Scanning transmission electron microscopy. Optik 31, 258 and 359 (1970)

    Google Scholar 

  82. C. Colliex, A.J. Craven, C.J. Wilson: Fresnel fringes in STEM. Ultramicroscopy 2, 327 (1977)

    Article  Google Scholar 

  83. D.C. Joy, D.M. Maher, A.G. Cullis: The nature of defocus fringes in STEM. J. Microsc. 108, 185 (1976)

    Article  Google Scholar 

  84. A.V. Crewe, M. Isaacson, D. Johnson: A high resolution electron spectrometer for use in TEM. Rev. Sci. Instr. 42, 411 (1971)

    Article  ADS  Google Scholar 

  85. R.F. Egerton: A simple electron spectrometer for energy analysis in TEM. Ultramicroscopy 3, 39 (1978)

    Article  Google Scholar 

  86. R.F. Egerton: Design of an aberration-corrected electron spectrometer for the TEM. Optik 57, 229 (1980)

    Google Scholar 

  87. H. Shuman: Correction of the second-order aberrations of uniform field magnetic sectors. Ultramicroscopy 5, 45 (1980)

    Article  Google Scholar 

  88. R.F. Egerton: The use of electron lenses between a TEM specimen and an electron spectrometer. Optik 56, 363 (1980)

    Google Scholar 

  89. D.E. Johnson: Pre-spectrometer optics in CTEM/TEM. Ultramicroscopy 5, 163 (1980)

    Article  Google Scholar 

  90. A.W. Blackstock, R.D. Birkhoff, M. Slater: Electron accelerator and high resolution analyser. Rev. Sci. Instr. 26, 274 (1955)

    Article  ADS  Google Scholar 

  91. J. Lohff: Charakteristische Energieverluste bei der Streuung mittelschneller Elektronen an Aluminium-Oberflächen. Z. Physik 171, 442 (1963)

    Article  ADS  Google Scholar 

  92. A.V. Crewe, J. Wall, L.M. Welter: A high resolution scanning transmission electron microscope. J. Appl. Phys. 39, 5861 (1968)

    Article  ADS  Google Scholar 

  93. H. Boersch, H. Miessner: Ein hochempfindlicher Gegenfeld-Energieanalysator für Elektronen. Z. Phys. 168, 298 (1962)

    Article  ADS  Google Scholar 

  94. H. Boersch, S. Schweda: Eine inverse Gegenfeldmethode zur Energieanalyse von Elektronen und Ionenstrahlen. Z. Phys. 167, 1 (1962)

    Article  ADS  Google Scholar 

  95. K. Brack: Uber eine Anordnung zur Filterung von Elektroneninterferenzen. Z. Naturforsch. A 17, 1066 (1962)

    ADS  Google Scholar 

  96. M.T. Browne, S. Lackovic, R.E. Burge: Instrumentation and recording for the vacuum generators HB5 STEM instrument, in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 27

    Google Scholar 

  97. W.H.J. Anderson, J.B. LePoole: A double Wien filter as a high resolution, high transmission electron energy analyser. J. Phys. E 3, 121 (1970)

    Article  ADS  Google Scholar 

  98. G.H. Curtis, J. Silcox: A Wien filter for use as an energy analyzer with an electron microscope. Rev. Sci. Instr. 42, 630 (1971)

    Article  ADS  Google Scholar 

  99. H. Boersch, J. Geiger, W. Stickel: Das Auflösungsvermögen des elektrostatischen-magnetischen Energieanalysators für schnelle Elektronen. Z. Phys. 180, 415 (1964)

    Article  ADS  Google Scholar 

  100. P.E. Batson: Prospects for high-resolution EELS experiments with the STEM. Ultramicroscopy 18, 125 (1985)

    Article  Google Scholar 

  101. M. Terauchi, R. Kuzuo, F. Satoh, M. Tanaka, K. Tsuno, J. Ohyama: Performance of a new high-resolution electron energy-loss spectroscopy microscope. Microsc. Microanal. Microstruct. 2, 351 (1991)

    Article  Google Scholar 

  102. G. Möllenstedt: Die elektrostatische Linse als hochauflösender Geschwindigkeitsanalysator. Optik 5, 499 (1949)

    Google Scholar 

  103. K. Keck, H. Deichsel: Die Verwendung der Elektronen-Einzellinse als “licht- starkes” Energiefilter für Elektronenstrahlen. Optik 17, 401 (1960)

    Google Scholar 

  104. A.J.F. Metherell: Energy analysing and energy selecting microscopes, in Advances in Optical and Electron Microscopy, Vol. 4, ed. by R. Barer, V.E. Cosslett ( Academic, London 1971 ) p. 263

    Google Scholar 

  105. A.J.F. Metherell, R.F. Cook: Resolution and dispersion of the four classes of Möllenstedt electron energy analysers. Optik 34, 535 (1972)

    Google Scholar 

  106. S. Kuwabara, T. Uefuji, Y. Takamatsu: A simple electrostatic energy filter for electron diffraction and electron microscopy. Jpn. J. Appl. Phys. 13, 1495 (1974)

    Article  ADS  Google Scholar 

  107. F. Lenz: Über das chromatische Auflösungsvermögen von Elektronenlinsen bei der Geschwindigkeitsanalyse. Optik 10, 439 (1953)

    Google Scholar 

  108. K. Shirota, T. Yanaka: An energy analyser with rotation symmetrical lenses, in [Ref.1.56, Vol.1., p.368]

    Google Scholar 

  109. L. Reimer, U. Riediger: Energieverlustspektroskopie mit einer modifizierten Kaustikmethode in einem 100 keV-TEM. Optik 46, 67 (1976)

    Google Scholar 

  110. O.L. Krivanek, A.J. Gubbens, N. Dellby: Developments in EELS instrumentation for spectroscopy and imaging. Microsc. Microanal. Microstruct. 2, 315 (1991)

    Article  Google Scholar 

  111. O.L. Krivanek, S.L. Friedman, A.J. Gubbens, B. Kraus: An imaging filter for biological applications. Ultramicroscopy 59, 267 (1995)

    Article  Google Scholar 

  112. A.J. Gubbens, B. Kraus, O.L. Krivanek, P.E. Mooney: An imaging filter for high voltage electron microscopy. Ultramicroscopy 59, 255 (1995)

    Article  Google Scholar 

  113. R. Castaing, L. Henry: Filtrage magnétique des vitesses en microscope électronique. C.R. Acad. Sci. Paris 225, 76 (1962)

    Google Scholar 

  114. R. Castaing: Quelques application du filtrage magnétique des vitesses en microscopie électronique. Z. Angew. Phys. 27, 171 (1969)

    Google Scholar 

  115. R.M. Henkelman, F.P. Ottensmeyer: An energy filter for biological electron microscopy. J. Microsc. 102, 79 (1979)

    Article  Google Scholar 

  116. W. Egle, A. Rilk, F.P. Ottensmeyer: A new analytical TEM with imaging electron energy loss spectrometer, in Electron Microscopy 1984, Vol. I, ed. by A. Csanâdy et al., ( Motesz, Budapest 1984 ) p. 63

    Google Scholar 

  117. L. Reimer, I. Fromm, R. Rennekamp: Operation modes of electron imaging and electron energy-loss spectroscopy in a TEM. Ultramicroscopy 24, 339 (1988)

    Article  Google Scholar 

  118. L. Reimer: Energy-filtering transmission electron microscopy. Adv. Electron. Electron Phys. 81, 43 (1991)

    Article  ADS  Google Scholar 

  119. G. Zanchi, J.Ph. Pérez, J. Sevely: Adaption of a magnetic filtering device in a one megavolt electron microscope. Optik 43, 495 (1975)

    Google Scholar 

  120. J.Ph. Pérez, J. Sirvin, A. Séguéla, J.C. Lacaze: Étude, au premier ordre, d’une sytéme dispersif, magnétique symmétric, de type alpha. J. Physique 45, C 2, Supp1. 2, 171 (1984)

    Google Scholar 

  121. H. Rose, E. Plies: Entwurf eines fehlerarmen magnetischen Energie-Analysators. Optik 40, 336 (1974)

    Google Scholar 

  122. S. Lanio: High-resolution imaging magnetic energy filter with simple structure. Optik 73, 99 (1986)

    Google Scholar 

  123. H. Rose, W. Pejas: Optimisation of imaging magnetic energy filters free of second-order aberration. Optik 54, 235 (1979)

    Google Scholar 

  124. A. Lanio, H. Rose, D. Krahl: Test and and improved design of a corrected imaging magnetic filter. Optik 73, 56 (1986)

    Google Scholar 

  125. D. Krahl, H. Rose: Electron optics of imaging energy filters, in Energy-Filtering Transmission Electron Microscopy, ed. by L. Reimer, Springer Ser. in Opt. Sci. Vol. 71 ( Springer, Berlin, Heidelberg 1995 ) p. 43

    Google Scholar 

  126. S. Uhlemann, H. Rose: The MANDOLINE-filter — a new high-performance imaging filter for sub-eV EFTEM. Optik 96, 163 (1994)

    Google Scholar 

  127. C. Colliex, M. Tencé, E. Lefèvre, C. Mory, H. Gu, D. Bouchet, C. Jeanguillaume: Electron energy loss spectrometry mapping. Microchim Acta 114, 71 (1994)

    Article  Google Scholar 

  128. L. Reimer: Electron spectroscopic imaging, in [Ref.1.74, p.347]

    Google Scholar 

  129. V.E. Cosslett, G.L. Jones, R.A. Camps: Image viewing and recording in high voltage electron microscopy, in [Ref 1.78 p.147[

    Google Scholar 

  130. H.G. Heide: Zur Vorevakuierung von Photomaterial für Elektronenmikroskopie. Z. Angew. Phys. 19, 348 (1965)

    Google Scholar 

  131. H. Frieser, H. Klein: Die Eigenschaften photographischer Schichten bei Elektronenbestrahlung. Z. Angew. Phys. 10, 337 (1958)

    Google Scholar 

  132. H. Frieser, H. Klein, E. Zeitler: Das Verhalten photographischer Schichten bei Elektronenbestrahlung. Z. Angew. Phys. 11, 190 (1959)

    Google Scholar 

  133. R.C. Valentine: The response of photographic emulsions to electrons, in Advances in Optical and Electron Microscopy, Vol. 1, ed. by R. Barer, V.E. Cosslett ( Academic, London 1966 ) p. 180

    Google Scholar 

  134. R.E. Burge, D.F. Garrard: The resolution of photographic emulsions for electrons in the energy range 7–60 keV. J. Phys. E 1, 715 (1968)

    Article  ADS  Google Scholar 

  135. R.E. Burge, D.F. Garrard, M.T. Browne: The response of photographic emulsions to electrons in the energy range 7–60 keV. J. Phys. E 1, 707 (1968)

    Article  ADS  Google Scholar 

  136. G.C. Farnell, R.B. Flint: The response of photographic materials to electrons with particular reference to electron micrography. J. Microsc. 97, 271 (1973)

    Article  Google Scholar 

  137. W. Lippert: Erfahrungen mit der photographischen Methode bei der Massendickebestimmung im Elektronenmikroskop. Optik 29, 372 (1969)

    Google Scholar 

  138. N. Mori, T. Oikawa, T. Katoh, J. Miyahara, Y. Harada: Application of the “imaging plate” to TEM image recording. Ultramicroscopy 25, 195 (1988)

    Article  Google Scholar 

  139. D. Shindo, K. Hiraga, T. Oku: Quantification in high-resolution electron microscopy with the imaging plate. Ultramicroscopy 39, 50 (1991)

    Article  Google Scholar 

  140. N. Ogura, K. Yoshida, Y. Kojima, H. Saito: Development of the 25 micron pixel imaging plate system for TEM, in [Ref.1.61, Vold, p.219]

    Google Scholar 

  141. K.H. Herrmann, D. Krahl: Electronic image recording in conventional electron microscopy, in Advances in Optical and Electron Microscoscopy, Vol. 8, ed, by R. Barer, V.E. Cosslett ( Academic, London 1984 ) p. 1

    Google Scholar 

  142. Z. Tang, R. Ho, Z. Xu, Z. Shao, A.P. Somlyo: A high-sensitivity CCD system for parallel EELS. J. Microsc. 175, 100 (1994)

    Article  Google Scholar 

  143. H. Shuman: Parallel recording of electron energy-loss spectra. Ultramicroscopy 6, 163 (1981)

    Google Scholar 

  144. P.T.E. Roberts, J.N. Chapman, A.M. MacLeod: A CCD-based image recording system for the CTEM. Ultramicroscopy 8, 385 (1982)

    Article  Google Scholar 

  145. R.F. Egerton: Parallel-recording systems for electron energy-loss spectroscopy. J. Electron Microsc. Techn. 1, 37 (1984)

    Article  Google Scholar 

  146. I. Daberkow, K.H. Herrmann, L. Liu, W.D. Rau: Performance of electron image converters with YAG single crystal screens and CCD sensors. Ultra-microscopy 38, 215 (1991)

    Article  Google Scholar 

  147. S. Kujawa, D. Krahl: Performance of a low-noise CCD camera adapted to a TEM. Ultramicroscopy 46, 395 (1992)

    Article  Google Scholar 

  148. O.L. Krivanek, P.E. Mooney: Applications of slow-scan CCD cameras in TEM. Ultramicroscopy 49, 95 (1993)

    Article  Google Scholar 

  149. K. H. Herrmann, L. Liu: Performance of image converters using slow-scan CCDs in MeV electron microscopy. Optik 92, 48 (1992)

    Google Scholar 

  150. G.Y. Fan, M.H. Ellisman: High-sensitivity lens-coupled slow-scan CCD camera for TEM. Ultramicroscopy 52, 21 (1993)

    Article  Google Scholar 

  151. D.A. Gedcke, J.B. Ayers, P.B. DeNee: A solid state backscattered electron detector capable of operating at TV scan rates, in Scanning Electron Microscopy 1978/I, ed. by O. Johari ( SEM Inc., AMF O’Hare IL 1978 ) p. 581

    Google Scholar 

  152. M. Kikuchi, S. Takashima: Multi-purpose backscattered electron detector, in [Ref.1.57, Vol.1, p.82]

    Google Scholar 

  153. J. Pawley: Performance of STEM scintillation materials, in Scanning Electron Microscopy 1974, ed. by O. Johari ( IIT Research Inst., Chicago 1974 ) p. 28

    Google Scholar 

  154. W. Baumann, A. Niemitz, L. Reimer, B. Volbert: Preparation of P-47 scintillators for STEM. J. Microsc. 122, 181 (1981)

    Article  Google Scholar 

  155. R. Autrata, P. Walther, S. Kriz, M. Müller: A BSE scintillation detector in the STEM. Scanning 8, 3 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1997). Elements of a Transmission Electron Microscope. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-14824-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-14824-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14826-6

  • Online ISBN: 978-3-662-14824-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics