Elemental Analysis and Imaging with X-Rays

  • Ludwig Reimer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 45)


For quantitative x-ray microanalysis, the number of x-ray quanta in characteristic lines produced by the specimen and by a pure element standard or one of known concentration are counted. The concentration of the element in the specimen can be calculated from the ratio of these counts. However, several corrections are necessary since various factors are different for specimen and standard: the backscattering and the stopping power, which depend on atomic number (Z); the x-ray absorption (A); and the fluorescence (F). The ZAF correction programs developed for x-ray microprobes at normal incidence can also be used quantitatively in SEM for normal and tilted specimens. For small particles and films on substrates and for biological specimens, special correction problems have to be taken into account. X-ray fluorescence analysis can be employed in SEM at some sacrifice of spatial resolution.


Electron Bombardment Mass Attenuation Coefficient Electron Range Tilted Specimen Absorption Correction Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 9.1
    J.I. Goldstein, R.E. Ganneman, R.E. Ogilvie: Diffusion in the Fe-Ni system at 1 atm and 40 kbar pressure. Trans.Met.Soc. AIME 233, 812 (1965)Google Scholar
  2. 9.2
    T.O. Ziebold, R.E. Ogilvie: An empirical method for electron micro-analysis. Anal.Chem. 36, 322 (1964)CrossRefGoogle Scholar
  3. 9.3
    A.E. Bence, A.L. Albee: Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geology 76, 382 (1968)ADSCrossRefGoogle Scholar
  4. 9.4
    D. Laguitton, R. Rousseau, F. Claisse: Computed alpha coefficients for electron microprobe analysis. Anal.Chem. 47, 2174 (1975)CrossRefGoogle Scholar
  5. 9.5
    J.W. Colby: Quantitative microprobe analysis of thin insulating films. Adv. X-Ray Analysis 11, 287 (1968)CrossRefGoogle Scholar
  6. 9.6
    K.F.J. Heinrich, R.L. Myklebust, H. Yakowitz, S.D. Rasberry: A simple correction procedure for quantitative electron probe microanalysis. NBS Spec.Tech.Note 719 ( U.S. Dept. of Commerce, Washington D.C. 1972 )Google Scholar
  7. 9.7
    J. Hénoc, K.F.J. Heinrich, R.L. Myklebust: A rigorous correction procedure for quantitative electron probe microanalysis (COR 2). NBS Tech.Note 769 ( U.S. Dep. of Commerce, Washington D.C. 1973 )Google Scholar
  8. 9.8
    H. Yakowitz, R.L. Myklebust, K.F.J. Heinrich: An on-line correction procedure for quantitative electron probe microanalysis. NBS Techn. Note 796 ( U.S.Dep.of Commerce, Washington D.C. 1973 )Google Scholar
  9. 9.9
    R.R. Warner, J.R. Coleman: A procedure for quantitative electron probe microanalysis of biological material. Micron 4, 61 (1973); A biological thin specimen microprobe quantitation method that calculates composition and pX Micron 6, 79 (1975)Google Scholar
  10. 9.10
    K.F.J. Heinrich: Electron-Beam X-Ray Microanalysis ( Van NostrandReinhold, New York 1981 )Google Scholar
  11. 9.11
    G. Love, V.D. Scott: Updating correction procedures in quantitative electron probe microanalysis. Scanning 4, 111 (1981)CrossRefGoogle Scholar
  12. 9.12
    D.L. Webster, H. Clark, W.W. Hansen: Effects of cathode-ray diffu-sion on intensities in x-ray spectra. Phys.Rev. 37, 115 (1931)ADSCrossRefGoogle Scholar
  13. 9.13
    J. Philibert, R. Tixier: Some problems with quantitative electron probe microanalysis. In Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, NBS Spec.Publ. 298 ( U.S. Dep. of Commerce, Washington D.C., 1968 ) p. 13Google Scholar
  14. 9.14
    M.Green, V.E. Cosslett: The efficiency of production of characteristic x-radiation in thick targets of pure elements. Proc.Phys.Soc. 78, 1206 (1961)ADSCrossRefGoogle Scholar
  15. 9.15
    M. Green, V.E. Cosslett: Measurements of K, L and M shell x-ray production efficiencies. J.Phys. D 1, 425 (1968)Google Scholar
  16. 9.16
    P. Duncumb, S.J.B. Reed: The calculation of stopping power and back- scatter effects in electron probe microanalysis. In Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, NBS Spec. Publ. 298 ( U.S. Dep. of Commerce, Washington D.C. 1968 ) p. 133Google Scholar
  17. 9.17
    G. Love, M.G.C. Cox, V.D. Scott: A simple Monte Carlo method for simulating electron solid interactions and its application to electron probe microanalysis. J.Phys. D 10, 7 (1977)Google Scholar
  18. 9.18
    J.C. Dérian: PhD Thesis, CEA Rep. R 3052, Univ.Paris 1966Google Scholar
  19. 9.19
    G. Springer: The loss of x-ray intensity due to backscattering in microanalyser targets. Microchim. Acta 1966, p. 587Google Scholar
  20. 9.20
    B. Lödding. L. Reimer: An experimental test of a ZAF correction program for tilted specimens and energy dispersive spectrometry. In 10th Int.Congr. on X-Ray Optics and Microanalysis. J.Physique 45, C2, 37 (1984)Google Scholar
  21. 9.21
    R. Castaing, J. Descamps: Sur le bases physique de l’analyse ponctuelle par spectrographie X. J.Phys.Rad. 16, 304 (1955)CrossRefGoogle Scholar
  22. 9.22
    U. Schmitz, P.L. Ryder, W. Pitsch: An experimental method for determining the depth distribution of characteristic x-rays in electron microprobe specimens. In 5th Intern.Conf. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt and K.H. Gaukler ( Springer, Berlin, Heidelberg 1969 ) p. 104Google Scholar
  23. 9.23
    A. Vignes, G. Dez: Distribution in depth of the primary x-ray emission in anticathodes of titanium and lead. J.Phys. D 1, 1309 (1968)Google Scholar
  24. 9.24
    J.D. Brown, L. Parobek: X-ray production as a function of depth for low electron energies. X-Ray Spectrometry 5, 36 (1976)CrossRefGoogle Scholar
  25. 9.25
    J.D. Brown, L. Parobek: The sandwich sample technique applied to the atomic number effect. In 6th Intern. Conf. on X-Ray Optics and Microanalysis, ed. by G. Shinoda et al. ( Univ. of Tokyo Press, Tokyo 1972 ) p. 163Google Scholar
  26. 9.26
    M. Green: The target absorption correction in x-ray microanalysis.In Proc. 3rd Intern. Conf. on X-Ray Optics and Microanalysis, ed. by H.H. Pattee et al ( Academic, New York 1963 ) p. 361Google Scholar
  27. 9.27
    B. Neumann, L. Reimer: Method for measuring the absorption correction f(x) with an energy dispersive x-ray detector. Scanning 1, 243 (1978)CrossRefGoogle Scholar
  28. 9.28
    J. Philibert: A method for calculating the absorption correction in electron probe microanalysis. In Proc. 3rd Intern. Conf. on X-Ray Optics and Microanalysis, ed. by H.H. Pattee et al. (Academic,New York 1963 ) p. 379Google Scholar
  29. 9.29
    K.F.J. Heinrich: Present state of the classical theory of quantita-tive electron probe microanalysis. NBS Techn.Note 521 ( U.S. Dep. of Commerce, Washington D.C. 1970 )Google Scholar
  30. 9.30
    H.E. Bishop: The prospects for an improved absorption correction in electron probe microanalysis. J.Phys. D 7, 2009 (1974)Google Scholar
  31. 9.31
    G. Love, V.D. Scott: Evaluation of a new correction procedure for quantitative electron probe microanalysis. J.Phys. D 11, 1369 (1978)Google Scholar
  32. 9.32
    S.J.B. Reed: Characteristic fluorescence corrections in electron probe microanalysis. Brit.J.Appl.Phys. 16, 913 (1965)ADSCrossRefGoogle Scholar
  33. 9.33
    G. Springer: Die Berechnung von Korrekturen für die quantitative Elektronenstrahl-Mikroanalyse. Fortschr. Miner. 45, 103 (1967)Google Scholar
  34. 9.34
    S.J.B. Reed: Electron Probe Microanalysis (Univ. Press, Cambridge 1975 )Google Scholar
  35. 9.35
    J. Hénoc: Fluorescence excited by the continuum. In Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, NBS Spec.Publ. 298 ( U.S. Dep. of Commerce, Washington D.C. 1968 ) p. 197Google Scholar
  36. 9.36
    G. Springer: The correction for continuum fluorescence in electron-probe microanalysis. Neues Jahrbuch Min. Abh. 106 241 (1967) G. Springer: Fluorescence by continuum radiation in multi-element targets. In 6th Int.Conf.on X-Ray Optics and Microanalysis ed. by G. Shinoda et al. (Tokyo Univ.Press, Tokyo 1972) o.141Google Scholar
  37. 9.37
    M. Green: The angular distribution of characteristic x-radiation and its origin within a solid target. Proc.Phys.Soc. 83, 435 (1964)Google Scholar
  38. 9.38
    H.E. Bishop: The absorption and atomic number correction in electron- probe x-ray microanalysis. J.Phys. D 1, 673 (1968)Google Scholar
  39. 9.39
    J.C. Russ: Microanalysis of thin sections, coatings and rough surfaces. SEM 1973, p. 113Google Scholar
  40. 9.40
    G. Love, M.G. Cox, V.D. Scott: A versatile atomic number correction for electron-probe microanalysis. J.Phys. D 11, 7 (1978)Google Scholar
  41. 9.41
    B. Lödding, L. Reimer: Energy dispersive x-ray microanalysis of tilted specimens using a modified ZAF correction. Scanning 1, 225 (1978)CrossRefGoogle Scholar
  42. 9.42
    H.J. Dudek, R. Borath: Preparation of a sharply defined boundary between two elements for x-ray microanalysis. Scanning 2, 39 (1979)Google Scholar
  43. 9.43
    W. E. Sweeney, R.E. Seebold, L.S. Birks: Electron probe measurements of evaporated metal films. J.Appl.Phys. 31, 1061 (1960)Google Scholar
  44. 9.44
    G.H. Cockett, C.D. Davies: Coating thickness measurement by electron probe microanalysis. Brit.J.Appl.Phys. 14, 813 (1963)ADSCrossRefGoogle Scholar
  45. 9.45
    W. Reuter: The ionization function and its application to the electron probe analysis of thin films. In 6th Int.Conf.on X-Ray Optics and Microanalysis, ed. by G. Shinoda et al. ( Tokyo Univ.Press, Tokyo 1972 ) p. 121Google Scholar
  46. 9.46
    H. Yakowitz, D.E. Newbury: A simple analytical method for thin films analysis with massive pure element standards. SEM 1976/I, p.151Google Scholar
  47. 9.47
    H. E. Bishop, D.M. Poole: A simple method of thin film analysis in the electron probe microanalyser. J.Phys. D 6, 1142 (1973)Google Scholar
  48. 9.48
    M.G.C. Cox, G. Love, V.D. Scott: A characteristic fluorescence correction for electron-probe microanalysis of thin coatings. J.Phys. D 12, 1441 (1979)Google Scholar
  49. 9.49
    L. Reimer: Transmission Electron Microscopy, Physics of Image Formation and Microanalysis, Springer Ser.Ont.Sci., Vol. 36 ( Springer, Berlin,Heidelberg 1984 )Google Scholar
  50. 9.50
    G. Cliff, G.W. Lorimer: The quantitative analysis of thin specimens. J.Micr. 103, 203 (1975)CrossRefGoogle Scholar
  51. 9.51
    J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: Quantitative x-ray analysis in the electron microscope. SEM 1977/I, p.315Google Scholar
  52. 9.52
    T.P. Schreiber, A.M. Wims: A quantitative x-ray microanalysis thin film method using K-,L- and M-lines. Ultramicroscopy 6, 323 (1981)Google Scholar
  53. 9.53
    H.J. Hoffmann, J.H. Weihrauch, H. Fechtig: Eine empirische Methode zur quantitativen chemischen Analyse von Mikroteilchen mit der Mikrosonde. In 5th Intern.Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt and K.H. Gaukler ( Springer, Berlin, Heidelberg 1969 ) p. 166Google Scholar
  54. 9.54
    J.T. Armstrong, P.R. Buseck: Quantitative chemical analysis of individual microparticles using the electron microprobe. Anal.Chem. 47, 2178 (1975)CrossRefGoogle Scholar
  55. 9.55
    N.C. Barbi, M.A. Giles, D.P. Skinner: Estimating elemental concen-trations in small particles using x-ray analysis in the electron microscope. SEM 1978/I, p.193Google Scholar
  56. 9.56
    J.T. Armstrong: Methods of quantitative analysis of individual microparticles with electron beam instruments. SEM 1978/I, p.455Google Scholar
  57. 9.57
    K.F.J. Heinrich: Characterization of particles. NBS Spec.Publ. 533 ( Nat.Bur.of Standards, Washington D.C. 1980 )Google Scholar
  58. 9.58
    R.L. Myklebust, D.E. Newbury, K.F.J. Heinrich, J.A. Small, C.E. Fiori: Monte Carlo electron trajectory simulation - an aid for particle analysis. In Proc. 13th Ann.Conf. Microbeam Anal.Soc. (Ann Arbor 1978 ) p. 61AGoogle Scholar
  59. 9.59
    P.J. Statham, J.B. Pawley: A new method for particle x-ray microanalysis based on peak-to-background measurements. SEM 1978/I, p.469Google Scholar
  60. 9.60
    J.A. Small, K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust: Progress in development of the peak-to-background method for the quantitative analysis of single particles with the electron probe. SEM 1979/II, p.807Google Scholar
  61. 9.61
    P. Wieser, R. Wurster: Some remarks about quantitative characteri-zation of small particles by the electron microprobe. Scanning 2, 29 (1979)CrossRefGoogle Scholar
  62. 9.62
    A.J. Morgan, T.W. Davies, D.A. Erasmus: Specimen preparation. In Electron Probe Microanalysis in Biology, ed. by D.A. Erasmus ( Chapman and Hall, London 1978 ) p. 94Google Scholar
  63. 9.63
    H. Shuman, A.V. Somlyo, A.P. Somlyo: Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicroscopy 1, 317 (1976)CrossRefGoogle Scholar
  64. 9.64
    T.A. Hall: Problems of the continuum-normalization method for the quantitative analysis of sections of soft tissues. In Microbeam Analysis in Biology, ed. by C.P. Lechene and R.R. Warner ( Academic, New York 1971 ) p. 157Google Scholar
  65. 9.65
    T.A. Hall: The microprobe assay of chemical elements. In Physical Techniques in Biological Research Vol. 1, Part A, ed. by G. Oster (Academic, New York 1971 ) p. 157Google Scholar
  66. 9.66
    J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis ( Plenum, New York 1981 )CrossRefGoogle Scholar
  67. 9.67
    C.E. Fiori, R.L. Myklebust, K.F.J. Heinrich, H. Yakowitz: Prediction of continuum intensity in energy-dispersive x-ray microanalysis. Anal.Chem. 48, 172 (1976)CrossRefGoogle Scholar
  68. 9.68
    C.E. Fiori, R.L. Myklebust, K.F.J. Heinrich: A method for resolving overlapping energy dispersive peaks of an x-ray spectrometer; application to the correction procedure FRAME B. In Proc. 11th Ann. Conf. Microbeam Anal. Soc. (Ann Arbor 1976 ) p. 12AGoogle Scholar
  69. 9.69
    P. Ryder, S. Baumgartl: Die Eignung eines energiedispersiven Röntgenspektrometers für die Elektronenstrahl-Mikroanalyse. Arch Eisenhüttenwesen 42, 635 (1971)Google Scholar
  70. 9.70
    R.W. Gould, J.T. Healey: Secondary fluorescent excitation in the SEM: improved sensitivity of energy dispersive analysis. Rev. Sci. Instr. 46, 1427 (1975)ADSCrossRefGoogle Scholar
  71. 9.71
    L.M. Middleman, J.D. Geller: Trace element analysis using x-ray excitation with an energy dispersive spectrometer on a SEM. SEM 1976/I, p.171Google Scholar
  72. 9.72
    B. Linnemann, L. Reimer: Comparison of x-ray elemental analysis by electron excitation and x-ray fluorescence. Scanning 1, 109 (1978)Google Scholar
  73. 9.73
    J.B. Warren, H.W. Kraner: Optimized stage design for x-ray fluo- rescence analysis in the SEM. SEM 1982/IV, p. 1373Google Scholar
  74. 9.74
    R. Eckert: X-ray fluorescence analysis in the SEM with a massive anode. SEM 1983/IV, p. 1535Google Scholar
  75. 9.75
    K. Siegbahn et al.: ESCA: Atomic, Molecular and Solid State Struc-ture Studied by Means of Electron Spectroscopy ( Almqvist and Wiksells, Uppsala 1967 )Google Scholar
  76. 9.76
    C.C. Chang: Auger electron spectroscopy. In Characterization of Solid Surfaces, ed. by P.F. Kane and G.B. Larrabee ( Plenum, New York 1974 ) p. 509CrossRefGoogle Scholar
  77. 9.77
    M.B. Chamberlain: Instrumentation and methods for scanning Auger microscopy. SEM 1982/III, p.509Google Scholar
  78. 9.78
    L.L. Levenson: Fundamentals of Auger electron spectroscopy. SEM 1983/IV, p. 1643Google Scholar
  79. 9.79
    A. Benninghoven: Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS). Surf.Sci.. 35. 427 (1973)ADSCrossRefGoogle Scholar
  80. 9.80
    P.W. Palmberg, W.M. Riggs:Unique instrument for multiple surface characterization by ESCA, scanning Auger, UPS and SIMS. J.Vac.Sci. Techn. 15, 786 (1978)Google Scholar
  81. 9.81
    N.C. MacDonald: Auger electron spectroscopy for SEM. SEM 1971, p. 89Google Scholar
  82. 9.82
    E.K. Brandis. High spatial resolution Auger electron spectroscopy in an ordinary pumped SEM. SEM 1975, p. 141Google Scholar
  83. 9.83
    R. Holm, B. Reinfandt: Auger microanalysis in a conventional SEM.Scanning 1, 42 (1978)Google Scholar
  84. 9.84
    J. Cazaux: X-ray probe microanalyser and scanning x-ray microscopies.Ultramicroscopy 12, 321 (1984)Google Scholar
  85. 9.85
    C.T. Howland: Scanning ESCA: a new dimension for electron spectro-scopy. Appl.Phys.Lett. 30, 274 (1977)ADSCrossRefGoogle Scholar
  86. 9.86
    R. Plattner, D. Schünemann: Das energiedispersive Röntgenspektrometer- gegenwärtiger Leistungsstand und zukünftige Entwicklung. BEDO 4/2, 77 (1971)Google Scholar
  87. 9.87
    J.B. Pawley, T. Hayes, R.H. Falk: Simultaneous three-element x-raymapping using color TV. SEM 1976/I, p.187Google Scholar
  88. 9.88
    K.F.J. Heinrich: Elemental mapping in the microscope domain. SEM 1977/I, p.605Google Scholar
  89. 9.89
    P. Ingram, J.D. Shelburne: Total rate imaging with x-rays (TRIX)-a simple method of forming a non-projective x-ray image in the SEM using an energy dispersive detector and its application to biological specimens. SEM 1980/II, p.285Google Scholar
  90. 9.90
    P. Bernsen, L. Reimer: Total rate imaging with x-rays in a SEM. J. Physique 45, C2–297 (1984)Google Scholar
  91. 9.91
    B. Neumann, L. Reimer: Versuche zur Röntgenprojektionsmikroskopieim Rasterelektronenmikroskop. BEDO 9, 147 (1976)Google Scholar
  92. 9.92
    V.E. Cosslett, W.C. Nixon: X-Ray Microscopy. Cambridge Univ. Press1960Google Scholar
  93. 9.93
    M. von Ardenne: Zur Leistungsfähigkeit des Elektronen-Schattenmikroskops und über ein Röntgenstrahl-Schattenmikroskop. Naturwiss. 27, 485 (1939)ADSCrossRefGoogle Scholar
  94. 9.94
    V.E. Cosslett, W.C. Nixon: X-ray shadow microscope. Nature 168, 24 (1951)Google Scholar
  95. 9.95
    V.E. Cosslett, W.C. Nixon: The x-ray shadow microscope. J.Appl.Phys. 24, 616 (1953)ADSCrossRefGoogle Scholar
  96. 9.96
    S.P. Ong: Microprojection with X-Rays. Martinus Nijhoff, The Hague 1959Google Scholar
  97. 9.97
    H.R.F. Horne, H.G. Waltinger: Röntgenmikroskopie und Röntgenabsorp- tionsanalyse im REM. BEDO 6, 163 (1974)Google Scholar
  98. 9.98
    H.R.F. Horne, H.G. Waltinger: How to obtain and use x-ray projection microscopy in the SEM. Scanning 1, 100 (1978)CrossRefGoogle Scholar
  99. 9.99
    H.R.F. Horn: X-ray reflection-topography in the SEM. Scanning 6, 69 (1984)CrossRefGoogle Scholar
  100. 9.100
    W. Brünger: Scanning x-ray projection microscopy using an energy-dispersive spectrometer. SEM 1978/í, p.423Google Scholar
  101. 9.101
    R.Feder, E. Spiller, J. Topalian, A.N. Broers, W. Gudat, B. Panessa: high resolution soft x-ray microscopy. Science 197, 259 (1977)ADSCrossRefGoogle Scholar
  102. 9.102
    J. Panessa, J.B. Warren, P. Hoffman, R. Feder: Imaging unstainedproteoglycan aggregates by soft x-ray contact microscopy. Ultramicroscopy 5, 267 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfätlische Wilhelms-Univeraität MünsterMünsterFed. Rep. of Germany

Personalised recommendations