Skip to main content

Recent Progress in Integrated Optics

  • Chapter
  • 187 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 33))

Abstract

In this chapter, progress in integrated optics during the past two years is briefly reviewed. Some of the literature references that have been cited here have also been mentioned in preceding chapters. However, most of this work has been published after the particular corresponding chapter was written. In addition to using the specific references provided in this chapter, the reader is advised to review the proceedings of recent conferences on integrated optics [17.1–5], and to refer to special journal issues dealing with the field [17.6–9]. A number of books have also been published that cover integrated optics and closely related topics [17.10–13]. In June 1983, the Institute of Electrical and Electronic Engineers and the Optical Society of America began joint publication of the Journal of Lightwave Technology (IEEE J. LT), which is devoted exclusively to all aspects of optical guided-wave science, technology and engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication, San Francisco, CA (1981)

    Google Scholar 

  2. Technical Digest, IEEE/OSA Fifth Topical Meeting on Optical Fiber Communication (1981)

    Google Scholar 

  3. Technical Digest, IEEE/OSA Topical Meeting on Integrated and Guided-Wave Optics, Asilomar, CA (1982)

    Google Scholar 

  4. Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1983)

    Google Scholar 

  5. Technical Digest, IEEE/OSA Sixth Topical Meeting on Optical Fiber Communication, New Orleans, LA (1983)

    Google Scholar 

  6. Special Issue on Communications Aspects of Single-Mode Optical Fiber and Integrated Optical Technology, IEEE J. QE-17 (June 1981)

    Google Scholar 

  7. Integrated Optics I, Proc. SPIE 289 (1981)

    Google Scholar 

  8. Integrated Optics II, Proc. SPIE 321 (1982)

    Google Scholar 

  9. Special Issue on Semiconductor Lasers, IEEE J. QE-19 (June 1983)

    Google Scholar 

  10. J. M. Enoch, F. L. Tobey, jr. (eds.): Vertebrate Photoreceptor Optics, Springer Ser. Opt. Sci., Vol. 23 (Springer, Berlin, Heidelberg, New York 1981)

    Google Scholar 

  11. A. B. Sharma, S. V. Halme, M. M. Butusov: Optical Fiber Systems and Their Components, Springer Ser. Opt. Sci., Vol. 24 (Springer, Berlin, Heidelberg, New York 1981)

    Book  Google Scholar 

  12. CK. Kao: Optical Fiber Systems: Technology, Design and Applications, (McGraw-Hill, New York 1982)

    Google Scholar 

  13. T. Tamir (ed): Integrated Optics, 2nd ed., Topics Appl. Phys., Vol. 7 (Springer, Berlin, Heidelberg, New York 1982)

    Google Scholar 

  14. Staff Report: Multiple gains with single mode, Photonics Spectra 17, 53 (June 1983)

    Google Scholar 

  15. For a review of this field see, for example, Staff Report: New Light on Fiber Fabrication and Materials, Photonics Spectra 17, 47 (July 1983)

    Google Scholar 

  16. For a review of this field see, for example, H. Kressel (ed.): Semiconductor Devices for Optical Communication, 2nd ed. Topics Appl. Phys., Vol. 39 (Springer, Berlin, Heidelberg, New York 1982)

    Google Scholar 

  17. J. T. Chilwell, I. J. Hodgkinson: Thin-film matrix description of optical multilayer planar waveguides, J. Opt. Soc. Am. 72, 1821 (1982)

    ADS  Google Scholar 

  18. L. G. Ferreira, M. Pudensi: Waveguiding in a dielectric medium varying slowly in one transverse direction, J. Opt. Soc. Am. 71, 1377 (1981)

    ADS  Google Scholar 

  19. T. Tamir: Microwave modeling of periodic waveguides, IEEE Trans. MTT-29, 979 (1981)

    Google Scholar 

  20. T. Tamir: Guided-wave methods for optical configurations, Appl. Phys. 25, 201 (1981)

    Article  ADS  Google Scholar 

  21. E. A. Kolosovsky, D. V. Petrov, A. V. Tsarev, I. B. Yakovkin: An exact method for analyzing light propagation in anisotropic inhomogeneous optical waveguides. Opt. Commun. 43, 21 (1982)

    Article  ADS  Google Scholar 

  22. K Yasumoto, Y. Oishi: A new evaluation of the Goos-Hänchen shift and associated time delay, J. Appl. Phys. 54, 2170 (1983)

    Article  ADS  Google Scholar 

  23. F. P. Payne: A new theory of rectangular optical waveguides, Opt. Quant. Electron. 14, 525(1982)

    Article  ADS  Google Scholar 

  24. H. Yajima: Coupled-mode analysis of anisotropic dielectric planar branching waveguides, IEEE J. LT-1, 273 (1983)

    Google Scholar 

  25. S. A. Shakir, A. F. Turner: Method of poles for multilayer thin film waveguides, Appl. Phys. A29, 151 (1982)

    Article  Google Scholar 

  26. W. H. Southwell: Ray tracing in gradient-index media, J. Opt. Soc. Am. 72, 909 (1982)

    Article  ADS  Google Scholar 

  27. J. Van Roey, J. Van der Donk, P. E. Lagasse: Beam-propagation method: analysis and assessment, J. Opt. Soc. Am. 71, 803 (1981)

    Article  ADS  Google Scholar 

  28. J. Nezval: WKB approximation for optical modes in a periodic planar waveguide, Opt. Commun. 42, 320 (1982)

    Article  ADS  Google Scholar 

  29. Ch. Pichot: Exact numerical solution for the diffused channel waveguide, Opt. Commun. 41, 169 (1982)

    Article  ADS  Google Scholar 

  30. V. Ramaswamy, R. K. Lagu: Numerical field solution for an arbitrary asymmetrical graded-index planar waveguide, IEEE J. LT-1, 408 (1983)

    Google Scholar 

  31. Y. Li: Method of successive approximations for calculating the eigenvalues of optical thin-film waveguides, Appl. Opt. 20, 2595 (1981)

    Article  ADS  Google Scholar 

  32. J. P. Meunier, J. Pigeon, J. N. Massot: A numerical technique for the determination of propagation characteristics of inhomogeneous planar optical waveguides, Opt. Quant. Electron. 15, 77 (1983)

    Article  ADS  Google Scholar 

  33. M. Bélanger, G. L. Yip: Mode conversion analysis in a single-mode planar taper optical waveguide, J. Opt. Soc. Am. 72, 1822 (1982)

    Google Scholar 

  34. E. Khular, A. Kumar, A. Sharma, I. C. Goyal, A. K. Ghatak: Modes in buried planar optical waveguides with graded-index profiles, Opt. Quant. Electron. 13, 109 (1981)

    Article  ADS  Google Scholar 

  35. E. K. Sharma, A. K. Ghatak: Exact modal analysis for buried planar optical waveguides with asymmetric graded refractive index profile, Opt. Quant. Electron. 13, 429(1981)

    Article  Google Scholar 

  36. A. Hardy, E. Kapon, A. Katzir: Expression for the number of guided TE modes in periodic multilayered waveguides, J. Opt. Soc. Am. 71, 1283 (1981)

    Article  ADS  Google Scholar 

  37. L. Eyges, P. Wintersteiner: Modes in an array of dielectric waveguides, J. Opt. Soc. Am. 71, 1351 (1981)

    ADS  Google Scholar 

  38. L. Eyges, P. D. Gianino: Modes of cladded guides of arbitrary cross-sectional shape, J. Opt. Soc. Am. 72, 1606 (1982)

    Article  ADS  Google Scholar 

  39. P. M. Rodhe: On radiation modes in the time-dependent coupled power theory for optical waveguides, Opt. Quant. Electron. 15, 71 (1983)

    Article  ADS  Google Scholar 

  40. L. McCaughan, E. E. Bergmann: Index distribution of optical waveguides from their mode profile, IEEE J. LT-1, 241 (1983)

    Google Scholar 

  41. H. Kogelnik: Devices for lightwave communications, in Lasers and Applications, ed. by W. O. N. Guimaraes, C.-T. Lin, A. Mooradian, Springer. Opt. Sci., Vol. 26 (Springer, Berlin, Heidelberg, New York 1981)

    Google Scholar 

  42. J. Boulnois, G. P. Agrawal: Mode discrimination and coupling losses in rectangular waveguide resonators with conventional and phase-conjugate mirrors, J. Opt. Soc. Am. 72, 853 (1982)

    Article  ADS  Google Scholar 

  43. R. A. Sammut: Orthogonality and normalization of radiation modes in dielectric waveguides, J. Opt. Soc. Am. 72, 1335 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  44. D. G. Hall, G. H. Ames, R. W. Modavis: Surface-roughness-induced scattering in planar optical waveguides, J. Opt. Soc. Am. 72, 1821 (1982)

    ADS  Google Scholar 

  45. N. K. Uzunoglu, J. G. Fikioris: Scattering from an inhomogeneity inside a dielectric-slab waveguide, J. Opt. Soc. Am. 72, 628 (1982)

    Article  ADS  Google Scholar 

  46. R. L. Holman, P. J. Cressman: Optical damage resistance of lithium niobate waveguides, Opt. Eng. 21, 1025 (1982)

    Article  Google Scholar 

  47. A Amittay, P. D. Einziger, T. Tamir: Experimental observation of anomalous electromagnetic absorption in thin-layered media, Appl. Phys. Lett. 38, 754 (1981)

    Google Scholar 

  48. K. E. Wilson, E. Garmire, R. M. Silva, W. K. Stowell: Comparison of glass waveguide loss using different substrates, J. Opt. Soc. Am. 71, 1560 (1981)

    Article  ADS  Google Scholar 

  49. V. M. Agranovich, V. Y. Chernyak, V. I. Rupusov: Self-induced transparency in waveguides, Opt. Commun. 37, 363 (1981)

    Article  ADS  Google Scholar 

  50. E. Neumann, W. Richter: Sharp bends with low losses in dielectric optical waveguides, Appl. Opt. 22, 1016 (1983)

    Article  ADS  Google Scholar 

  51. A. Bostrom, P. Olsson: Transmission and reflection of electromagnetic waves by an obstacle inside a waveguide, J. Appl. Phys. 52, 1187 (1981)

    Article  ADS  Google Scholar 

  52. M. Imai, M. Koseki, Y. Ohtsuka: Light scattering from a glass thin-film optical waveguide, J. Appl. Phys. 52, 6506 (1981)

    Article  ADS  Google Scholar 

  53. L. L. Buhl: Optical losses in metal/SiO2 — clad Ti:LiNbO3 waveguides, Electron. Lett. 19, 659(1983)

    Article  Google Scholar 

  54. G. P. Bava, R. Orta: Optical frequency mixing in planar waveguides: influence of crystal orientation, Appl. Phys. A26, 185 (1981)

    Google Scholar 

  55. J. L. Jackel, V. Ramaswamy, S. P. Lyman: Elimination of out-diffused surface guiding in titanium diffused LiNbO3, Appl. Phys. Lett. 38, 509 (1981)

    Article  ADS  Google Scholar 

  56. M. N. Armenise, M. DeSario: Optical rectangular waveguide in titanium-diffused lithium niobate having its optical axis in the transverse plane, J. Opt. Soc. Am. 72, 1514(1982)

    Article  ADS  Google Scholar 

  57. L. McCaughan, E. J. Murphy: Systematic examination of fabrication parameters for low-insertion-loss Ti:LiNbO3 waveguides at 1.3 lam, J. Opt. Soc. Am. 72, 1821 (1982)

    ADS  Google Scholar 

  58. M. Tateda, T. Kimura: Optical wave propagation in form-birefringent media and waveguides, IEEE J. LT-1, 402 (1983)

    Google Scholar 

  59. A Shibukawa, M. Kobayashi: Optical TE-TM mode conversion in double epitaxial garnet waveguide, Appl. Opt. 20, 2595 (1981)

    Article  Google Scholar 

  60. L. Goldberg: Interferometric method for measuring diffused channel waveguide-index profile, Appl. Opt. 20, 3580 (1981)

    Article  ADS  Google Scholar 

  61. R. J. King, S. P. Talim: A comparison of thin film measurement by guided waves, ellipsometry and reflectometry, Optica Acta 28, 1107 (1981)

    Article  ADS  Google Scholar 

  62. V. E. Wood, N. F. Hartman, A. E. Austin, C. M. Verber: Stoichiometry dependence of lithium outdiffusion in LiNbO3, J. Appl. Phys. 52, 1118 (1981)

    Article  ADS  Google Scholar 

  63. J. L. Jackel, D. H. Olson, A. M. Glass: Optical damage resistance of monovalent ion diffused LiNbO3 and LiTaO3 waveguides, J. Appl. Phys. 52, 4855 (1981)

    Article  ADS  Google Scholar 

  64. D. Sarid, G. I. Stegeman: Optimization of the effects of power dependent refractive indices in optical waveguiding, J. Appl. Phys. 52, 5439 (1981)

    Article  ADS  Google Scholar 

  65. G. Al-Jumaily, A. F. Turner: Polarization-insensitive thin-film waveguide, J. Opt. Soc. Am. 71, 1559(1981)

    ADS  Google Scholar 

  66. A. B. Buckman: Polarization-selective lateral waveguiding in layered dielectric structures, J. Opt. Soc. Am. 71, 1559 (1981)

    Article  ADS  Google Scholar 

  67. J. E. Watson, R. J. Holmes: Multimode Optical Waveguides in LiNb03, J. Opt. Soc. Am. 72, 1821 (1982)

    ADS  Google Scholar 

  68. S. U. Campisano: Non-equilibrium dopants incorporation in silicon melted by laser pulses, Appl. Phys. A30, 195 (1983)

    Google Scholar 

  69. H. Terui, M. Kobayashi: Refractive index decrease phenomena in SiO2—Ta2O5 waveguide films by CO2 laser irradiation, J. Appl. Phys. 52, 544 (1981)

    Article  Google Scholar 

  70. S. Dutta, H. E. Jackson, J. T. Boyd: Extremely low-loss glass thin-film optical waveguides utilizing surface coating and laser annealing, J. Appl. Phys. 52, 3873 (1981)

    Article  ADS  Google Scholar 

  71. S. Dutta, H. E. Jackson, J. T. Boyd, F. S. Hickernell, R. L. Davis: Scattering loss reduction in Zn optical waveguides by laser annealing, Appl. Phys. Lett. 39, 206 (1981)

    Article  ADS  Google Scholar 

  72. J. T. Boyd, S. Dutta, H. E. Jackson, A. Naumann: Reduction of the effects of scattering by laser annealing of optical waveguides and by use of integrated waveguide detection, Opt. Eng. 21, 293 (1982)

    Article  Google Scholar 

  73. S. Dutta, H. E. Jackson, J. T. Boyd: Use of laser annealing to achieve low loss in Corning 7059 glass, ZnO, Si3N4, Nb2O5 and Ta2O5 optical thin film waveguides, Opt. Eng. 22, 117(1983)

    Article  Google Scholar 

  74. Y. Chen, W. S. C. Chang, S. S. Lau, L. Wielunski, R. L. Holman: Characterization of LiNbO3 waveguides exchanged in TiNO3 solution, Appl. Phys. Lett. 40, 10 (1982)

    Google Scholar 

  75. E. Y. B. Pun, A. Yi-Yan: Fabrication of periodic waveguides by ion exchange, Appl. Phys. Lett 38, 673 (1981)

    Article  ADS  Google Scholar 

  76. J. L. Jackel, C. E. Rice, J. J. Veseika: Proton exchange for high-index waveguides in LiNbO3, Appl. Phys. Lett. 41, 607 (1982)

    Article  ADS  Google Scholar 

  77. J. L. Jackel, C. E. Rice: Variation in waveguides fabricated by immersion of LiNbO3 in AgNO3 and TlNO3: The role of hydrogen, Appl. Phys. Lett. 41, 508 (1982)

    Article  ADS  Google Scholar 

  78. M. deMicheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, M. Papuchon: Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate, Opt. Commun. 42, 101 (1982)

    Article  ADS  Google Scholar 

  79. M. Papuchon, S. Vatoux: Integrated optical polariser on LiNbO3:Ti channel wave-guides using proton exchange, Electron. Lett. 19, 612 (1983)

    Article  ADS  Google Scholar 

  80. M. Goodwin, C. Stewart: Proton-exchanged optical waveguides in Y-cut lithium niobate, Electron. Lett. 19, 223 (1983)

    Article  ADS  Google Scholar 

  81. A. Yi-Yan, I. Andonavic, E. Y. B. Pun, B. Bjortorp: Fabrication of periodic Ti: LiNb03 waveguides by single and double diffusion, Appl. Phys. Lett. 43, 19 (1983)

    Article  ADS  Google Scholar 

  82. J. Vollmer, J. P. Nisins, P. Hertel, E. Krätzig: refractive index profiles of LiNbO3:Ti waveguides, Appl. Phys. A32, 125 (1983)

    Article  Google Scholar 

  83. M. Armenise, C. Canali, M. DeSario, A. Camera, P. Mazzoldi, G. Celotti: Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti: LiNbO3 Optical waveguide fabrication, J. Appl. Phys. 54, 62 (1983)

    Article  ADS  Google Scholar 

  84. H. Ryssel, H. Glawischnig (eds.): Ion Implantation: Equipment and Techniques, Springer Ser. Electrophys., Vol. 11 (Springer, Berlin, Heidelberg, New York 1983);

    Google Scholar 

  85. G. D. H. King, M. C. Bone, B. L. Weiss, D. W. Weeks: Ion implanted optical waveguides in LiNbO3, Electron. Lett. 17, 897 (1981);

    Article  Google Scholar 

  86. J. Heibei, E. Voges: Strip waveguides in LiNbO3 fabricated by combined metal diffusion and ion implantation, IEEE J. QE-18, 820 (1982)

    Article  Google Scholar 

  87. M. A Mentzer, R. G. Hunsperger, J. M. Zavada, H. A. Jenkinson, T. J. Gavanis: Temperature processing effects in proton-implanted n-type GaAs, Appl. Phys. A32, 19–25 (1983)

    Article  Google Scholar 

  88. A A Chernov (ed.): Modem Crystallography HI, Crystal Growth, Springer Ser. Solid-State Sci., Vol. 36 (Springer, Berlin, Heidelberg, New York, Tokyo 1984)

    Google Scholar 

  89. R. G. Walker, R. C. Goodfellow: Attenuation Measurements on MOCVD-grown GaAs/GaAlAs optical waveguides, Electron. Lett. 19, 590 (1983)

    Article  Google Scholar 

  90. T. Matsumoto, P. Bhattacharya, M. J. Ludowise: Interface states in GaAs/AlxGa1-xAs heterostructures grown by organometallic vapor phase epitaxy, Appl. Phys. Lett. 42, 52(1983)

    Google Scholar 

  91. K Ploog, K. Graf: Molecular beam epitaxy of III-V compounds, a comprehensive bibliography 1958–1983 (Springer, Berlin, Heidelberg, New York, Tokyo 1984)

    Book  Google Scholar 

  92. J. M. Zavada, H. A Jenkinson, J. Comas, R. Schmidt: Optical waveguiding properties of molecular-beam epitaxy multilayer structures, J. Opt. Soc. Am. 72, 1821 (1982)

    ADS  Google Scholar 

  93. T. Izawa, H. Mori, Y. Murakami, N. Shimizu: Deposited Silica waveguide for integrated optical circuits, Appl. Phys. Lett. 38, 483 (1981)

    Article  ADS  Google Scholar 

  94. T. Yaja, S. Kurita: Amorphous As2S3 film waveguides with optical grating devices, Opt. Eng. 20, 922(1981)

    Google Scholar 

  95. N. Imoto, N. Shimizu, H. Mori, M. Ikeda: Sputtered silica waveguides with an embedded three-dimensional structure, IEEE J. LT-1, 289 (1983)

    Google Scholar 

  96. R. G. Walker, C. D. W. Wilkinson, J. A. H. Wilkenson: Integrated optical wave-guiding structures made by silver ion-exchange in glass. 1: The propagation characteristics of stripe ion-exchanged waveguides: a theoretical and experimental investigation, Appl. Opt. 22, 1923 (1983)

    Article  ADS  Google Scholar 

  97. M. Kawachi, M. Yasu, T. Edahiro: Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition, Electron. Lett. 19, 583 (1983)

    Article  Google Scholar 

  98. E. Spiller, R. Feder: In X-ray lithography, in X-Ray Optics, ed. by H.-J. Queisser, Topics Appl. Phys., Vol. 22 (Springer, Berlin, Heidelberg, New York 1977)

    Google Scholar 

  99. D. F. Barbe: Very Large Scale Integration (VLSI), 2nd ed., Springer Ser. Electrophys., Vol. 5 (Springer, Berlin, Heidelberg, New York 1982)

    Book  Google Scholar 

  100. J. L. Jackel, R. E. Howard, E. L. Hu, S. P. Lyman: Reactive ion etching of LiNbO3 Appl. Phys. Lett. 38, 907 (1981)

    Google Scholar 

  101. M. A. Bosch, L. A Coldren, E. Good: Reactive ion beam etching with Cl2, Appl. Phys. Lett. 38, 264 (1981)

    Article  ADS  Google Scholar 

  102. H. Liu, B. Zhang, D. Wang, W. Chen: Masked and selective thermal oxidation of GaAs-Ga1-xAlxAs multilayer structure, Appl. Phys. Lett. 38, 557 (1981)

    Article  ADS  Google Scholar 

  103. F. J. Leonberger, C. Ö. Bozler, R. W. McClelland, I. Melngaillis: Low-loss GaAs optical waveguides formed by external epitaxial growth over oxide, Appl. Phys. Lett. 38, 313 (1981)

    Article  ADS  Google Scholar 

  104. K. Furuya, B. I. Miller, L. A. Coldren, R. E. Howard: Novel deposit/spin waveguide interconnection (DSWI) technique for semiconductor integrated optics, Electron. Lett. 18, 204(1982)

    Article  ADS  Google Scholar 

  105. P. Buchmann, A. J. N. Noughton: Optical Y-junctions and S-bends formed by preferentially etched single-mode rib waveguides in InP, Electron. Lett. 18, 850 (1982)

    Article  ADS  Google Scholar 

  106. P. G. Flavin: Fabrication of curved structures by electron-beam lithography, Electron. Lett. 18, 865 (1982)

    Article  Google Scholar 

  107. M. W. Austin, P. G. Flavin: Small-radii curved rib waveguides in GaAs/GaAlAs using electron beam lithography, IEEE J. LT-1, 236 (1983)

    Google Scholar 

  108. S. R. Seshadri: TE-TE mode coupling at oblique incidence in a periodic dielectric waveguide, Appl. Phys. 25, 211 (1981z)

    Article  ADS  Google Scholar 

  109. G. I. Stegeman, D. Sarid, J. J. Burke: Scattering of guided waves by surface periodic gratings for arbitrary angles of incidence: perturbation field theory and implications to normal mode analysis, J. Opt. Soc. Am. 71, 1497 (1981)

    Article  ADS  Google Scholar 

  110. D. G. Hall, G. I. Stegeman, D. Sarid, J. J. Burke: Comparision of coupled mode and field theory calculations of waveguide grating reflectivity, J. Opt. Soc. Am. 71, 1559(1981)

    ADS  Google Scholar 

  111. J. Van Roey, P. E. Lagasse: Coupled wave analysis of obliquely incident waves in thin film gratings, Appl. Opt. 20, 423 (1981)

    Article  ADS  Google Scholar 

  112. D. Yevick, L. Thylén: Analysis of gratings by the beam-propagation method, J. Opt. Soc. Am. 72, 1084(1982)

    Article  ADS  Google Scholar 

  113. J. Van Roey, P. E. Lagasse: Coupled-beam analysis of integrated-optic Bragg reflectors, J. Opt. Soc. Am. 72, 337 (1982)

    Article  ADS  Google Scholar 

  114. B. G. Kim, S. Y. Shin: An asymptotic approximation of linear-chirped grating filter response, Opt. Commun. 44, 371 (1983)

    Article  ADS  Google Scholar 

  115. K Rokushima, J. Yamakita: Analysis of anisotropic dielectric gratings, J. Opt. Soc. Am. 73, 901 (1983)

    Article  ADS  Google Scholar 

  116. L. F. Johnson, K. A. Ingersoll: Generation of surface gratings with periods < 1000 A, Appl. Phys. Lett. 38, 532 (1981)

    Google Scholar 

  117. S. Zhou, Z. Lin, W. S. C. Chang: Precise periodicity control in the fabrication of holographic gratings, Appl. Opt. 20, 1270 (1981)

    Article  ADS  Google Scholar 

  118. E. Kapon, A. Katzir: Photoresist gratings on reflecting surface, J. Appl. Phys. 53, 1387(1982)

    Article  ADS  Google Scholar 

  119. E. Y B. Pun, K. K. Wong, I. Andonovic, P. J. R. Laybourn, R. M. De La Rue: Efficient waveguide Bragg-deflection grating on LiNb03, Electron. Lett. 18, 740 (1982)

    Article  Google Scholar 

  120. F. Keilmann, Y H. Bai: Periodic surface structures frozen into CO2 laser-melted quartz, Appl. Phys. A29, 9 (1982)

    Article  Google Scholar 

  121. J. P. Kurmer, C. L. Tang: Ion-implanted grating couplers for optical waveguides, Appl. Phys. Lett. 42, 146 (1983)

    Article  ADS  Google Scholar 

  122. T. Kita, T. Harada: Use of aberration-corrected concave gratings in optical demultiplexers, Appl. Opt. 22, 819 (1983)

    Article  ADS  Google Scholar 

  123. J. Lipson, G. Harvey: Low-loss wavelength division multiplexing (WDM) devices for single-mode systems, IEEE J. LT-1, 387 (1983)

    Google Scholar 

  124. J. Jannson: Prism coupling selectivity in anisotropic uniaxial waveguide, Appl. Opt. 20, 374 and 4148 (1981)

    Article  ADS  Google Scholar 

  125. E. Schneider, P. J. Cressman, R. L. Holman: Temperature dependence of the refractive index of strontium titanate and prism coupling to lithium niobate optical waveguides, J. Appl. Phys. 53, 4054 (1982)

    Article  ADS  Google Scholar 

  126. J. Nezval, M. Hofman: Coupled wave approach to directional and prism-film coupler with nonuniform spacing, Opt. Commun. 43, 255 (1982)

    Article  ADS  Google Scholar 

  127. H. Kitajima: Zero dispersion of coupled modes in twin waveguides and reflection characteristics at prism-twin-waveguide-coupling boundaries, J. Opt. Soc. Am. 72, 692 (1982)

    Article  ADS  Google Scholar 

  128. M. Chapet-Rousseau, N. Paraire: Guided wave perturbations induced by a prism film coupler in a thin quartz slab, Opt. Commun. 44, 377 (1983)

    Article  ADS  Google Scholar 

  129. Z. Yin, B. K. Garside: New configurations for high-efficiency prism couplers with application to Ge02 optical waveguides, Appl. Opt. 22, 1023 (1983)

    Article  ADS  Google Scholar 

  130. J. M. Hammer, D. Botez, L. C. Neil, J. C. Connolly: High-efficiency high-power butt coupling of single-mode diode lasers to indiffused LiNbO3 optical wave-guides, Appl. Phys. Lett. 39, 943 (1981)

    Article  ADS  Google Scholar 

  131. W. L. Emkey: Optical coupling between single mode semiconductor lasers and strip waveguides, IEEE J. LT-1, 436 (1983)

    Google Scholar 

  132. R. Th. Kersten: Phase sensitivity of directional couplers, Opt. Commun. 36, 444 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  133. K Thyagarajan, A. Kumar, I. C. Goyal: Exact analysis of the evanescent coupling between two indiffused optical waveguides, Appl. Opt. 20, 1821 (1981)

    Article  ADS  Google Scholar 

  134. S. L. Blank, P. K. Tien, R. J. Martin, P. M. Bridenbaugh, P. Grabbe: Semileaky thin-film optical isolators, J. Appl. Phys. 52, 3190 (1981)

    Article  ADS  Google Scholar 

  135. T. M. Benson, T. Murotani, P. A. Houston, P. N. Robson: Photoelastic optical directional couplers in epitaxial GaAs layers, Electron. Lett. 17, 237 (1981)

    Article  Google Scholar 

  136. C. H. von Helmholt, H. F. Schlaak, R. Th. Kersten: SAWDIC: Surface acoustic wave driven directional coupler, Electron Lett. 17, 466 (1981)

    Google Scholar 

  137. O. Mikami, J. Noda, H. Iwasaki: Coupling-length trimming by metal loading in optical coupled waveguides, Opt. Quant. Electron. 13, 141 (1981)

    Article  Google Scholar 

  138. H. F. Schlaak: Periodic spectral filter with integrated optical directional coupler, Opt. Electron. 13, 181 (1981)

    Article  Google Scholar 

  139. U. Jain, A. Sharma, K. Thyagarajan, A. K. Ghatak: Coupling characteristics of a diffused channel-waveguide directional coupler, J. Opt. Soc. Am. 72, 1545 (1982)

    Article  ADS  Google Scholar 

  140. O. Schwelb: Evolution of the polarization in codirectional and contradirectional optical couplers, J. Opt. Soc. Am. 72, 1152 (1982)

    Article  ADS  Google Scholar 

  141. R. G. Walker, C. D. W. Wilkinson: Integrated optical waveguides structures made by silver ion-exchange in glass. 2: Directional coupler and bands, Appl. Opt. 22, 1929(1983)

    Article  ADS  Google Scholar 

  142. J. P. Donnelly, N. L. DeMeo, G. A. Ferrante: Three-guide optical couplers in GaAs, IEEE J. LT-1, 417 (1983)

    Google Scholar 

  143. M. Belanger, G. L. Yip, M. Haruna: Some design considerations for a planar multi-branch optical power divider, J. Opt. Soc. Am. 72, 1822 (1982)

    ADS  Google Scholar 

  144. Y. Murikami, M. Ikeda: Single-mode optical Y-branching circuit using deposited silica guides (DS guides), Electron, Lett. 17, 411 (1982)

    Article  Google Scholar 

  145. O. G. Ramer: Single-mode fiber-to-channel waveguide coupling, J. Opt. Commun. 4, 122(1981)

    Google Scholar 

  146. M. D. Feit, J. A. Fleck, Jr.: Propagating beam theory of optical fiber cross-coupling, J.Opt. Soc. Am. 71, 1588(1981)

    ADS  Google Scholar 

  147. Y. Murakami, S. Sudo: Coupling characteristics measurements between curved waveguides using a two-core fiber coupler, Appl. Opt. 20, 417 (1981)

    Article  ADS  Google Scholar 

  148. M. Digonnet, H. J. Shaw: Wavelength multiplexing in single-mode fiber couplers, Appl. Opt. 22, 484 (1983)

    Article  ADS  Google Scholar 

  149. J. Heinen: Preparation and properties of monolithically integrated lenses on InGaAsP/InP light-emitting diodes, Electron. Lett. 18, 831 (1982)

    Article  Google Scholar 

  150. P. D. Bear, D. A. Bryan, J. K. Powers, H. E. Tomaschke: Polarization aberration in waveguide Luneburg lenses, J. Opt. Soc. Am. 71, 1559 (1981)

    ADS  Google Scholar 

  151. J. Sachacki: Proposal for an alternate technology for waveguide Luneburg lenses, Opt. Commun. 41, 13(1981)

    Article  ADS  Google Scholar 

  152. S. Doric, E. Munro: General solution of the non-full-aperture Luneburg lens problem, J. Opt. Soc. Am. 73, 1083 (1983)

    Article  ADS  Google Scholar 

  153. C. M. Verber, J. R. Busch, V. E. Wood: As2S3 Lüneburg lenses on LiNbO3 wave-guides, J. Opt. Soc. Am. 71, 1559 (1981)

    ADS  Google Scholar 

  154. E. Colombini: Index-profile computation for the generalized Lüneburg lens, J. Opt. Soc. Am. 71, 1403(1981)

    MathSciNet  ADS  Google Scholar 

  155. J. H. Myer, O. G. Ramer: Diffraction-limited geodesic lens: a search for substitute contours, Appl. Opt. 20, 412 (1981)

    Article  ADS  Google Scholar 

  156. D. Mottier, S. Vallette: Integrated Fresnel lens on thermally oxidized silicon substrate, Appl. Opt. 20, 1630 (1981)

    Article  ADS  Google Scholar 

  157. S. Vallette, A. Morque, P. Mottier: High-performance integrated Fresnel lenses on oxidized silicon substrate, Electron. Lett. 18, 13 (1982)

    Article  ADS  Google Scholar 

  158. G. Hatakoshi, S. Tanaka: Coupled-mode theory for a plane and a cylindrical wave in optical waveguide Bragg grating lenses, J. Opt. Soc. Am. 71, 40 (1981)

    Article  ADS  Google Scholar 

  159. G. Hatakoshi, S. Tanaka: Coupling of two cylindrical guided waves in optical waveguide Bragg grating lenses, J. Opt. Soc. Am. 71, 121 (1981)

    Article  ADS  Google Scholar 

  160. T. L. Paoli: Magnitude of the intrinsic resonant frequency in a semiconductor laser, Appl. Phys. Lett. 39, 522 (1981)

    Article  ADS  Google Scholar 

  161. A Dandridge, A. B. Tveten, R. O. Miles, D. A. Jackson, T. G. Giallorenzi: Single-mode diode laser phase noise, Appl. Phys. Lett. 38, 77 (1981)

    Article  ADS  Google Scholar 

  162. E. Bourkoff: Modulation characteristics of semiconductor laser devices, Optical Eng. 21, 91 (1982)

    Article  Google Scholar 

  163. K. Y. Lau, A. Yariv: Effect of superluminescence on the modulation response of semiconductor lasers, Appl. Phys. Lett. 40, 452 (1982)

    Article  ADS  Google Scholar 

  164. C. Harder, K. Vahala, A. Yariv: Measurement of the linewidth enhancement factor a of semiconductor lasers, Appl. Phys. Lett. 42, 328 (1983)

    Article  ADS  Google Scholar 

  165. D. J. Channin, D. Botez, C. C. Neil, J. C. Connolly, D. W. Bechtle: Modulation characteristics of constricted double heterojunction AlGaAs laser diodes, IEEE J. LT-1, 146 (1983)

    Google Scholar 

  166. K.Y. Lau, N. Bar-Chaim, I. Ury, Ch. Harder, A. Yariv: Direct amplitude modulation of short-cavity GaAs lasers up to X-band frequencies, Appl. Phys. Lett. 43, 1 (1983)

    Article  ADS  Google Scholar 

  167. H.S. Sommers, Jr.: Complete experimental evaluation of the carrier dependence of the refractive index from the frequency modulation spectra of single mode injection lasers, Appl. Phys. Lett. 42, 928 (1983)

    Article  ADS  Google Scholar 

  168. L Ury, K. Y. Lau, N. Bar-Chaim, A. Yariv: Very high frequency GaAlAs laser field-effect transistor monolithic integrated circuit, Appl. Phys. Lett. 41, 126 (1982)

    Article  ADS  Google Scholar 

  169. T. C. Damen, M. A. Duguay, J. Shah, J. Stone, J. M. Wiesenfeld, R. A. Logan: Broadband tunable picosecond semiconductor lasers, Appl. Phys. Lett. 39, 142 (1981)

    Article  ADS  Google Scholar 

  170. G. J. Aspin, J. F. Carroll, R. G. Plumb: The effect of cavity length on picosecond pulse generation with highly rf modulated AlGaAs double heterostructure lasers, Appl. Phys. Lett. 39, 860(1981)

    Article  ADS  Google Scholar 

  171. J. AuYeung: Picosecond optical pulse generation at GHz rates by direct modulation of a semiconductor laser, Appl. Phys. Lett. 38, 308 (1981)

    Article  ADS  Google Scholar 

  172. T. Anderson, S. T. Eng: Gigahertz bandwidth measurements of photodetectors and fibers using picosecond pulses generated by semiconductor lasers, Opt. Commun. 38, 170(1981)

    Article  ADS  Google Scholar 

  173. H. J. Klein, D. Bimberg, A. Beneking, J. Kuhl, E. D. Gobel: High peak power picosecond light pulses from a directly modulated semiconductor laser, Appl. Phys. Lett. 41, 394 (1982)

    Article  ADS  Google Scholar 

  174. K. Hagimoto, N. Ohta, K. Nakagawa: 4 GBit/s direct modulation of 1.3 urn InGaAsP/InP semiconductor lasers, Electron. Lett. 18, 796 (1982)

    Article  ADS  Google Scholar 

  175. W. T. Tsang, N. A. Olsson, R. A. Logan: Transient single-longitudinal mode stabilization in double active layer GalnAsP/InP laser under high bit rate modulation, Appl. Phys. Lett. 42, 1003 (1983)

    Article  ADS  Google Scholar 

  176. R. A. Elliot, H. DeXia, R. K. DeFreez, J. M. Hunt, P. G. Rickman: Picosecond optical pulse generation by impulse train current modulation of a semiconductor laser, Appl. Phys. Lett. 42, 1012 (1983)

    Article  ADS  Google Scholar 

  177. C. Lin, T. P. Lee, C. A. Burrus: Picosecond frequency chirping and dynamic line broadening in InGaAsP injection lasers under fast excitation, Appl. Phys. Lett. 42, 141 (1983)

    Article  ADS  Google Scholar 

  178. A Alping, S. T. Eng: Detection and Gbit/s rates with a TJS GaAlAs laser, Opt. Commun. 44, 381 (1983)

    Article  ADS  Google Scholar 

  179. A Alping, T. Anderson, R. Tell, S. T. Eng: 20 Gbit/s optical time multiplexing with TJS GaAlAs lasers, Electron. Lett. 18, 422 (1982)

    Article  ADS  Google Scholar 

  180. K. Hanamitsu, T. Fujiwara, M. Takusagawa: Repetitive pulsating stripe geometry GaAlAs double-heterostructure lasers with a stripe by shallow Zn diffusion, Appl. Phys. Lett. 39, 14(1981)

    Article  ADS  Google Scholar 

  181. J. P. van der Ziel, W. T. Tsang, R. A. Logan, W. M. Augustiniak: Pulsating output of separate confinement buried optical guide lasers due to the deliberate introduction of saturable loss, Appl. Phys. Lett. 39, 376 (1981)

    Article  ADS  Google Scholar 

  182. J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, W. M. Augustiniak: Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers, Appl. Phys. Lett. 39, 525 (1981)

    Article  ADS  Google Scholar 

  183. M. Nakazawa, M. Tokuda, N. Uchida: Self-sustained intensity oscillation of a laser diode introduced by a delayed electrical feedback using an optical fiber and an electrical amplifier, Appl. Phys. Lett. 39, 379 (1981)

    Article  ADS  Google Scholar 

  184. J. P. van der Ziel, R. A. Logan, R. M. Mikulyak: Generation of subpicosecond pulses from an actively mode locked GaAs laser in an external ring cavity, Appl. Phys. Lett. 39, 867 (1981)

    Article  ADS  Google Scholar 

  185. W. T. Tsang, W. R. Holbrook, P. E. Fraley: Optical self-pulsation behavior of cw (AlGa)As shallow proton-bombarded and narrow-striped (5 µm) double-heterostructure lasers grown by molecular beam epitaxy, Appl. Phys. Lett. 39, 34 (1981)

    Article  ADS  Google Scholar 

  186. R. L. Fork, B. I. Greene, C. V. Shank: Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking, Appl. Phys. Lett. 38, 671 (1981)

    Article  ADS  Google Scholar 

  187. T. Anderson, S. Lundquist, S. T. Eng: Generation of single-mode picosecond pulses by injection locking of an AlGaAs semiconductor laser, Appl. Phys. Lett. 41, 14 (1982)

    Article  ADS  Google Scholar 

  188. S. Yamaguchi, M. Suzuki: Frequency stabilization of a diode laser by use of the optogalvanic effect, Appl. Phys. Lett. 41, 597 (1982)

    Article  ADS  Google Scholar 

  189. A. Dandridge, L. Goldberg: Current-induced frequency modulation in laser diodes, Electron. Lett. 18, 302(1982)

    Article  ADS  Google Scholar 

  190. R. C. Alferness, L. L. Buhl: Electro-optic waveguide TE↔ TM mode converter with low drive voltage, Opt. Lett. 5, 473 (1980)

    Article  ADS  Google Scholar 

  191. R. C. Alferness, N. P. Economou, L. L. Buhl: Fast compact optical waveguide switch modulator, App. Phys. Lett. 38, 214 (1981)

    Article  ADS  Google Scholar 

  192. R. C. Alferness, L. L. Buhl: Waveguide electro-optic polarization transformer, Appl. Phys. Lett. 38, 655 (1981)

    Article  ADS  Google Scholar 

  193. G. I. Stegeman, W. S. Goruk, P. J. Vella, R. Normandin: Photorefractive electro-optic modulator in Ti: LiNbO3 waveguides, J. Opt. Soc. Am. 71, 1558 (1981)

    Article  ADS  Google Scholar 

  194. J. F. Revelli: Design considerations for damage-sensitive electro-optic waveguide Bragg-type modulators, J. Opt. Soc. Am. 71, 1559 (1981)

    ADS  Google Scholar 

  195. W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman: Electro-optic-photorefrac-tive modulation in Ti : LiNbO3 waveguides, Appl. Opt. 20, 4024 (1981)

    Article  ADS  Google Scholar 

  196. D. Marcuse: Optimal electrode design for integrated optics modulators, IEEE J. QE-18, 393 (1982)

    Article  Google Scholar 

  197. O. G. Ramer: Integrated optic electro-optic modulator electrode analysis, IEEE J. QE-18, 386 (1982)

    Article  Google Scholar 

  198. P. Liu: Bandwidth, field distribution, and optimal electronic design for waveguide modulators, J. Appl. Phys. 53, 6681 (1982)

    Article  ADS  Google Scholar 

  199. A. Neyer, E. Voges: High-frequency electro-optic oscillator using an integrated interferometer, Appl. Phys. Lett. 40, 6 (1982)

    Article  ADS  Google Scholar 

  200. R. H. Kingston, R. A. Becker, F. J. Leonberger: Broadband guidedwave optical frequency translator using an electro-optical Bragg array, Appl. Phys. Lett. 42, 759 (1983)

    Article  ADS  Google Scholar 

  201. M. Haruna, J. Koyama: Electro-optic branching waveguide switches and their application to 1 x 4 optical switching networks, IEEE J. LT-1, 223 (1983)

    Google Scholar 

  202. G. Lengyel: GaAlAs p-i-n junction waveguide modulator, IEEE J. LT-1, 251 (1983)

    Google Scholar 

  203. D. Sarid, M. Sargent III: Tunable nonlinear directional coupler, J. Opt. Soc. Am. 72, 835 (1982)

    Article  ADS  Google Scholar 

  204. S. K. Korotky, R. C. Alferness: Time and frequency domain response of a direction-coupler traveling-wave optical modulator, IEEE J. LT-1, 244 (1983)

    Google Scholar 

  205. A. Carenco, L. Menigaux, N. T. Linh: InP electro-optic directional coupler, Appl. Phys. Lett. 40, 653 (1982)

    Article  ADS  Google Scholar 

  206. D. S. Chemla, T. C. Damen, D. A. B. Miller, A. G. Gossard, W. Wiegmann: „Elec-troabsorption by Stark effect on room-temperature excitons in GaAs/GaAlAs multiple quantum well structures, Appl. Phys. Lett. 42, 864 (1983)

    Article  ADS  Google Scholar 

  207. R. H. Kingston, B. E. Burke, K. B. Nichols, F. J. Leonberger: Spatial light modulation using electro-absorption in a GaAs charge-coupled device, Appl. Phys. Lett. 41, 413 (1982)

    Article  ADS  Google Scholar 

  208. S. Yamada, M. Minikata, J. Noda: Analog to digital conversion experiments using a LiNbO3 balanced bridge modulator, Appl. Phys. Lett. 39, 124 (1981)

    Article  ADS  Google Scholar 

  209. R. H. Rediker, F. J. Leonberger: Analysis of integrated optics near 3 dB coupler and Mach-Zehnder interferometric modulator using four-port scattering matrix, IEEE J. QE-18, 1813 (1982)

    Article  Google Scholar 

  210. R. A. Becker: Comparison of guided-wave interferometric modulators fabricated on LiNb03 via Ti indiffusion and proton exchange, Appl. Phys. Lett. 43, 131 (1983)

    Article  ADS  Google Scholar 

  211. R. C. Booth, D. Findlay: Tunable large angular aperture TeO2 acousto-optic filters for use in the 1.0–1.6 μm region, Opt. Quant. Electron. 14, 413 (1982)

    Article  Google Scholar 

  212. E. O. Gobel, G. Veith, J. Kühl, H. V. Hadermeier, K. Lubka, A. Perger: Direct gain modulation of a semiconductor laser by a GaAs picosecond optoelectronic switch, Appl. Phys. Lett. 42, 25 (1983)

    Article  ADS  Google Scholar 

  213. A D. Fisher, J. N. Lee, E. S. Gaynor, A. B. Tveten: Optical guided-wave interactions with magnetostatic waves at microwave frequencies, Appl. Phys. Lett. 41, 779 (1982)

    Article  ADS  Google Scholar 

  214. R. S. Potember, T. O. Poehler, R. C. Benson: Optical switching in semiconductor organic thin films, Appl. Phys. Lett. 41, 548 (1982)

    Article  ADS  Google Scholar 

  215. A G. Foyt, F. J. Leonberger, R. C. Williamson: Picosecond InP optoelectronic switches, Appl. Phys. Lett. 40, 447 (1982)

    Article  ADS  Google Scholar 

  216. J. L. Jackel, S. Hackwood, G. Beni: Electrowetting optical switch, Appl. Phys. Lett. 40, 4 (1982)

    Article  ADS  Google Scholar 

  217. K Tanaka, A. Odajima: Photo-optical switching devices by amorphous As2S3 waveguides, Appl. Phys. Lett. 38, 481 (1981)

    Article  ADS  Google Scholar 

  218. J. C. Maher, C. V. Stancampiano: Modulation of optical guided waves in poly-vinylidene fluoride, J. Opt. Soc. Am. 71, 1558 (1981)

    ADS  Google Scholar 

  219. T. Sato, Y. Veda, O. Ikeda: Transmission-type PVDF 2-D optical phase modulator, Appl. Opt. 20, 343 (1981)

    Article  ADS  Google Scholar 

  220. M Nakajima, H. Onodera, I. Awai, J. Ikemoue: High-efficiency light modulator using guided-to-radiation mode coupling: a proposal, Appl. Opt. 20, 2439 (1981)

    Article  ADS  Google Scholar 

  221. H. Terui, M. Kobayashi: Total reflection optical waveguide switching through dielectric chip motion, Appl. Opt. 20, 3152 (1981)

    Article  ADS  Google Scholar 

  222. C. H. von Helmolt: Electrical and acoustical crosstalk in integrated optical strip waveguide devices, Electron. Lett. 18, 969 (1982)

    Article  ADS  Google Scholar 

  223. F. Heismann, R. Ulrich: Integrated-optical single-sideband modulator and phase shifter, IEEE J. QE-18, 767 (1982)

    Article  Google Scholar 

  224. M. Izutsu: Integrated optical SSB modulator/frequency shifter, IEEE J. QE-17, 2225 (1981)

    Article  Google Scholar 

  225. A D. Fisher, E. S. Gaynor, J. N. Lee: Diffraction of guided optical waves by magnetostatic waves, J. Opt. Soc. Am. 72, 1836 (1982)

    ADS  Google Scholar 

  226. L. Goldberg, H. F. Taylor, J. F. Weller: FM sideband injection locking of diode lasers, Electron Lett. 18, 1019 (1982)

    Article  ADS  Google Scholar 

  227. L. Goldberg, J. F. Weiler, H. F. Taylor: Microwave signal generation using an optical self-heterodyne technique, Electron Lett. 18, 317 (1982)

    Article  ADS  Google Scholar 

  228. R. Bonitacio (ed.): Dissipative Systems in Quantum Optics, Topics Curr. Phys., Vol. 27 (Springer, Berlin, Heidelberg, New York 1982)

    Google Scholar 

  229. Ch. Harder, K. Y. Lau, A. Yariv: Bistability and pulsations in cw semiconductor lasers with a controlled amount of saturable absorption, Appl. Phys. Lett. 39, 382 (1981)

    Article  ADS  Google Scholar 

  230. H. Kawaguchi: Optical input and output characteristics for bistable semiconductor lasers, Appl. Phys. Lett. 41, 702 (1982)

    Article  ADS  Google Scholar 

  231. P. Glas, R. Mullen Bistable operation of a GaAs—AlGaAs diode laser coupled to an external resonator of narrow spectral bandwidth, Opt. Quant. Electron. 14, 375 (1982)

    Article  ADS  Google Scholar 

  232. W. A Stallard, D. J. Bradley: Bistability and slow oscillation in an external cavity semiconductor laser, Appl. Phys. Lett. 42, 858 (1983)

    Article  ADS  Google Scholar 

  233. P. W. Smith: Hybrid bistable optical devices, Opt. Eng. 19, 456 (1980)

    ADS  Google Scholar 

  234. G. I. Stegeman: Comparison of guided wave approaches to optical bistability, Appl. Phys. Lett. 41, 214 (1982)

    Article  ADS  Google Scholar 

  235. A. Olsson, C. L. Tang: Injected-carrier induced refractive index change in semiconductor lasers, Appl. Phys. Lett. 39, 24 (1981)

    Article  ADS  Google Scholar 

  236. M. W. Fleming, A. Mooradian: Fundamental line broadening of single mode (GaAl)As diode lasers, Appl. Phys. Lett. 38, 511 (1981)

    Article  ADS  Google Scholar 

  237. M. C. Amann, B. Stegmuller: Calculation of the effective refractive index step for the metal-cladded-ridge-waveguide laser, Appl. Opt. 20, 1983 (1981)

    Article  Google Scholar 

  238. C. H. Henry, R. A Logan, K. A. Bertness: Measurement of spectrum bias dependence, and intensity of spontaneous emission in GaAs lasers, J. Appl. Phys. 52, 4453 (1981)

    Article  ADS  Google Scholar 

  239. K. Y. Lau, A. Yariv: A theory of longitudinal modes in semiconductor lasers, Appl. Phys. Lett. 40, 763 (1982)

    Article  ADS  Google Scholar 

  240. W. Streifer, D. R. Scifres, R. D. Burnham: Longitudinal mode spectra of diode lasers, Appl. Phys. Lett. 40, 305 (1982)

    Article  ADS  Google Scholar 

  241. P. J. Anthony, R. L. Hartman, N. E. Schumaker, W. R. Wagner: Effects of Ga(As, Sb) active layers and substrate dislocation density on the reliability of 0.87 μm (Al, Ga) As lasers, J. Appl. Phys. 53, 3444 (1982)

    Article  Google Scholar 

  242. R. F. Kazarinov, C. H. Henry, R. A Logan: Longitudinal mode self-stabilization in semiconductor lasers, J. Appl. Phys. 53, 4631 (1982)

    Article  ADS  Google Scholar 

  243. A P. Skeats, B. Wakefield, M. J. Robertson: The identification of copper in long lived GaAlAs double heterostructure lasers by means of electron probe x-ray microanalysis, J. Appl. Phys. 54, 1232 (1983)

    Article  ADS  Google Scholar 

  244. B. Stegmuller: Influence of lateral waveguiding properties on the longitudinal mode spectrum for semiconductor lasers, Appl. Phys. Lett. 42, 15 (1983)

    Article  ADS  Google Scholar 

  245. W. Streifer, D. R. Scifres, R. D. Burnham: Diode laser threshold current density and lasing wavelength as functions of active region thickness, Appl. Phys. Lett. 42, 401 (1983)

    Article  ADS  Google Scholar 

  246. M. D. Dawson, W. Sibbett, J. I. Vukusic, P. Dawson, G. Duggan, C. T. Foxoni: Streak camera study of short pulse generation in an optically pumped GaAs/ (GaAl) As laser, Appl. Phys. Lett. 43, 226 (1983)

    Article  ADS  Google Scholar 

  247. H K. Choi, Shyh Wang: Anomalous longitudinal mode behavior of a deep Zn-dif-fused GaAs/GaAlAs laser, Appl. Phys. Lett. 43, 230 (1983)

    Article  ADS  Google Scholar 

  248. K Vahala, A. Yariv: Occupation fluctuation noise: A fundamental source of line width broadening in semiconductor lasers, Appl. Phys. Lett. 43, 140 (1983)

    Article  ADS  Google Scholar 

  249. J. D. Henning, D. A. Frish: Real-time measurement of semiconductor laser spectra, IEEE J. LT-1, 202 (1983)

    Google Scholar 

  250. D. Botez, D. J. Channin, M. Ettenberg: High power single mode AlGaAs laser diodes, Opt. Eng. 21, 1066 (1982)

    ADS  Google Scholar 

  251. W. Streifer, D. R. Scifres, R. D. Burnham: Properties of metalorganic-chemical vapor deposition diode lasers, J. Opt. Soc. Am. 71, 1558 (1981)

    ADS  Google Scholar 

  252. D. R. Scifres, R. D. Burnham, W. Streifer: Mesa waveguide GaAs/GaAlAs injection laser grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 38, 915 (1981)

    Article  ADS  Google Scholar 

  253. G S. Hong, J. J. Coleman, P. D. Dapkus, Y. Z. Liu: High efficiency low threshold, Zn-diffused narrow stripe GaAs/GaAlAs double heterostructure lasers grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 40, 208 (1982)

    Article  ADS  Google Scholar 

  254. K Mohammad, J. L. Merz, D. Kasemset: Effect of V/III variation on the optical properties of GaAs and AlxGa1-xAs grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 43, 103 (1983)

    Article  ADS  Google Scholar 

  255. C. Lindstrom, T. L. Paoli, R. D. Burnham, D. R. Scifres, W. Streifer: Long-lived GaAIAs laser diodes with multiple quantum well active layers grown by organome-tallic vapor phase epitaxy, Appl. Phys. Lett. 43, 278 (1983)

    Article  ADS  Google Scholar 

  256. W. T. Tsang, A. Ditzenberger: A visible (AlGa)As heterostructure laser grown by molecular beam epitaxy, Appl. Phys. Lett. 39, 193 (1981)

    Article  ADS  Google Scholar 

  257. R. People, K. W. Wecht, K. Alavi, A. Y. Cho: Measurement of the conduction band discontinuity of molecular beam epitaxial grown In0.52Al0.48As/In0.53Ga0.47As N-n heterojunction by C—V profiling, Appl. Phys. Lett. 43, 118 (1983)

    Article  ADS  Google Scholar 

  258. W. T. Tsang, N. A. Olsson: Preparation of 1.78 μm wavelength Al0.2Ga0.8Sb/GaSb double heterostructure lasers by molecular beam epitaxy, Appl. Phys. Lett. 43, 8 (1983)

    Article  ADS  Google Scholar 

  259. N. K Dutta: Gain-current relation for In0.72Ga0.28As0.6P0.4 lasers, J. Appl. Phys. 52, 55 (1981)

    Article  ADS  Google Scholar 

  260. S. Adachi, H. Kawaguchi: InGaAsP-InP planar-stripe lasers fabricated by wet chemical etching, J. Appl. Phys. 52, 3176 (1981)

    Article  ADS  Google Scholar 

  261. K Utaka, K. Kobayashi, F. Koyama, Y. Abe, Y. Suematsu: Single wavelength operation of 1.53 μm GalnAsP/InP buried heterostructure integrated twin-guide laser with distributed Bragg reflector under direct modulation up to 1 GHz, Electron. Lett. 17, 368 (1981)

    Article  ADS  Google Scholar 

  262. S. Adachi, H. Kawaguchi, K. Takahei, Y. Noguchi: InGaAsP/InP buried-hetero-structure lasers (À = 1.5 μm) with chemically etched mirrors, J. Appl. Phys. 52, 5843 (1981)

    Article  ADS  Google Scholar 

  263. H. Kawaguchi, K. Takahei, Y. Suzuki, G. Iwane: 1.55 μm narrow planar stripe InGaAsP lasers with deep Zn diffusion, Appl. Phys. Lett. 38, 957 (1981)

    Article  ADS  Google Scholar 

  264. F. C. Prince, N. B. Patel, D. J. Bull: Three layer 1.3 μm InGaAsP DH laser with quaternary confining layers, in Lasers and Applications, ed. by W. O. N. Guimaraes, C.-T. Lin, A. Mooradian, Springer, Ser. Opt. Sci., Vol. 26 (Springer, Berlin, Heidelberg, New York 1981)

    Google Scholar 

  265. W. Ng, C. S. Hong, H. Manasevit, P. D. Dapkus: Low-threshold 1.3 μm GalnAsP/InP buried heterostructure lasers by liquid phase epitaxy and metalorganic chemical vapor deposition, Appl. Phys. Lett. 39, 188 (1981)

    Article  ADS  Google Scholar 

  266. N. Tamari, A. A Ballman: Low threshold current density InGaAsP/InP lasers grown in a vertical liquid phase epitaxial system, Appl. Phys. Lett. 39, 185 (1981)

    Article  ADS  Google Scholar 

  267. M. Fukuda, K. Wakita, G. Iwane: Dark line defects in InGaAsP/InP double heterostructure lasers under accelerated aging, J. Appl. Phys. 54, 1246 (1983)

    Article  ADS  Google Scholar 

  268. R. K DeFreez, R. A. Elliott, J. S. Blakemore, B. I. Miller, J. H. McFee, R. J. Martin: High-output room-temperature pulsed operation for broad contact InP/In0.53Ga0.47As/InP lasers grown by molecular beam epitaxy, J. Appl. Phys. 54, 2177 (1983)

    Article  ADS  Google Scholar 

  269. P. Besomi, R. B. Wilson, W. R. Wagner, R. J. Nelson: Enhanced indium phosphide substrate protection for liquid phase epitaxy growth of indium-gallium-arsenide-phosphide double heterostructure lasers, J. Appl. Phys. 54, 535 (1983)

    Article  ADS  Google Scholar 

  270. M Oron, N. Tamari: High power single mode InGaAsP lasers fabricated by single step liquid phase epitaxy, Appl. Phys. Lett. 42, 139 (1983)

    Article  ADS  Google Scholar 

  271. T. R. Chen, S. Margalit, V. Koren, K. L. Yu, L. C. Chiu. A. Hasson, A. Yariv: Direct measurement of the carrier leakage in an InGaAsP/InP laser, Appl. Phys. Lett. 42, 1000 (1983)

    Article  ADS  Google Scholar 

  272. A K Chin, C. L. Zipfel, B. H. Chin, M. A. DiGiuseppe: Degradation of 1.3 μm InP/InGaAsP light-emitting-diodes with misfit dislocations, Appl. Phys. Lett. 42, 1031 (1983)

    Article  ADS  Google Scholar 

  273. V. Koren, Z. Rav-Noy, A. Hasson, T. R. Chen, K. L. Yu, L. C. Chiu, S. Margalit, A. Yariv: Short cavity InGaAsP/InP lasers with dielectric mirrors, Appl. Phys. Lett. 42, 848 (1983)

    Article  ADS  Google Scholar 

  274. S. Mukai, H. Yajima, Y. Mitsubishi, J. Shimada, N. Kutsuwada: Continuously operated visible-light-emitting lasers using liquid-phase-epitaxial InGaPAs grown on GaAs substrates, Appl. Phys. Lett. 43, 24 (1983)

    Article  ADS  Google Scholar 

  275. W. T. Tsang, N. A. Olsson, R. A. Logan: Threshold-wavelength and threshold-temperature dependences of GalnAsP/InP lasers with frequency selective feedback operating in the 1.3 and 1.5 μm regions, Appl. Phys. Lett. 43, 154 (1983)

    Article  ADS  Google Scholar 

  276. R. Hirano, E. Domura, H. Higuchi, Y. Sakakibara, H. Namizaki, W. Susaki, K. Fujikawa: Position of the degradation and the improved structure for the buried crescent InGaAsP/InP (1.3 μm) laser, Appl. Phys. Lett. 43, 187 (1983)

    Article  ADS  Google Scholar 

  277. I. Mito, M. Kitamura, K. Kobayashi, S. Murata, M. Seki, Y. Odagiri, H. Nishimoto, M. Yamaguchi, K. Kobayashi: InGaAsP double-channel-planar-buried-hetero-structure laser diode (DC-PBHLD) with effective current confinement, IEEE J. LT-1, 195 (1983)

    Google Scholar 

  278. G. H Olsen: InGaAsP laser diodes, Opt. Eng. 20, 440 (1981)

    Article  Google Scholar 

  279. T. R. Chen, B. Chang, L. C. Chiu, K. L. Yu, S. Margalit, A. Yariv: Carrier leakage and temperature dependence of InGaAsP lasers, Appl. Phys. Lett. 43, 217 (1983)

    Article  ADS  Google Scholar 

  280. K Alavi, H. Temkin, W. R. Wagner, A. Y. Cho: Optically pumped 1.55 μm double heterostructure GaxAlyIn1-x-yAs/AluIn1-uAs lasers grown by molecular beam epitaxy, Appl. Phys. Lett. 42, 254 (1983)

    Article  ADS  Google Scholar 

  281. W. T. Tsang, N. A Olsson: New current injection 1.5 μm wavelength GaxAlyIn1-x-yAs/ InP double heterostructure laser grown by molecular beam epitaxy, Appl. Phys. Lett. 42, 922 (1983)

    Article  ADS  Google Scholar 

  282. H. Temkin, K Alavi, W. R. Wegner, T. P. Pearsall, A. Y. Cho: 1.5 μm-1.6 μm Ga0.47In0.53As/Al0.48In0.52As multiquantum well lasers grown by molecular beam epitaxy, Appl. Phys. Lett. 42, 845 (1983)

    Article  ADS  Google Scholar 

  283. L. A. Coldren, K Iga, B. I. Miller, J. A. Rentschler: GalnAsP/InP stripe-geometry laser with a reactive-ion-etched facet, Appl. Phys. 37, 681 (1980)

    ADS  Google Scholar 

  284. T. Momine, H. Kawai: Effect of an active layer thickness on lateral and longitudinal modes of a gain guiding laser with a tapered stripe structure, Appl. Phys. Lett. 43, 253 (1983)

    Google Scholar 

  285. H. Blauvelt, S. Margalit, A. Yariv: Narrow stripe GaAs lasers using double current confinement, Appl. Phys. Lett. 41, 903 (1982)

    Article  ADS  Google Scholar 

  286. R. D. Burnham, D. R. Scifres, W. Streifer: Current threshold uniformity of shallow proton stripe GaAlAs double heterostructure lasers grown by metalorganic-chemi-cal vapor deposition, Appl. Phys. Lett. 40, 118 (1982)

    Article  ADS  Google Scholar 

  287. J. S. Manning, R. Olshansky: Waveguiding in oxide-isolated stripe-geometry diode lasers, J. Appl. Phys. 53, 840 (1982)

    Article  ADS  Google Scholar 

  288. J. P. Curtis, R. G. Plumb, A. R. Goodwin, P. A. Kirby: Characteristics and analysis of channel substrate narrow stripe GaAs/GaAlAs lasers, J. Appl. Phys. 53, 3444 (1982)

    Article  ADS  Google Scholar 

  289. K. A. Shore: Above threshold current leakage effects in stripe-geometry injection lasers, Opt. Quant. Electron. 15, 371 (1983)

    Article  Google Scholar 

  290. D. E. Ackley, R. W. H. Engelmann: High-power leaky-mode multiple stripe laser, Appl. Phys. Lett. 39, 27 (1983)

    Article  ADS  Google Scholar 

  291. S. Yamamoto, H. Hayashi, T. Hayakawa, N. Miyauchi, S. Yano, T. Hijikata: High optical power CW operation in visible spectral range by window v-channeled substrate inner stripe lasers, Appl. Phys. Lett. 42, 406 (1983)

    Article  ADS  Google Scholar 

  292. D. E. Ackley: Single longitudinal mode operation of high power multiple-stripe injection lasers, Appl. Phys. Lett. 42, 152 (1983)

    Article  ADS  Google Scholar 

  293. G. P. Agrawal, W. B. Joyce, R. W. Dixon, M. Lax: Beam propagation analysis of stripe-geometry semiconductor lasers: threshold behavior, Appl. Phys. Lett. 43, 11 (1983)

    Article  ADS  Google Scholar 

  294. S. Matsui, H. Takiguchi, H. Hayashi, S. Yamamoto, S. Yano, T. Hijikata: Suppression of feedback-induced noise in short-cavity v-channeled substrate inner stripe lasers with self-oscillation, Appl. Phys. Lett. 43, 219 (1983)

    Article  ADS  Google Scholar 

  295. J. Niesen, G. Evans, E. Garmire: Properties of three-mirror active-passive cavity double-heterostructure lasers, J. Opt. Soc. Am. 71, 1558 (1981)

    ADS  Google Scholar 

  296. W. T. Tsang: A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam, Appl. Phys. Lett. 39, 134 (1981)

    Article  ADS  Google Scholar 

  297. W. T. Tsang: Extremely low threshold (AlGa)As graded-index waveguide separate-confinement heterostructure lasers grown by molecular beam epitaxy, Appl. Phys. Lett. 40, 217 (1982)

    Article  ADS  Google Scholar 

  298. W. T. Tsang, N. A. Olsson: New large optical cavity laser with distributed active layers, Appl. Phys. Lett. 42, 850 (1983)

    Article  ADS  Google Scholar 

  299. C. Y. Chen, S. Wang: Effects of current distribution on the characteristics of the semiconductor laser with a channeled-substrate planar structure, J. Appl. Phys. 52, 614 (1981)

    Article  ADS  Google Scholar 

  300. J. K. Carney, C. G. Fonstad: Double heterojunction laser diodes with multiply segmented contacts, Appl. Phys. Lett. 38, 303 (1981)

    Article  ADS  Google Scholar 

  301. W. T. Tsang: A new current-injection heterostructure laser; the double-barrier, double-heterostructure laser, Appl. Phys. Lett. 38, 835 (1981)

    Article  ADS  Google Scholar 

  302. K. Shima, K. Hanamitsu, F. Fujiwara, M. Takusagawa: Buried convex waveguide structure (GaAl) As injection laser, Appl. Phys. Lett. 38, 605 (1981)

    Article  ADS  Google Scholar 

  303. N. Holonyak, Jr., W. D. Laidig, M. D. Camras, J. J. Coleman, P. D. Dapkus: IR-red GaAs-AlAs superlattice laser monolithically integrated in a yellow-gap cavity, Appl. Phys. Lett. 39, 102 (1981)

    Article  ADS  Google Scholar 

  304. H. Jung, G. H. Dohler, E. O. Gobel, K. Ploog: Optical gain in GaAs doping super lattices, Appl. Phys. Lett. 43, 40 (1983)

    Article  ADS  Google Scholar 

  305. D. Botez, J. C. Connolly, M. Ettenberg, D. G. Gilbert, J. J. Hughes: Reliability of constricted double-heterojunction AlGaAs diode lasers, Appl. Phys. Lett. 43, 137 (1983)

    Article  ADS  Google Scholar 

  306. K. A. Shore: Actively coupled index-guided lasers, Quant. Electron. 15, 247 (1983)

    Article  ADS  Google Scholar 

  307. D. F. Welch, G. W. Wicks, L. F. Eastman: Optical properties of GalnAs/AlInAs single quantum wells, Appl. Phys. Lett. 43, 762 (1983)

    Article  ADS  Google Scholar 

  308. H. Jung, A. Fischer, K. Ploog: Photoluminescence of AlxGa1-xAs/GaAs quantum well heterostructures grown by epitaxy I and II, Appl. Phys. A33 (1984) to be published

    Google Scholar 

  309. W. T. Tsang, N. A. Olsson, R. A. Logan: High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers, Appl. Phys. Lett. 42, 650 (1983);

    Article  ADS  Google Scholar 

  310. L. T. Allen, R. R. Rice, H. G. Koenig: An etalon laser diode, U.S. Patent No. 4, 284, 963 (issued 18 August 1981)

    Google Scholar 

  311. K. Kobayashi, K. Utaka, Y. Abe, Y. Suematsu: CW operation of 1.5–1.6 μm wavelength GalnAsP/InP buried heterostructure integrated twin-guide laser with distributed Bragg reflector, Electron. Lett. 17, 366 (1981)

    Article  ADS  Google Scholar 

  312. G. Evans, T. Galantowicz, W. Garber, E. Garmire, D. Green, D. Heflinger, J. Kirk, A. Lee, J. Niesen, J. Osmer, R. Reel, M. Ziegler: Characteristics of distributed Bragg reflector lasers and monolithic laser pairs, J. Opt. Soc. Am. 71, 1558 (1981)

    ADS  Google Scholar 

  313. L. A. Coldren, B. I. Miller, K. Iga, A. Rentschler: Monolithic two-section GalnAsP/ InP active-optical-resonator devices formed by reactive ion etching, Appl. Phys. Lett. 38, 315 (1981)

    Article  ADS  Google Scholar 

  314. T. Saitoh, H. Nakagone: 1.5 jam GalnAsP/InP distributed Bragg reflector lasers with built-in optical waveguide, Electron. Lett. 18, 458 (1982)

    Article  Google Scholar 

  315. L. A Coldren, K. Feruya, B. I. Miller, J. A. Rentschler: Etched mirror and groove-coupled GalnAsP/InP laser devices for integrated optics, IEEE J. QE-18, 1679 (1982)

    Article  Google Scholar 

  316. D. R. Scifres, W. Streifer, R. D. Burnham: High-power phased-array diode lasers, J. Opt. Soc. Am. 72, 1763 (1982)

    ADS  Google Scholar 

  317. P. D. Wright, R. F. Nelson, R. B. Wilson: Monolithic integration of InGaAsP heterostructure lasers and electro-optical devices, IEEE J. QE-18, 249 (1982)

    Article  Google Scholar 

  318. U. Koren, A. Hasson, K. L. Yu, T. R. Chen, S. Margalit, A. Yariv: Low threshold InGaAsP/InP lasers with microcleaved mirrors suitable for monolithic integration, Appl. Phys. Lett. 41, 791 (1982)

    Article  ADS  Google Scholar 

  319. J. P. van der Ziel, W. T. Tsang: Integrated multilayer GaAs lasers separated by tunnel junctions, Appl. Phys. Lett. 41, 499 (1982)

    Article  ADS  Google Scholar 

  320. J. P. van der Ziel, R. A. Logan, R. M. Mikulyak: A closely spaced (50 μm) array of 16 individually addressable buried heterostructure GaAs lasers, Appl. Phys. Lett. 41, 9 (1982)

    Article  ADS  Google Scholar 

  321. W. T. Tsang, R. A. Logan, J. P. van der Ziel: A new lateral selective-area growth by liquid phase epitaxy: The formation of a lateral double-barrier buried-heterostruc-ture laser, Appl. Phys. Lett. 40, 942 (1982)

    Article  ADS  Google Scholar 

  322. U. Koren, K. L. Yu, T. R. Chen, N. Bur-Chaim, S. Margalit, A. Yariv: Monolithic integration of a very low threshold GalnAsP laser and metal-insulator-semiconductor field-effect transistor on semi-insulating InP, Appl. Phys. Lett. 40, 643 (1982)

    Article  ADS  Google Scholar 

  323. T. R. Chen, L. C. Chiu, K. L. Yu, U. Koren, A. Hasson, S. Margalit, A. Yariv: Low threshold InGaAsP terrace mass transport laser on semi-insulating substrate, Appl. Phys. Lett. 41, 1115 (1982)

    Article  ADS  Google Scholar 

  324. D. R. Scifres, R. D. Burnham, W. Streifer: Continuous wave highpower, high-temperature semiconductor laser phase-locked arrays, Appl. Phys. Lett. 41, 1030 (1982)

    Article  ADS  Google Scholar 

  325. U. Koren, T. R. Chen, C. Harder, A. Hasson, K. L. Yu, L. C. Chiu, S. Margalit, A. Yariv: InGaAsP/InP undercut mesa laser with planar polyamide passivation, Appl. Phys. Lett. 42, 403 (1983)

    Article  ADS  Google Scholar 

  326. B. F. Levine, R. A. Logan, W. T. Tsang, C. G. Bethea, F. R. Meritt: Optically integrated coherently coupled AlxGa1-xAs lasers, Appl. Phys. Lett. 42, 339 (1983)

    Article  ADS  Google Scholar 

  327. H. Temkin, R. A. Logan, J. P. van der Ziel: Integrated arrays of 1.3 μm buried crescent lasers, Appl. Phys. Lett. 42, 934 (1983)

    Article  ADS  Google Scholar 

  328. T. R. Chen, K. L. Yu, B. Chang, A. Hasson, S. Margalit, A. Yariv: Phase-locked InGaAsP laser array with diffraction coupling, Appl. Phys. Lett. 43, 136 (1983)

    Article  ADS  Google Scholar 

  329. Y. Suematsu, S. Arai, K. Kishino: Dynamic single-mode semiconductor lasers with a distributed reflector, IEEE J. LT-1, 161 (1983)

    Google Scholar 

  330. H. Matsueda, S. Sasaki, M. Nakamura: GaAs optoelectronic integrated light sources, IEEE J. LT-1, 261 (1983)

    Google Scholar 

  331. Y. Horikoshi, Y. Furukawa: Temperature sensitive threshold current of InGaAsP/ InP double heterostructure lasers, Jpn. J. Appl. Phys. 18, 809 (1979)

    Article  ADS  Google Scholar 

  332. C. M. Cortes, R. G. Hunsperger: Effects of contact resistance and dopant concentration in metal-semiconductor thermoelectric coolers, IEEE Trans. ED-27, 521 (1980);

    Article  Google Scholar 

  333. S. Hava, R. G. Hunsperger, H. B. Sequeira: Monolithically Peltier cooled laser (MPCL) diodes, IEEE J. LT-2, (1984) to be published

    Google Scholar 

  334. D. Botez, J. C. Connolly, D. B. Gilbert, M. Ettenberg: Very low threshold-current temperature sensitivity in constricted double heterostructure AlGaAs lasers, J. Appl. Phys. 52, 3840 (1981)

    Article  ADS  Google Scholar 

  335. H. Jung, E. Göbel, K. M. Romanek, M. H. Pilkuhn: Temperature dependence of optical gain spectra in GalnAsP/InP double-hetero-structure lasers, Appl. Phys. Lett. 39, 468 (1981)

    Article  ADS  Google Scholar 

  336. M Yano, M. Morimoto, Y. Nishitani, M. Takusagawa: New heterojunction InGaAsP/InP laser with high-temperature stability (T0= 180 K), Appl. Phys. Lett. 41, 390 (1982)

    Article  ADS  Google Scholar 

  337. M. D. Skeldon: A design approach for a thermally compensated injection laser, Opt. Eng. 21, 1040 (1982)

    Article  Google Scholar 

  338. J. Manning, R. Olshansky, C. G. Su, W. Powazinik: Measurement of carrier and lattice heating in 1.3 μm InGaAsP light-emitting diodes, Appl. Phys. Lett. 43, 134 (1983)

    Article  ADS  Google Scholar 

  339. S. Kobayashi, T. Kimura: Automatic frequency control in a semiconductor laser and an optical amplifier, IEEE J. LT-1, 394 (1983)

    Google Scholar 

  340. T. Hayakawa, T. Suyama, S. Yamamoto, H. Hayashi, S. Yano, T. Hijikata: Threshold-temperature characteristics in (GaAl)As visible laser diodes emitting below 750 nm, J. Appl. Phys. 54, 2983 (1983)

    Article  ADS  Google Scholar 

  341. W. Nakawaski: Dynamical thermal properties of a broad-contact double-hetero-structure GaAs-(AlGa)As laser diode, Opt. Quant. Electron. 15, 313 (1983)

    Article  Google Scholar 

  342. J. J. Hsieh: Phase diagram for LPE growth of GalnAsP layers lattice matched to InP substrates, IEEE J. QE-17, 118 (1981)

    Article  Google Scholar 

  343. B. deCremoux: The crystalline path: a way to the Ga1-xInxAsyP1-y phase diagram, IEEE J. QE-17, 123 (1981)

    Article  Google Scholar 

  344. J. Degani, R. F. Leheny, R. E. Nahory, M. A. Pollack, J. P. Heritage, J. C. De Winter: Fast photoconductance detector using p-In0 53Gao 47As with response to 1.7 μm, Appl. Phys. Lett. 38, 27 (1981)

    Article  ADS  Google Scholar 

  345. G. H. Olsen, T. J. Zamerowski: Vapor-phase growth of (In, Ga)(As, P) quaternary alloys, IEEE J. QE-17, 128 (1981)

    Article  Google Scholar 

  346. O. K. Kim, S. R Forrest, W. A. Bonner, R. G. Smith: A high gain In0.53Ga0.47As/InP avalanche photodiode with no tunnel leakage current, Appl. Phys. Lett. 39, 402 (1981)

    Article  ADS  Google Scholar 

  347. N. Susa, Y. Yamauchi: Vapor phase epitaxial growth of InP on liquid phase epitaxial In0.53Ga0.47As, J. Cryst. Growth 51, 518 (1981)

    Article  ADS  Google Scholar 

  348. S. R. Forrest, O. K. Kim, R. G. Smith: Optical response time of In0.53Ga0.47As/InP avalanche photodiodes, Appl. Phys. Lett. 41, 95 (1982)

    Article  ADS  Google Scholar 

  349. Y. Tashiro, T. Taguchi, Y. Sugimoto, T. Torikai, K. Nishida: Degradation modes in planar structure In0.53Ga0.47As photodetectors, IEEE J. LT-1, 269 (1983)

    Google Scholar 

  350. C. Y. Chen, Y. M. Pang, P. A. Garbinski, A. Y. Cho, K. Alavi: Modulation-doped Ga0.53In0.47As/Al0.48In0.52As planar photoconductive detectors for 1.0–1.55 μm applications, Appl. Phys. Lett. 43, 308 (1983)

    Article  ADS  Google Scholar 

  351. K. Yasuda, T. Shirai, T. Mikawa, Y. Kishi, T. Kaneda: Incident wavelength dependence of pulse responses in InP/InGaAsP/InGaAs avalanche photodiodes, Electron. Lett. 19, 662 (1983)

    Article  Google Scholar 

  352. F. Capasso, A. L. Hutchinson, P. W. Foy, C. Bethea, W. A. Bonner: Very low reach-through voltage, high-performance AlxGa1-xSb p-i-n photodiodes for 1.3 μm fiber optical systems, Appl. Phys. Lett. 39, 736 (1981)

    Article  ADS  Google Scholar 

  353. F. Capasso, M. B. Panish, S. Sumski: The liquid-phase epitaxial growth of low net donor concentration (5 x 1014–5x 1015/cm3)GaSb for detector applications in the 1.3–1.6 μm region, IEEE J. QE-17, 273 (1981)

    Article  Google Scholar 

  354. H D. Law, R. Chin, K. Nakana, R. A. Milano: The GaAIAsSb quaternary and GaAISb Ternary alloys and their application to infrared detectors, IEEE J. QE-17, 275 (1981)

    Article  Google Scholar 

  355. O. Hildebrand, W. Kuebart, K. W. Benz, M. H. Pilkuhn: Ga1-xAlxSb avalanche photodiodes: Resonant impact ionization with very high ratio of ionization coefficients, IEEE J. QE-17, 284 (1981)

    Article  Google Scholar 

  356. S. H. Shin, J. G. Pasko, H. D. Law, D. T. Cheung: 1.22 μm HgCdTe/CdTe avalanche photodiodes, Appl. Phys. Lett. 40, 965 (1982)

    Article  ADS  Google Scholar 

  357. R Dornhaus, G. Nimtz: The properties and applications of the Hg1-xCdxTe alloy system, Springer Tracts Mod. Phys. 98, 119 (1983)

    Article  Google Scholar 

  358. T. Mikawa, S. Kagawa, T. Kaneda, T. Sakurai, H. Ando, O. Mikami: A low-noise n+np germanium avalanche photodiode, IEEE J. QE-17, 210 (1981)

    Article  Google Scholar 

  359. H. Kanbe, G. Grosskopf, O. Mikami, S. Machida: Dark current noise characteristics and their temperature dependence in germanium avalanche photodiodes, IEEE J. QE-17, 1534 (1981)

    Article  Google Scholar 

  360. For a review of recently reported device performance characteristics see — R. G. Smith: Photodetectors and receivers — an update, in Semiconductor Devices for Optical Communication, 2nd ed., ed. by H. Kressel, Topics Appl. Phys. Vol. 39 (Springer, Berlin, Heidelberg, New York, 1982)

    Google Scholar 

  361. O. Wada, S. Yamakoshi, T. Fujii, S. Hiyamizu, T. Sakurai: AlGaAs/GaAs micro-cleaved facet (MCF) laser monolithically integrated with photodiode, Electron. Lett. 18, 189 (1982)

    Article  ADS  Google Scholar 

  362. N. Bar-Chaim, K. Y. Lau, I. Ury, A. Yariv: High-Speed GaAlAs/GaAs p-i-n photo-diode on a semi-insulating GaAs substrate, Appl. Phys. Lett. 43, 261 (1983)

    Article  ADS  Google Scholar 

  363. O. Wada, S. Miura, M. Ito, T. Fujii, T. Sakurai, S. Hiyamizu: Monolithic integration of a photodiode and field-effect transistor on a GaAs substrate by molecular beam epitaxy, Appl. Phys. Lett. 42, 380 (1983)

    Article  ADS  Google Scholar 

  364. U. Koren, S. Margalit, T. R. Chen, K. L. Yu, A. Yariv: Recent development in monolithic integration of InGaAsP/InP optoelectronic devices, IEEE J. QE-18, 1653 (1982)

    Article  Google Scholar 

  365. P. D. Wright, R. J. Nelson, R. B. Wilson: Monolithic integration of InGaAsP hete-rostructure lasers and electro-optical devices, IEEE J. QE-18, 249 (1982)

    Article  Google Scholar 

  366. H. A Haus: Picosecond sampling in optical waveguides, Digest of Technical Papers, IEEE/OSA Topical Meeting on Integrated and Guided Wave Optics, Asilo-mar, CA(1982)p-WA-1

    Google Scholar 

  367. M. Izutsu, H. Haga, T. Sueta: Picosecond signal sampling and multiplication by using integrated tandem light modulators, IEEE J. LT-1, 285 (1983)

    Google Scholar 

  368. G M. Verber, R. P. Kenan, J. R. Bush: Design and performance of an integrated optic digital correlator, IEEE J. LT-1, 256 (1983)

    Google Scholar 

  369. S. Yamada, M. Minakata, J. Noda: High-speed 2-bit analogue-digital converter using LiNbO3 waveguide modulators, Electron. Lett. 17, 259 (1982)

    Article  Google Scholar 

  370. C. L. Chang, C. S. Tsai: Electro-optic analog to digital converter using channel waveguide Fabry-Perot modulator array, Appl. Phys. Lett. 43, 22 (1983)

    Article  ADS  Google Scholar 

  371. J. A. Copeland, J. C. Campbell, A. G. Dentai, S. E. Miller: Wavelength-multiplexed AND gate: A building block for monolithic optically coupled circuits, Appl. Phys. Lett. 39, 197 (1981)

    Article  ADS  Google Scholar 

  372. R. Normandin, G. I. Stegeman: A picosecond transient digitizer based on nonlinear integrated optics, Appl. Phys. Lett. 40, 759 (1982)

    Article  ADS  Google Scholar 

  373. H. F. Schlaak: Optical PCM clock regenerator with integrated optical directional coupler, J. Opt. Commun. 3, 31 (1981)

    Google Scholar 

  374. M. E. Pedinoff, T. R. Ranganath, T. R. Joseph, J. Y. Lee: The integrated optic rf spectrum analyzer, Proc. NASA Conference on Optical Information Processing for Aerospace Applications (1981) p. 173

    Google Scholar 

  375. D. Mergerian, E. C. Malarkey, R. P. Pautienus, J. C. Bradley, M. Mill, C. W. Baugh, A. L. Kellner, M. Mentzer: Advanced integrated optic rf spectrum analyzer, Proc. SPIE 321, 149 (1982)

    Article  Google Scholar 

  376. W. K. Burns, R. P. Moeller: Effect of laser diode spontaneous emission on IOSA operation, Appl. Opt. 20, 913 (1981)

    Article  ADS  Google Scholar 

  377. L. Thylén, L. Stensland: Electro-optic approach to an integrated optics spectrum analyzer, Appl. Opt. 20, 1825 (1981)

    Article  ADS  Google Scholar 

  378. L. Thylén, L. Stensland: Lensless integrated optics spectrum analyzer, IEEE J. QE-18, 381 (1982)

    Article  Google Scholar 

  379. T. Suhara, N. Nishihara, J. Koyama: A folded-type integrated-optic spectrum analyzer using butt-coupled chirped grating lenses, IEEE J. QE-18, 1057 (1982)

    Article  Google Scholar 

  380. S. Ezekiel, H. J. Arditty (eds.): Fiberoptic Rotation Sensors, Springer Ser. Opt. Sci., Vol. 32 (Springer, Berlin, Heidelberg, New York 1982)

    Google Scholar 

  381. T. D. Black, V. A. Komotskii: Infrared detection using acousto-optic interaction with thermally induced grating in optical waveguides, Appl. Phys. Lett. 38, 113 (1981)

    Article  ADS  Google Scholar 

  382. G. I. Stegeman, W. M. Hetherington, J. E. Sipe: Surface coherent anti-Stokes Raman spectroscopy with integrated optics, J. Opt. Soc. Am. 72, 1738 (1982)

    ADS  Google Scholar 

  383. L. M. Johnson, F. J. Leonberger, G. W. Pratt, Jr.: Integrated optical temperature sensor, Appl. Phys. Lett. 41, 134 (1982)

    Article  ADS  Google Scholar 

  384. F. J. Leonberger: Applications of guided-wave interferometers, laser Focus 18, 125 (1982)

    Google Scholar 

  385. A Neyer, E. Voges: Nonlinear electro-optic oscillator using an integrated interferometer, Opt. Commun. 37, 169 (1981)

    Article  ADS  Google Scholar 

  386. H. F. Schlaak, R. Th. Kersten: Integrated optical oscillators and their applications to optical communication systems, Opt. Commun. 36, 186 (1981)

    Article  ADS  Google Scholar 

  387. H. Ito, Y. Ogawa, H. Inaba: Analysis and experiments on integrated optical multivibrators using electro-optically controlled bistable optical devices, IEEE J. QE-17, 325 (1981)

    Article  Google Scholar 

  388. K. Otsuka: Proposals and analyses on laser amplifier based integrated optical circuits, IEEE J. QE-17, 23 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunsperger, R.G. (1984). Recent Progress in Integrated Optics. In: Integrated Optics: Theory and Technology. Springer Series in Optical Sciences, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13565-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13565-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13567-9

  • Online ISBN: 978-3-662-13565-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics