Qualitative Physics in Spectral, Scattering and Decay Control

  • V. M. Chabanov
  • B. N. Zakhariev
Part of the Lecture Notes in Physics book series (LNP, volume 488)


This report is a review of the qualitative theory of quantum design: about our discoveries of new features of quantum systems by visualizing all possible potential and wave function transformations for variations of a complete set of independent spectral and scattering parameters. Special attention is paid to recently revealed multichannel aspects of this theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zakhariev B.N., Lessons on Quantum Intuition, JINR, Dubna, 1996.Google Scholar
  2. 2.
    Chabanov V.M., Zakhariev B.N., Phys.Rev. A49, 3159, 1994ADSCrossRefGoogle Scholar
  3. Chabanov V.M., Zakhariev B.N., Phys.Rev. A50 3948, 1994ADSCrossRefGoogle Scholar
  4. Chabanov V.M., Zakhariev B.N., Phys. Lett. B319, 13, 1993CrossRefGoogle Scholar
  5. Chabanov V.M., Zakhariev B.N., Phys. El. Part. & Nucl. 21, N4, 1990Google Scholar
  6. Chabanov V.M., Zakhariev B.N., 23, N5, 1992Google Scholar
  7. Chabanov V.M., Zakhariev B.N., 25, N 6, 1994.Google Scholar
  8. 3.
    Serdyukova S.I., Zakhariev B.N., Phys.Rev., A46, 58, 1992ADSCrossRefGoogle Scholar
  9. Serdyukova S.I., Zakhariev B.N., Phys.Rev., A47, 3518, 1993.ADSCrossRefGoogle Scholar
  10. 4.
    Chabanov V.M., Zakhariev B.N., Brandt S., Dahmen H.D., Stroh N., Phys.Rev. A52, R3389, 1995ADSCrossRefGoogle Scholar
  11. Chabanov V.M., Zakhariev B.N., Brandt S., Dahmen H.D., Stroh N., in Proc. Intern. Conf. “New Frontiers…” in Monteroduni (Italy), 1995.Google Scholar
  12. 5.
    Poshel J., Trubovitz E. Inverse Spectral Theory. Academic, New York, 1987.Google Scholar
  13. 6.
    Chadan K., Sabatier P. “Inverse Problems in Quantum Scattering Theory”, Springer, Heidelberg 1989.CrossRefMATHGoogle Scholar
  14. 7.
    Zakhariev B.N., Suzko A.A., “Direct and Inverse Problems. Potentials in Quantum Scattering”, ( Springer-Verlag, Heidelberg, 1990 ).Google Scholar
  15. 8.
    Berezovoy V.P., Pashnev A.I. Z.Phys.C. 1991, v. 51, p. 525.CrossRefMathSciNetGoogle Scholar
  16. 9.
    Baye D., J.Phys.1987.v.A.20.p.5529Google Scholar
  17. Baye D., Phys.Rev.Lett. 1987, v. 58, p. 2738ADSCrossRefGoogle Scholar
  18. Baye D., Proc. Inverse Problems, p.127, Bad Honnef 1993, Springer, 1994.Google Scholar
  19. 10.
    Chabanov V.M., Zakhariev B.N., Sofianos S.A., Ann. der Phys. 1996Google Scholar
  20. 11.
    Stroh T., Zakhariev B.N., Phys. Scripta, (accepted for publication) 1996.Google Scholar
  21. 12.
    Zakhariev B.N., Mineev M.A. Preprint P4–96–280, JINR, Dubna (submitted to Phys.Rev.A).Google Scholar
  22. 13.
    WeberT.A., Pursey D.L., Phys.Rev. A52, 4255, 1995Google Scholar
  23. Stahlhofen et al. Phys. Scripta 50, 9, 1994.ADSCrossRefGoogle Scholar
  24. 14.
    Amirkhanov I.V., Zakhariev B.N., et al in Proc.Conf. “Schrödinger Operator. Standart and Nonstandart” Dubna, 1988, World Scientific, 353, 1989.Google Scholar
  25. 15.
    Newton R.G. Scattering Theory of Waves and Particles, 2nd ed. NY, Springer, 1982.MATHGoogle Scholar
  26. 16.
    Zhigunov V.P., Zakhariev B.N., Methods of close coupling of channels in quantum scattering theory (in Russian), Atomizdat, Moscow, 1974.Google Scholar
  27. 17.
    Efimenko T.G., Zhigunov V.P., Zakhariev B.N., Ann. Phys. (N.Y.), 47, 275, 1968.ADSCrossRefGoogle Scholar
  28. M. Eberspächer, B. Apagyi and W. Scheid in these Proc. Conf. “Inverse and Algebraic Quantum Scattering Theory” Lake Balaton 96-Balatonföldvar, 1996Google Scholar
  29. 18.
    Chabanov V.M., Stroh T., Zakhariev B.N., (to be published).Google Scholar
  30. 19.
    Zakhariev B.N., Few-Body Systems, 4, 25, 1988.ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • V. M. Chabanov
    • 1
  • B. N. Zakhariev
    • 1
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear Research DubnaRussia

Personalised recommendations