Skip to main content

Electron-Holographic Interferometry

  • Chapter
  • 143 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 70))

Abstract

When holography is employed, the phase distribution of an electron beam transmitted through or reflected from a sample can be displayed as an interference micrograph. Although an interference micrograph can also be obtained without recourse to holography if we use an electron microscope equipped with an electron biprism (Sect.3.2), electron holography allows contour maps to be observed and the phase to be measured with a precision as high as 27π/100. The development of electron-holographic interferometry allows us to see objects that were not visible when using conventional electron microscopes in which only the intensity of an electron beam is observed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Sunagawa: Step height of spirals on natural hematite crystals. Am. Mineral. 46, 1216 (1961)

    Google Scholar 

  2. J. Endo, T. Kawasaki, T. Matsuda, N. Osakabe, A. Tonomura: Sensitivity improvement in electron holographic interferometry. Proc. 13th Int’l Commission for Optics. Sapporo, 1984, ed. by H. Ohzu (Organizing Committee of ICO-13, Sapporo 1984) pp.480–481

    Google Scholar 

  3. A. Tonomura, T. Matsuda, T. Kawasaki, J. Endo, N. Osakabe: Sensitivity-enhanced electron-holographic interferometry and thickness-measurement applications at atomic scale. Phys. Rev. Lett. 54, 60 (1985)

    Article  ADS  Google Scholar 

  4. T. Kawasaki, J. Endo, T. Matsuda, N. Osakabe, A. Tonomura: Applications of holographic interference electron microscopy to the observation of biological specimens. J. Electron Microsc. 35, 211 (1986)

    Google Scholar 

  5. G. Lulli, P.G. Merli, A. Migliori, G. Matteucci, M. Stanghellini: Characterization of defects produced during self-annealing implantation of As in silicon. J. Appl. Phys. 68, 2708(1990)

    Article  ADS  Google Scholar 

  6. H.L. Cox, Jr., R.A. Bonham: Elastic electron scattering amplitudes for neutral atoms calculated using the partial wave method at 10, 40, 70 and 100 kV for Z = 1 to Z = 54. J. Chem. Phys. 47, 2599 (1967)

    Article  ADS  Google Scholar 

  7. N. Osakabe, J. Endo. T. Matsuda, A. Tonomura, A. Fukuhara: Observation of surface undulation due to single-atomic shear of a dislocation by reflection-electron holography. Phys. Rev. Lett. 62, 2969 (1989)

    Article  ADS  Google Scholar 

  8. P.G. Merli, G.F. Missiroli, G.F. Pozzi: Electron interferometry with the Elmis-kop 101 electron microscope. J. Phys. E 7, 729 (1974)

    Article  ADS  Google Scholar 

  9. Yu A. Kulyupin, S.A. Nepijko, N.N. Sedov, V.G. Shamonya: Use of interference microscopy to measure electric field distributions. Optik 52, 101 (1978/79)

    Google Scholar 

  10. S. Frabboni, G. Matteucci, G. Pozzi, M. Vanzi: Electron holographic observation of the electrostatic field associated with thin reverse-biased p-n junctions. Phys. Rev. Lett. 55, 2196 (1985)

    Article  ADS  Google Scholar 

  11. H. Wahl, B. Lau: Theoretische Analyse des Verfahrens, die Feldverteilung in dünnen magnetischen Schichten durch lichtholographische Auswertung elektronen-interferenzmikroskopischer Aufnahmen zu veranschaulichen. Optik 54, 27 (1979)

    Google Scholar 

  12. A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Direct observation of fine structure of magnetic domain walls by electron holography. Phys. Rev. Lett. 44, 1430 (1980)

    Article  ADS  Google Scholar 

  13. T. Matsuda, A. Tonomura, R. Suzuki, J. Endo, N. Osakabe, H. Umezaki, H. Tanabe, Y. Sugita, H. Fujiwara: Observation of microscopic distribution of magnetic field by electron holography. J. Appl. Phys. 53, 5444 (1982)

    Article  ADS  Google Scholar 

  14. A. Fukuhara, K. Shinagawa, A. Tonomura, H. Fujiwara: Electron holography and magnetic specimens. Phys. Rev. B 27, 1839 (1983)

    Article  ADS  Google Scholar 

  15. H. Koch, H. Lübbig (eds.): Superconducting Devices and Their Applications, Springer Proc. Phys., Vol.64 (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  16. M.S. Cohen: Wave-optical aspects of Lorentz microscopy. J. Appl. Phys. 38, 4966 (1967)

    Article  ADS  Google Scholar 

  17. A. Tonomura: The electron interference method for magnetization measurement of thin films. Jpn. J. Appl. Phys. 11, 493 (1972)

    Article  ADS  Google Scholar 

  18. G. Pozzi, G.F. Missiroli: Interference electron microscopy of magnetic domains. J. Microscopie 18, 103 (1973)

    Google Scholar 

  19. A. Tonomura, T. Matsuda, H. Tanabe, N. Osakabe, J. Endo. A. Fukuhara, K. Shinagawa, H. Fujiwara: Electron holography technique for investigating thin ferromagnetic films. Phys. Rev. B 25, 6799 (1982)

    Article  ADS  Google Scholar 

  20. E.E. Huber, D.O. Smith, J.B. Goodenough: Domain-wall structure in permalloy films. J. Appl. Phys. 29, 294 (1958)

    Article  ADS  Google Scholar 

  21. T. Arii, S. Yatsuya, N. Wada, K. Mihama: Ferromagnetic domains in F.C.C. cobalt fine particles prepared by gas-evaporation technique. Proc. 5th lnt’l Conf. High Voltage Electrton Microscopy, Kyoto, 1977 (Jpn. Soc. Electron Microscopy, Kyoto 1977) pp.203–206

    Google Scholar 

  22. N. Osakabe, K. Yoshida, Y. Horiuchi, T. Matsuda, H. Tanabe, T. Okuwaki, J. Endo, H. Fujiwara, A. Tnomura: Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746 (1983)

    Article  ADS  Google Scholar 

  23. K. Yoshida, T. Okuwaki, N. Osakabe, H. Tanabe, Y. Horiuchi, T. Matsuda, K. Shinagawa, A. Tonomura, H. Fujiwara: Observation of recorded magnetization patterns by electron holography. IEEE Trans. Magn. MAG-19, 1600 (1983)

    Article  ADS  Google Scholar 

  24. S. Iwasaki, T. Nakamura: An analysis for the magnetization mode for high density magnetic recording, IEEE Trans. MAG-13, 1272 (1977)

    ADS  Google Scholar 

  25. A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Holographic interference electron microscopy for determining specimen magnetic structure and thickness distribution. Phys. Rev. B 34, 3397 (1986)

    Article  ADS  Google Scholar 

  26. U. Essmann, H. Träuble: The direct observation of individual flux lines in type II superconductors. Phys. Lett. A 24, 526 (1967)

    Article  ADS  Google Scholar 

  27. J. Mannhart, J. Bosch, R.P. Huebener: Elementary pinning forces measured using low temperature scanning electron microscopy. Phys. Lett. A 122, 439 (1987)

    Article  ADS  Google Scholar 

  28. H.F. Hess, R.B. Robinson, R.C. Dynes, J.M. Valles, Jr., J.V. Waszczak: Scan-ning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214 (1989)

    Article  ADS  Google Scholar 

  29. T. Matsuda, H. Hasegawa, M. Igarashi, T. Kobayashi, M. Naito, H. Kajiyama, J. Endo, N. Osakabe, A. Tonomura, R. Aoki: Magnetic field observation of a single flux quantum by electron-holographic interferometry. Phys. Rev. Lett. 62, 2519 (1989)

    Article  ADS  Google Scholar 

  30. S. Hasegawa, T. Matsuda, J. Endo, N. Osakabe, M. Igarashi, T. Kobayashi, M. Naito, A. Tonomura, R. Aoki: Magnetic-flux quanta in superconducting thin films observed by electron holography and digital phase analysis. Phys. Rev. B 43, 7631 (1991)

    Article  ADS  Google Scholar 

  31. J.M. Kosterlitz, D.D.J. Thouless: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. 6, 1181 (1973)

    ADS  Google Scholar 

  32. B.I. Halperin, D.R. Nelson: Resistive transition in superconducting films. J. Low Temp. Phys. 36, 599(1979)

    Article  ADS  Google Scholar 

  33. T. Matsuda, A. Fukuhara, T. Yoshida, S. Hasegawa, A. Tonomura, Q. Ru: Computer reconstruction from electron holograms and observation of fluxon dynamics. Phys. Rev. Lett. 66, 457 (1991)

    Article  ADS  Google Scholar 

  34. Q. Ru, T. Matsuda, A. Fukuhara, A. Tonomura: Digital extraction of the magnetic-flux distribution from an electron interferogram. J. Opt. Soc. Am. 8, 1739 (1991)

    Article  ADS  Google Scholar 

  35. T. Yoshida, T. Matsuda, A. Tonomura: Electron holography observation of flux-line dynamics, Proc. 50th Meeting of Electron Microscopy Society of America, Boston 1992, ed. by G.W. Bailey, J. Bentley, J.A. Small (San Francisco Press, San Francisco, 1992) pp.68–69

    Google Scholar 

  36. G.S. Park, C.E. Cunningham, B. Cabrera, M.E. Huber: Vortex pinning force in a superconducting niobium strip. Phys. Rev. Lett. 68, 1920 (1992)

    Article  ADS  Google Scholar 

  37. O.B. Hyun, D.K. Finnemore, L. Scharztkopf, J.R. Clem: Elementary pinning force for a superconducting vortex. Phys. Rev. Lett. 58, 599 (1987)

    Article  ADS  Google Scholar 

  38. H. Yoshioka: On the electron diffraction by flux lines. J. Phys. Soc. Jpn. 21, 948 (1960)

    Article  ADS  Google Scholar 

  39. M.J. Goringe, J.P. Jakubovics: Electron diffraction from periodic magnetic fields. Phil. Mag. 15, 393 (1967)

    Article  ADS  Google Scholar 

  40. J.P. Guigay, A. Bourret: Calcul des franges de defocalisation d’une ligne de vortex, en microscopie electronique. C.R. Acad. Sci. (Paris) 264, 1389 (1967)

    Google Scholar 

  41. D. Wohlleben: Diffraction effects in Lorentz microscopy. J. Appl. Phys. 38, 3341 (1967)

    Article  ADS  Google Scholar 

  42. C. Colliex, B. Jouffrey, M. Kleman: Sur les possibilities d’observation de sligne de vortex en microscopie electronique par transmission. Acta Cryst. A 24, 692 (1968)

    Article  Google Scholar 

  43. C. Capiluppi, G. Pozzi, U. Valdrè: On the possibility of observing fuxons by transmission electron microscopy. Phil. Mag. 26, 865 (1972)

    Article  ADS  Google Scholar 

  44. A. Migliori, G. Pozzi, A. Tonomura: Computer simulation of electron holographic contour maps of superconducting flux lines II. The case of tilted specimen. Ultramicroscopy 49, 87 (1993)

    Article  Google Scholar 

  45. K. Harada, T. Matsuda, J. Bonevich, M. Igarashi, S. Kondo, G. Pozzi, U. Kawabe, A. Tonomura: Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature 360, 51 (5 November 1992)

    Article  ADS  Google Scholar 

  46. J.E. Bonevich, K. Harada, T. Matsuda, H. Kasai, T. Yoshida, G. Pozzi, A. Tonomura: Electron holography observation of vortex lattices in a superconductor. Phys. Rev. Lett. 70, 2952 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tonomura, A. (1993). Electron-Holographic Interferometry. In: Electron Holography. Springer Series in Optical Sciences, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13913-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13913-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13915-8

  • Online ISBN: 978-3-662-13913-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics