Electron-Holographic Interferometry

  • Akira Tonomura
Part of the Springer Series in Optical Sciences book series (SSOS, volume 70)


When holography is employed, the phase distribution of an electron beam transmitted through or reflected from a sample can be displayed as an interference micrograph. Although an interference micrograph can also be obtained without recourse to holography if we use an electron microscope equipped with an electron biprism (Sect.3.2), electron holography allows contour maps to be observed and the phase to be measured with a precision as high as 27π/100. The development of electron-holographic interferometry allows us to see objects that were not visible when using conventional electron microscopes in which only the intensity of an electron beam is observed.


Magnetic Line Cobalt Particle Magnetic Domain Wall Magnetic Domain Structure Phase Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    I. Sunagawa: Step height of spirals on natural hematite crystals. Am. Mineral. 46, 1216 (1961)Google Scholar
  2. 7.2
    J. Endo, T. Kawasaki, T. Matsuda, N. Osakabe, A. Tonomura: Sensitivity improvement in electron holographic interferometry. Proc. 13th Int’l Commission for Optics. Sapporo, 1984, ed. by H. Ohzu (Organizing Committee of ICO-13, Sapporo 1984) pp.480–481Google Scholar
  3. 7.3
    A. Tonomura, T. Matsuda, T. Kawasaki, J. Endo, N. Osakabe: Sensitivity-enhanced electron-holographic interferometry and thickness-measurement applications at atomic scale. Phys. Rev. Lett. 54, 60 (1985)ADSCrossRefGoogle Scholar
  4. 7.4
    T. Kawasaki, J. Endo, T. Matsuda, N. Osakabe, A. Tonomura: Applications of holographic interference electron microscopy to the observation of biological specimens. J. Electron Microsc. 35, 211 (1986)Google Scholar
  5. 7.5
    G. Lulli, P.G. Merli, A. Migliori, G. Matteucci, M. Stanghellini: Characterization of defects produced during self-annealing implantation of As in silicon. J. Appl. Phys. 68, 2708(1990)ADSCrossRefGoogle Scholar
  6. 7.6
    H.L. Cox, Jr., R.A. Bonham: Elastic electron scattering amplitudes for neutral atoms calculated using the partial wave method at 10, 40, 70 and 100 kV for Z = 1 to Z = 54. J. Chem. Phys. 47, 2599 (1967)ADSCrossRefGoogle Scholar
  7. 7.7
    N. Osakabe, J. Endo. T. Matsuda, A. Tonomura, A. Fukuhara: Observation of surface undulation due to single-atomic shear of a dislocation by reflection-electron holography. Phys. Rev. Lett. 62, 2969 (1989)ADSCrossRefGoogle Scholar
  8. 7.8
    P.G. Merli, G.F. Missiroli, G.F. Pozzi: Electron interferometry with the Elmis-kop 101 electron microscope. J. Phys. E 7, 729 (1974)ADSCrossRefGoogle Scholar
  9. 7.9
    Yu A. Kulyupin, S.A. Nepijko, N.N. Sedov, V.G. Shamonya: Use of interference microscopy to measure electric field distributions. Optik 52, 101 (1978/79)Google Scholar
  10. 7.10
    S. Frabboni, G. Matteucci, G. Pozzi, M. Vanzi: Electron holographic observation of the electrostatic field associated with thin reverse-biased p-n junctions. Phys. Rev. Lett. 55, 2196 (1985)ADSCrossRefGoogle Scholar
  11. 7.11
    H. Wahl, B. Lau: Theoretische Analyse des Verfahrens, die Feldverteilung in dünnen magnetischen Schichten durch lichtholographische Auswertung elektronen-interferenzmikroskopischer Aufnahmen zu veranschaulichen. Optik 54, 27 (1979)Google Scholar
  12. 7.12
    A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Direct observation of fine structure of magnetic domain walls by electron holography. Phys. Rev. Lett. 44, 1430 (1980)ADSCrossRefGoogle Scholar
  13. 7.13
    T. Matsuda, A. Tonomura, R. Suzuki, J. Endo, N. Osakabe, H. Umezaki, H. Tanabe, Y. Sugita, H. Fujiwara: Observation of microscopic distribution of magnetic field by electron holography. J. Appl. Phys. 53, 5444 (1982)ADSCrossRefGoogle Scholar
  14. 7.14
    A. Fukuhara, K. Shinagawa, A. Tonomura, H. Fujiwara: Electron holography and magnetic specimens. Phys. Rev. B 27, 1839 (1983)ADSCrossRefGoogle Scholar
  15. 7.15
    H. Koch, H. Lübbig (eds.): Superconducting Devices and Their Applications, Springer Proc. Phys., Vol.64 (Springer, Berlin, Heidelberg 1992)Google Scholar
  16. 7.16
    M.S. Cohen: Wave-optical aspects of Lorentz microscopy. J. Appl. Phys. 38, 4966 (1967)ADSCrossRefGoogle Scholar
  17. 7.17
    A. Tonomura: The electron interference method for magnetization measurement of thin films. Jpn. J. Appl. Phys. 11, 493 (1972)ADSCrossRefGoogle Scholar
  18. 7.18
    G. Pozzi, G.F. Missiroli: Interference electron microscopy of magnetic domains. J. Microscopie 18, 103 (1973)Google Scholar
  19. 7.19
    A. Tonomura, T. Matsuda, H. Tanabe, N. Osakabe, J. Endo. A. Fukuhara, K. Shinagawa, H. Fujiwara: Electron holography technique for investigating thin ferromagnetic films. Phys. Rev. B 25, 6799 (1982)ADSCrossRefGoogle Scholar
  20. 7.20
    E.E. Huber, D.O. Smith, J.B. Goodenough: Domain-wall structure in permalloy films. J. Appl. Phys. 29, 294 (1958)ADSCrossRefGoogle Scholar
  21. 7.21
    T. Arii, S. Yatsuya, N. Wada, K. Mihama: Ferromagnetic domains in F.C.C. cobalt fine particles prepared by gas-evaporation technique. Proc. 5th lnt’l Conf. High Voltage Electrton Microscopy, Kyoto, 1977 (Jpn. Soc. Electron Microscopy, Kyoto 1977) pp.203–206Google Scholar
  22. 7.22
    N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fujiwara, A. Tnomura: Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746 (1983)ADSCrossRefGoogle Scholar
  23. 7.23
    K. Yoshida, T. Okuwaki, N. Osakabe, H. Tanabe, Y. Horiuchi, T. Matsuda, K. Shinagawa, A. Tonomura, H. Fujiwara: Observation of recorded magnetization patterns by electron holography. IEEE Trans. Magn. MAG-19, 1600 (1983)ADSCrossRefGoogle Scholar
  24. 7.24
    S. Iwasaki, T. Nakamura: An analysis for the magnetization mode for high density magnetic recording, IEEE Trans. MAG-13, 1272 (1977)ADSGoogle Scholar
  25. 7.25
    A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Holographic interference electron microscopy for determining specimen magnetic structure and thickness distribution. Phys. Rev. B 34, 3397 (1986)ADSCrossRefGoogle Scholar
  26. 7.26
    U. Essmann, H. Träuble: The direct observation of individual flux lines in type II superconductors. Phys. Lett. A 24, 526 (1967)ADSCrossRefGoogle Scholar
  27. 7.27
    J. Mannhart, J. Bosch, R.P. Huebener: Elementary pinning forces measured using low temperature scanning electron microscopy. Phys. Lett. A 122, 439 (1987)ADSCrossRefGoogle Scholar
  28. 7.28
    H.F. Hess, R.B. Robinson, R.C. Dynes, J.M. Valles, Jr., J.V. Waszczak: Scan-ning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214 (1989)ADSCrossRefGoogle Scholar
  29. 7.29
    T. Matsuda, H. Hasegawa, M. Igarashi, T. Kobayashi, M. Naito, H. Kajiyama, J. Endo, N. Osakabe, A. Tonomura, R. Aoki: Magnetic field observation of a single flux quantum by electron-holographic interferometry. Phys. Rev. Lett. 62, 2519 (1989)ADSCrossRefGoogle Scholar
  30. 7.30
    S. Hasegawa, T. Matsuda, J. Endo, N. Osakabe, M. Igarashi, T. Kobayashi, M. Naito, A. Tonomura, R. Aoki: Magnetic-flux quanta in superconducting thin films observed by electron holography and digital phase analysis. Phys. Rev. B 43, 7631 (1991)ADSCrossRefGoogle Scholar
  31. 7.31
    J.M. Kosterlitz, D.D.J. Thouless: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. 6, 1181 (1973)ADSGoogle Scholar
  32. 7.32
    B.I. Halperin, D.R. Nelson: Resistive transition in superconducting films. J. Low Temp. Phys. 36, 599(1979)ADSCrossRefGoogle Scholar
  33. 7.33
    T. Matsuda, A. Fukuhara, T. Yoshida, S. Hasegawa, A. Tonomura, Q. Ru: Computer reconstruction from electron holograms and observation of fluxon dynamics. Phys. Rev. Lett. 66, 457 (1991)ADSCrossRefGoogle Scholar
  34. 7.34
    Q. Ru, T. Matsuda, A. Fukuhara, A. Tonomura: Digital extraction of the magnetic-flux distribution from an electron interferogram. J. Opt. Soc. Am. 8, 1739 (1991)ADSCrossRefGoogle Scholar
  35. 7.35
    T. Yoshida, T. Matsuda, A. Tonomura: Electron holography observation of flux-line dynamics, Proc. 50th Meeting of Electron Microscopy Society of America, Boston 1992, ed. by G.W. Bailey, J. Bentley, J.A. Small (San Francisco Press, San Francisco, 1992) pp.68–69Google Scholar
  36. 7.36
    G.S. Park, C.E. Cunningham, B. Cabrera, M.E. Huber: Vortex pinning force in a superconducting niobium strip. Phys. Rev. Lett. 68, 1920 (1992)ADSCrossRefGoogle Scholar
  37. 7.37
    O.B. Hyun, D.K. Finnemore, L. Scharztkopf, J.R. Clem: Elementary pinning force for a superconducting vortex. Phys. Rev. Lett. 58, 599 (1987)ADSCrossRefGoogle Scholar
  38. 7.38
    H. Yoshioka: On the electron diffraction by flux lines. J. Phys. Soc. Jpn. 21, 948 (1960)ADSCrossRefGoogle Scholar
  39. 7.39
    M.J. Goringe, J.P. Jakubovics: Electron diffraction from periodic magnetic fields. Phil. Mag. 15, 393 (1967)ADSCrossRefGoogle Scholar
  40. 7.40
    J.P. Guigay, A. Bourret: Calcul des franges de defocalisation d’une ligne de vortex, en microscopie electronique. C.R. Acad. Sci. (Paris) 264, 1389 (1967)Google Scholar
  41. 7.41
    D. Wohlleben: Diffraction effects in Lorentz microscopy. J. Appl. Phys. 38, 3341 (1967)ADSCrossRefGoogle Scholar
  42. 7.42
    C. Colliex, B. Jouffrey, M. Kleman: Sur les possibilities d’observation de sligne de vortex en microscopie electronique par transmission. Acta Cryst. A 24, 692 (1968)CrossRefGoogle Scholar
  43. 7.43
    C. Capiluppi, G. Pozzi, U. Valdrè: On the possibility of observing fuxons by transmission electron microscopy. Phil. Mag. 26, 865 (1972)ADSCrossRefGoogle Scholar
  44. 7.44
    A. Migliori, G. Pozzi, A. Tonomura: Computer simulation of electron holographic contour maps of superconducting flux lines II. The case of tilted specimen. Ultramicroscopy 49, 87 (1993)CrossRefGoogle Scholar
  45. 7.45
    K. Harada, T. Matsuda, J. Bonevich, M. Igarashi, S. Kondo, G. Pozzi, U. Kawabe, A. Tonomura: Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature 360, 51 (5 November 1992)ADSCrossRefGoogle Scholar
  46. 7.46
    J.E. Bonevich, K. Harada, T. Matsuda, H. Kasai, T. Yoshida, G. Pozzi, A. Tonomura: Electron holography observation of vortex lattices in a superconductor. Phys. Rev. Lett. 70, 2952 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Akira Tonomura
    • 1
  1. 1.Advanced Research Laboratory, Hitachi, Ltd. and Tonomura Electron Wavefront Project, Exploratory Research for Advanced TechnologyResearch Development Corporation of JapanHatoyama, SaitamaJapan

Personalised recommendations