Skip to main content

Elemental Analysis and Imaging with X-Rays

  • Chapter
  • 853 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

Abstract

For quantitative x-ray microanalysis, the number of x-ray quanta in characteristic lines produced by the specimen and by a pure element standard or one of known concentration are counted. The concentration of the element in the specimen can be calculated from the ratio of these counts. However, several corrections are necessary since various factors are different for specimen and standard: the backscattering and the stopping power, which depend on atomic number (Z); the x-ray absorption (A); and the fluorescence (F). The ZAF correction programs developed for x-ray microprobes at normal incidence can also be used quantitatively in SEM for normal and tilted specimens. For small particles and films on substrates and for biological specimens, special correction problems have to be taken into account. X-ray fluorescence analysis can be employed in SEM at some sacrifice of spatial resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.I. Goldstein, R.E. Ganneman, R.E. Ogilvie: Diffusion in the Fe-Ni system at 1 atm and 40 kbar pressure. Trans.Met.Soc. AIME 233, 812 (1965)

    Google Scholar 

  2. T.O. Ziebold, R.E. Ogilvie: An empirical method for electron micro-analysis. Anal.Chem. 36, 322 (1964)

    Article  Google Scholar 

  3. A.E. Bence, A.L. Albee: Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geology 76, 382 (1968)

    Article  ADS  Google Scholar 

  4. D. Laguitton, R. Rousseau, F. Claisse: Computed alpha coefficients for electron microprobe analysis. Anal.Chem. 47, 2174 (1975)

    Article  Google Scholar 

  5. J.W. Colby: Quantitative microprobe analysis of thin insulating films. Adv. X-Ray Analysis 11, 287 (1968)

    Article  Google Scholar 

  6. K.F.J. Heinrich, R.L. Myklebust, H. Yakowitz, S.D. Rasberry: A simple correction procedure for quantitative electron probe microanalysis. NBS Spec.Tech.Note 719 ( U.S. Dept. of Commerce, Washington D.C. 1972 )

    Google Scholar 

  7. J. Hénoc, K.F.J. Heinrich, R.L. Myklebust: A rigorous correction procedure for quantitative electron probe microanalysis (COR 2). NBS Tech.Note 769 ( U.S. Dep. of Commerce, Washington D.C. 1973 )

    Google Scholar 

  8. H. Yakowitz, R.L. Myklebust, K.F.J. Heinrich: An on-line correction procedure for quantitative electron probe microanalysis. NBS Techn. Note 796 ( U.S.Dep.of Commerce, Washington D.C. 1973 )

    Google Scholar 

  9. R.R. Warner, J.R. Coleman: A procedure for quantitative electron probe microanalysis of biological material. Micron 4, 61 (1973); A biological thin specimen microprobe quantitation method that calculates composition and pX Micron 6, 79 (1975)

    Google Scholar 

  10. K.F.J. Heinrich: Electron-Beam X-Ray Microanalysis ( Van NostrandReinhold, New York 1981 )

    Google Scholar 

  11. G. Love, V.D. Scott: Updating correction procedures in quantitative electron probe microanalysis. Scanning 4, 111 (1981)

    Article  Google Scholar 

  12. D.L. Webster, H. Clark, W.W. Hansen: Effects of cathode-ray diffu-sion on intensities in x-ray spectra. Phys.Rev. 37, 115 (1931)

    Article  ADS  Google Scholar 

  13. J. Philibert, R. Tixier: Some problems with quantitative electron probe microanalysis. In Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, NBS Spec.Publ. 298 ( U.S. Dep. of Commerce, Washington D.C., 1968 ) p. 13

    Google Scholar 

  14. M.Green, V.E. Cosslett: The efficiency of production of characteristic x-radiation in thick targets of pure elements. Proc.Phys.Soc. 78, 1206 (1961)

    Article  ADS  Google Scholar 

  15. M. Green, V.E. Cosslett: Measurements of K, L and M shell x-ray production efficiencies. J.Phys. D 1, 425 (1968)

    Google Scholar 

  16. P. Duncumb, S.J.B. Reed: The calculation of stopping power and back- scatter effects in electron probe microanalysis. In Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, NBS Spec. Publ. 298 ( U.S. Dep. of Commerce, Washington D.C. 1968 ) p. 133

    Google Scholar 

  17. G. Love, M.G.C. Cox, V.D. Scott: A simple Monte Carlo method for simulating electron solid interactions and its application to electron probe microanalysis. J.Phys. D 10, 7 (1977)

    Google Scholar 

  18. J.C. Dérian: PhD Thesis, CEA Rep. R 3052, Univ.Paris 1966

    Google Scholar 

  19. G. Springer: The loss of x-ray intensity due to backscattering in microanalyser targets. Microchim. Acta 1966, p. 587

    Google Scholar 

  20. B. Lödding. L. Reimer: An experimental test of a ZAF correction program for tilted specimens and energy dispersive spectrometry. In 10th Int.Congr. on X-Ray Optics and Microanalysis. J.Physique 45, C2, 37 (1984)

    Google Scholar 

  21. R. Castaing, J. Descamps: Sur le bases physique de l’analyse ponctuelle par spectrographie X. J.Phys.Rad. 16, 304 (1955)

    Article  Google Scholar 

  22. U. Schmitz, P.L. Ryder, W. Pitsch: An experimental method for determining the depth distribution of characteristic x-rays in electron microprobe specimens. In 5th Intern.Conf. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt and K.H. Gaukler ( Springer, Berlin, Heidelberg 1969 ) p. 104

    Google Scholar 

  23. A. Vignes, G. Dez: Distribution in depth of the primary x-ray emission in anticathodes of titanium and lead. J.Phys. D 1, 1309 (1968)

    Google Scholar 

  24. J.D. Brown, L. Parobek: X-ray production as a function of depth for low electron energies. X-Ray Spectrometry 5, 36 (1976)

    Article  Google Scholar 

  25. J.D. Brown, L. Parobek: The sandwich sample technique applied to the atomic number effect. In 6th Intern. Conf. on X-Ray Optics and Microanalysis, ed. by G. Shinoda et al. ( Univ. of Tokyo Press, Tokyo 1972 ) p. 163

    Google Scholar 

  26. M. Green: The target absorption correction in x-ray microanalysis.In Proc. 3rd Intern. Conf. on X-Ray Optics and Microanalysis, ed. by H.H. Pattee et al ( Academic, New York 1963 ) p. 361

    Google Scholar 

  27. B. Neumann, L. Reimer: Method for measuring the absorption correction f(x) with an energy dispersive x-ray detector. Scanning 1, 243 (1978)

    Article  Google Scholar 

  28. J. Philibert: A method for calculating the absorption correction in electron probe microanalysis. In Proc. 3rd Intern. Conf. on X-Ray Optics and Microanalysis, ed. by H.H. Pattee et al. (Academic,New York 1963 ) p. 379

    Google Scholar 

  29. K.F.J. Heinrich: Present state of the classical theory of quantita-tive electron probe microanalysis. NBS Techn.Note 521 ( U.S. Dep. of Commerce, Washington D.C. 1970 )

    Google Scholar 

  30. H.E. Bishop: The prospects for an improved absorption correction in electron probe microanalysis. J.Phys. D 7, 2009 (1974)

    Google Scholar 

  31. G. Love, V.D. Scott: Evaluation of a new correction procedure for quantitative electron probe microanalysis. J.Phys. D 11, 1369 (1978)

    Google Scholar 

  32. S.J.B. Reed: Characteristic fluorescence corrections in electron probe microanalysis. Brit.J.Appl.Phys. 16, 913 (1965)

    Article  ADS  Google Scholar 

  33. G. Springer: Die Berechnung von Korrekturen für die quantitative Elektronenstrahl-Mikroanalyse. Fortschr. Miner. 45, 103 (1967)

    Google Scholar 

  34. S.J.B. Reed: Electron Probe Microanalysis (Univ. Press, Cambridge 1975 )

    Google Scholar 

  35. J. Hénoc: Fluorescence excited by the continuum. In Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, NBS Spec.Publ. 298 ( U.S. Dep. of Commerce, Washington D.C. 1968 ) p. 197

    Google Scholar 

  36. G. Springer: The correction for continuum fluorescence in electron-probe microanalysis. Neues Jahrbuch Min. Abh. 106 241 (1967) G. Springer: Fluorescence by continuum radiation in multi-element targets. In 6th Int.Conf.on X-Ray Optics and Microanalysis ed. by G. Shinoda et al. (Tokyo Univ.Press, Tokyo 1972) o.141

    Google Scholar 

  37. M. Green: The angular distribution of characteristic x-radiation and its origin within a solid target. Proc.Phys.Soc. 83, 435 (1964)

    Google Scholar 

  38. H.E. Bishop: The absorption and atomic number correction in electron- probe x-ray microanalysis. J.Phys. D 1, 673 (1968)

    Google Scholar 

  39. J.C. Russ: Microanalysis of thin sections, coatings and rough surfaces. SEM 1973, p. 113

    Google Scholar 

  40. G. Love, M.G. Cox, V.D. Scott: A versatile atomic number correction for electron-probe microanalysis. J.Phys. D 11, 7 (1978)

    Google Scholar 

  41. B. Lödding, L. Reimer: Energy dispersive x-ray microanalysis of tilted specimens using a modified ZAF correction. Scanning 1, 225 (1978)

    Article  Google Scholar 

  42. H.J. Dudek, R. Borath: Preparation of a sharply defined boundary between two elements for x-ray microanalysis. Scanning 2, 39 (1979)

    Google Scholar 

  43. W. E. Sweeney, R.E. Seebold, L.S. Birks: Electron probe measurements of evaporated metal films. J.Appl.Phys. 31, 1061 (1960)

    Google Scholar 

  44. G.H. Cockett, C.D. Davies: Coating thickness measurement by electron probe microanalysis. Brit.J.Appl.Phys. 14, 813 (1963)

    Article  ADS  Google Scholar 

  45. W. Reuter: The ionization function and its application to the electron probe analysis of thin films. In 6th Int.Conf.on X-Ray Optics and Microanalysis, ed. by G. Shinoda et al. ( Tokyo Univ.Press, Tokyo 1972 ) p. 121

    Google Scholar 

  46. H. Yakowitz, D.E. Newbury: A simple analytical method for thin films analysis with massive pure element standards. SEM 1976/I, p.151

    Google Scholar 

  47. H. E. Bishop, D.M. Poole: A simple method of thin film analysis in the electron probe microanalyser. J.Phys. D 6, 1142 (1973)

    Google Scholar 

  48. M.G.C. Cox, G. Love, V.D. Scott: A characteristic fluorescence correction for electron-probe microanalysis of thin coatings. J.Phys. D 12, 1441 (1979)

    Google Scholar 

  49. L. Reimer: Transmission Electron Microscopy, Physics of Image Formation and Microanalysis, Springer Ser.Ont.Sci., Vol. 36 ( Springer, Berlin,Heidelberg 1984 )

    Google Scholar 

  50. G. Cliff, G.W. Lorimer: The quantitative analysis of thin specimens. J.Micr. 103, 203 (1975)

    Article  Google Scholar 

  51. J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: Quantitative x-ray analysis in the electron microscope. SEM 1977/I, p.315

    Google Scholar 

  52. T.P. Schreiber, A.M. Wims: A quantitative x-ray microanalysis thin film method using K-,L- and M-lines. Ultramicroscopy 6, 323 (1981)

    Google Scholar 

  53. H.J. Hoffmann, J.H. Weihrauch, H. Fechtig: Eine empirische Methode zur quantitativen chemischen Analyse von Mikroteilchen mit der Mikrosonde. In 5th Intern.Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt and K.H. Gaukler ( Springer, Berlin, Heidelberg 1969 ) p. 166

    Google Scholar 

  54. J.T. Armstrong, P.R. Buseck: Quantitative chemical analysis of individual microparticles using the electron microprobe. Anal.Chem. 47, 2178 (1975)

    Article  Google Scholar 

  55. N.C. Barbi, M.A. Giles, D.P. Skinner: Estimating elemental concen-trations in small particles using x-ray analysis in the electron microscope. SEM 1978/I, p.193

    Google Scholar 

  56. J.T. Armstrong: Methods of quantitative analysis of individual microparticles with electron beam instruments. SEM 1978/I, p.455

    Google Scholar 

  57. K.F.J. Heinrich: Characterization of particles. NBS Spec.Publ. 533 ( Nat.Bur.of Standards, Washington D.C. 1980 )

    Google Scholar 

  58. R.L. Myklebust, D.E. Newbury, K.F.J. Heinrich, J.A. Small, C.E. Fiori: Monte Carlo electron trajectory simulation - an aid for particle analysis. In Proc. 13th Ann.Conf. Microbeam Anal.Soc. (Ann Arbor 1978 ) p. 61A

    Google Scholar 

  59. P.J. Statham, J.B. Pawley: A new method for particle x-ray microanalysis based on peak-to-background measurements. SEM 1978/I, p.469

    Google Scholar 

  60. J.A. Small, K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust: Progress in development of the peak-to-background method for the quantitative analysis of single particles with the electron probe. SEM 1979/II, p.807

    Google Scholar 

  61. P. Wieser, R. Wurster: Some remarks about quantitative characteri-zation of small particles by the electron microprobe. Scanning 2, 29 (1979)

    Article  Google Scholar 

  62. A.J. Morgan, T.W. Davies, D.A. Erasmus: Specimen preparation. In Electron Probe Microanalysis in Biology, ed. by D.A. Erasmus ( Chapman and Hall, London 1978 ) p. 94

    Google Scholar 

  63. H. Shuman, A.V. Somlyo, A.P. Somlyo: Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicroscopy 1, 317 (1976)

    Article  Google Scholar 

  64. T.A. Hall: Problems of the continuum-normalization method for the quantitative analysis of sections of soft tissues. In Microbeam Analysis in Biology, ed. by C.P. Lechene and R.R. Warner ( Academic, New York 1971 ) p. 157

    Google Scholar 

  65. T.A. Hall: The microprobe assay of chemical elements. In Physical Techniques in Biological Research Vol. 1, Part A, ed. by G. Oster (Academic, New York 1971 ) p. 157

    Google Scholar 

  66. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis ( Plenum, New York 1981 )

    Book  Google Scholar 

  67. C.E. Fiori, R.L. Myklebust, K.F.J. Heinrich, H. Yakowitz: Prediction of continuum intensity in energy-dispersive x-ray microanalysis. Anal.Chem. 48, 172 (1976)

    Article  Google Scholar 

  68. C.E. Fiori, R.L. Myklebust, K.F.J. Heinrich: A method for resolving overlapping energy dispersive peaks of an x-ray spectrometer; application to the correction procedure FRAME B. In Proc. 11th Ann. Conf. Microbeam Anal. Soc. (Ann Arbor 1976 ) p. 12A

    Google Scholar 

  69. P. Ryder, S. Baumgartl: Die Eignung eines energiedispersiven Röntgenspektrometers für die Elektronenstrahl-Mikroanalyse. Arch Eisenhüttenwesen 42, 635 (1971)

    Google Scholar 

  70. R.W. Gould, J.T. Healey: Secondary fluorescent excitation in the SEM: improved sensitivity of energy dispersive analysis. Rev. Sci. Instr. 46, 1427 (1975)

    Article  ADS  Google Scholar 

  71. L.M. Middleman, J.D. Geller: Trace element analysis using x-ray excitation with an energy dispersive spectrometer on a SEM. SEM 1976/I, p.171

    Google Scholar 

  72. B. Linnemann, L. Reimer: Comparison of x-ray elemental analysis by electron excitation and x-ray fluorescence. Scanning 1, 109 (1978)

    Google Scholar 

  73. J.B. Warren, H.W. Kraner: Optimized stage design for x-ray fluo- rescence analysis in the SEM. SEM 1982/IV, p. 1373

    Google Scholar 

  74. R. Eckert: X-ray fluorescence analysis in the SEM with a massive anode. SEM 1983/IV, p. 1535

    Google Scholar 

  75. K. Siegbahn et al.: ESCA: Atomic, Molecular and Solid State Struc-ture Studied by Means of Electron Spectroscopy ( Almqvist and Wiksells, Uppsala 1967 )

    Google Scholar 

  76. C.C. Chang: Auger electron spectroscopy. In Characterization of Solid Surfaces, ed. by P.F. Kane and G.B. Larrabee ( Plenum, New York 1974 ) p. 509

    Chapter  Google Scholar 

  77. M.B. Chamberlain: Instrumentation and methods for scanning Auger microscopy. SEM 1982/III, p.509

    Google Scholar 

  78. L.L. Levenson: Fundamentals of Auger electron spectroscopy. SEM 1983/IV, p. 1643

    Google Scholar 

  79. A. Benninghoven: Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS). Surf.Sci.. 35. 427 (1973)

    Article  ADS  Google Scholar 

  80. P.W. Palmberg, W.M. Riggs:Unique instrument for multiple surface characterization by ESCA, scanning Auger, UPS and SIMS. J.Vac.Sci. Techn. 15, 786 (1978)

    Google Scholar 

  81. N.C. MacDonald: Auger electron spectroscopy for SEM. SEM 1971, p. 89

    Google Scholar 

  82. E.K. Brandis. High spatial resolution Auger electron spectroscopy in an ordinary pumped SEM. SEM 1975, p. 141

    Google Scholar 

  83. R. Holm, B. Reinfandt: Auger microanalysis in a conventional SEM.Scanning 1, 42 (1978)

    Google Scholar 

  84. J. Cazaux: X-ray probe microanalyser and scanning x-ray microscopies.Ultramicroscopy 12, 321 (1984)

    Google Scholar 

  85. C.T. Howland: Scanning ESCA: a new dimension for electron spectro-scopy. Appl.Phys.Lett. 30, 274 (1977)

    Article  ADS  Google Scholar 

  86. R. Plattner, D. Schünemann: Das energiedispersive Röntgenspektrometer- gegenwärtiger Leistungsstand und zukünftige Entwicklung. BEDO 4/2, 77 (1971)

    Google Scholar 

  87. J.B. Pawley, T. Hayes, R.H. Falk: Simultaneous three-element x-raymapping using color TV. SEM 1976/I, p.187

    Google Scholar 

  88. K.F.J. Heinrich: Elemental mapping in the microscope domain. SEM 1977/I, p.605

    Google Scholar 

  89. P. Ingram, J.D. Shelburne: Total rate imaging with x-rays (TRIX)-a simple method of forming a non-projective x-ray image in the SEM using an energy dispersive detector and its application to biological specimens. SEM 1980/II, p.285

    Google Scholar 

  90. P. Bernsen, L. Reimer: Total rate imaging with x-rays in a SEM. J. Physique 45, C2–297 (1984)

    Google Scholar 

  91. B. Neumann, L. Reimer: Versuche zur Röntgenprojektionsmikroskopieim Rasterelektronenmikroskop. BEDO 9, 147 (1976)

    Google Scholar 

  92. V.E. Cosslett, W.C. Nixon: X-Ray Microscopy. Cambridge Univ. Press1960

    Google Scholar 

  93. M. von Ardenne: Zur Leistungsfähigkeit des Elektronen-Schattenmikroskops und über ein Röntgenstrahl-Schattenmikroskop. Naturwiss. 27, 485 (1939)

    Article  ADS  Google Scholar 

  94. V.E. Cosslett, W.C. Nixon: X-ray shadow microscope. Nature 168, 24 (1951)

    Google Scholar 

  95. V.E. Cosslett, W.C. Nixon: The x-ray shadow microscope. J.Appl.Phys. 24, 616 (1953)

    Article  ADS  Google Scholar 

  96. S.P. Ong: Microprojection with X-Rays. Martinus Nijhoff, The Hague 1959

    Google Scholar 

  97. H.R.F. Horne, H.G. Waltinger: Röntgenmikroskopie und Röntgenabsorp- tionsanalyse im REM. BEDO 6, 163 (1974)

    Google Scholar 

  98. H.R.F. Horne, H.G. Waltinger: How to obtain and use x-ray projection microscopy in the SEM. Scanning 1, 100 (1978)

    Article  Google Scholar 

  99. H.R.F. Horn: X-ray reflection-topography in the SEM. Scanning 6, 69 (1984)

    Article  Google Scholar 

  100. W. Brünger: Scanning x-ray projection microscopy using an energy-dispersive spectrometer. SEM 1978/í, p.423

    Google Scholar 

  101. R.Feder, E. Spiller, J. Topalian, A.N. Broers, W. Gudat, B. Panessa: high resolution soft x-ray microscopy. Science 197, 259 (1977)

    Article  ADS  Google Scholar 

  102. J. Panessa, J.B. Warren, P. Hoffman, R. Feder: Imaging unstainedproteoglycan aggregates by soft x-ray contact microscopy. Ultramicroscopy 5, 267 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1985). Elemental Analysis and Imaging with X-Rays. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13562-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13562-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13564-8

  • Online ISBN: 978-3-662-13562-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics