Inversion Potentials for Meson-Nucleon and Meson-Meson Interactions

  • M. Sande
  • H. V. von Geramb
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 488)


Two-body interactions of elementary particles are useful in particle and nuclear physics to describe qualitatively and quantitatively few- and many-body systems. We are extending for this purpose the quantum inversion approach for systems consisting of nucleons and mesons. From the wide range of experimentally studied two-body systems we concentrate here on πN, ππ, nor, K + N, and . As input we require results of phase shift analyses. Quantum inversion Gelfand-Levitan and Marchenko single and coupled channel algorithms are used for Schrödinger type wave equations in partial wave decomposition. The motivation of this study comes from our two approaches: to generate and investigate potentials directly from data by means of inversion and alternatively use linear and nonlinear boson exchange models. The interesting results of inversion are coordinate space informations about radial ranges, strengths, long distance behaviors, resonance characteristics, threshold effects, scattering lengths and bound state properties.


Phase Shift Analysis Partial Wave Decomposition Effective Range Expansion Quantum Scattering Theory Inversion Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Jäde, M. Sander and H.V. von Geramb, these conference proceedings Google Scholar
  2. [2]
    K. Chadan and P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd. Edition, Springer, Berlin (1989)CrossRefMATHGoogle Scholar
  3. [3]
    H.V. von Geramb and H. Kohlhoff, in: H.V. von Geramb (ed.), Quantum Inversion Theory and Applications, Lecture Notes in Physics 427, Springer, Berlin (1994)CrossRefGoogle Scholar
  4. H. Kohlhoff and H.V. von Geramb, ibid. Google Scholar
  5. M. Sander, PhD Thesis, University of Hamburg (1996)Google Scholar
  6. [4]
    R.A. Arndt, I.I. Strakowsky, R.L. Workman and M.M. Pavan, Phys. Rev. C52, 2120 (1995)ADSCrossRefGoogle Scholar
  7. [5]
    J. S. Hyslop, R. A. Arndt, L. D. Roper and R. L. Workman, Phys. Rev. D46, 961 (1992)ADSGoogle Scholar
  8. [6]
    C.D. Froggatt and J. L. Petersen, Nucl. Phys. B129, 89 (1977)ADSCrossRefGoogle Scholar
  9. [7]
    P. Estabrooks et al., Nucl. Phys. B133, 490 (1978)ADSCrossRefGoogle Scholar
  10. [8]
    R. Kaminski and L. Lesniak, Phys. Rev. C51, 2264 (1995)ADSCrossRefGoogle Scholar
  11. [9]
    B.L.G. Bakker and P.J. Mulders, Adv. Nucl. Phys. 17, 1 (1986)Google Scholar
  12. [10]
    V.I. Kukulin, V.M. Krasnopol’sky und J. Horâcek, Theory of Resonances, Academia, Prague (1989)MATHGoogle Scholar
  13. [12]
    R. Koch and E. Pietarinen, Nucl. Phys. A336, 331 (1980)CrossRefGoogle Scholar
  14. [13]
    D. Sigg et al., Phys. Rev. Lett. 75, 3245 (1995)ADSCrossRefGoogle Scholar
  15. [14]
    B.C. Pearce and B.K. Jennings, Nucl. Phys. A528, 655 (1991)CrossRefGoogle Scholar
  16. [15]
    C. Schütz, J.W. Durso, K. Holinde and J. Speth, Phys. Rev. C49, 2671 (1994)ADSGoogle Scholar
  17. [16]
    M.L. Goldberger, H. Miyazawa and R. Oehme, Phys. Rev. 99, 986 (1955)ADSCrossRefMATHGoogle Scholar
  18. [17]
    R.L. Workman, R.A. Arndt and M.M. Pavan, Phys. Rev. Lett. 68, 1653 (1992)ADSCrossRefGoogle Scholar
  19. [18]
    D. Lohse, J.W. Durso, K. Holinde and J. Speth, Nucl. Phys. A516, 513 (1990)CrossRefGoogle Scholar
  20. [19]
    J. Gasser and H. Leutwyler, Phys. Lett. 125B, 325 (1983)CrossRefGoogle Scholar
  21. [20]
    L.G. Afanasyev et al., Phys. Lett. B308, 200 (1993)CrossRefGoogle Scholar
  22. L.G. Afanasyev et al., Phys. Lett. B338, 478 (1994)CrossRefGoogle Scholar
  23. [21]
    G.V. Efimov, M.A. Ivanov and V.E. Lyubovitskii, Sov. J. Nucl. Phys. 44, 296 (1986)Google Scholar
  24. [22]
    M. Sander, C. Kuhrts and H.V. von Geramb, Phys. Rev. C53, R2610 (1996)ADSGoogle Scholar
  25. [23]
    N.A. Törnqvist and M. Roos, Phys. Rev. Lett. 76, 1575 (1996)ADSCrossRefGoogle Scholar
  26. [24]
    N. Isgur and J. Speth, Phys. Rev. Lett. 77, 2332 (1996)ADSCrossRefGoogle Scholar
  27. N.A. Törnqvist and M. Roos, ibid., 2333 (1996)Google Scholar
  28. [25]
    M. Harada, F. Sannino and J. Schechter, Los Alamos e-print archive hepph/9609428Google Scholar
  29. N.A. Törnqvist and M. Roos, ibid. hep-ph/9610527Google Scholar
  30. [26]
    S. Ishida et al., Los Alamos e-print archive hep-ph/9610359Google Scholar
  31. [27]
    R. Büttgen, K. Holinde, A. Miiller-Groeling, J. Speth and P. Wyborny, Nucl. Phys. A506, 586 (1990)CrossRefGoogle Scholar
  32. [28]
    V. Bernard, N. Kaiser and U.-G. Meissner, Phys. Rev. D43, R2757 (1991)ADSGoogle Scholar
  33. [29]
    T. Barnes, E.S. Swanson and J. Weinstein, Phys. Rev. D46, 4868 (1992)ADSGoogle Scholar
  34. [30]
    Z. Li, M. Guidry, T. Barnes and E.S. Swanson, Bulletin Board hep-ph/9401326Google Scholar
  35. [31]
    A. Karabarbounis and G. Shaw, J. Phys. G6, 583 (1980)ADSCrossRefGoogle Scholar
  36. [32]
    H. R. Fiebig, H. Markum, A. Mihaly, K. Rabitsch and C. Starkjohann, Nucl. Phys. B (Proc. Suppl.) 47, 394 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Sande
    • 1
  • H. V. von Geramb
    • 1
  1. 1.Theoretische KernphysikUniversität HamburgHamburgGermany

Personalised recommendations