Skip to main content

Crystal Structure Analysis by Diffraction

  • Chapter
Scanning Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

  • 856 Accesses

Abstract

Electrons are Bragg diffracted at lattice planes. The geometry of a diffraction pattern can be described by the kinematical theory. For the discussion of intensities it is necessary to use the dynamical theory of electron diffraction and the Bloch-wave model. Because a Bloch-wave field has nodes and antinodes at the nuclei and the probability density at the nuclei depends sensitively on the tilt relative to the Bragg position, the backscattering coefficient shows an anisotropy. When rocking an electron probe, this anisotropy of the backscattering results in the electron channelling pattern (ECP). For a stationary electron probe, the angular distribution of backscattered electrons is modulated by excess and defect Kikuchi bands, leading to an electron backscattering pattern (EBSP) which can be observed on a fluorescent screen or recorded on a photographic emulsion. At oblique incidence of the electron beam, the reflection high-energy electron diffraction (RHEED) pattern may contain Bragg diffraction spots and Kikuchi lines. ECP and EBSP are related by the theorem of reciprocity. These patterns contain information about the crystal structure, orientation and distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals ( Butterworths, London 1965 )

    Google Scholar 

  2. S. Amelinckx, R. Gevers, G. Remaut, J. Van Landuyt: Modern Diffraction and Imaging Techniques in Material Science ( North-Holland, Amsterdam 1970 )

    Google Scholar 

  3. L. Reimer: Transmission Electron Microscopy. Physics of Image Formation and Microanalysis. Springer Ser. Opt. Sci., Vol. 36 ( Springer, Berlin, Heidelberg 1984 )

    Google Scholar 

  4. B.K. Vainshtein: Modern Crystazzography I. Springer Ser. Solid-State Sci., Vol. 15 ( Springer, Berlin, Heidelberg 1981 )

    Google Scholar 

  5. B.K. Vainshtein, V.M. Fridkin, V.L. Indenbom: Modern Crystazzography II, Springer Ser. Solid-State Sci., Vol. 21 ( Springer, Berlin, Heidelberg 1982 )

    Google Scholar 

  6. C.T. Young, J.L. Lytton: Computer generation and identification of Kikuchi projections. J.Appl.Phys. 43, 1408 (1972)

    Article  ADS  Google Scholar 

  7. J.P. Spencer, C.J. Humphreys: Electron diffraction from tilted specimens and its application in SEM. In Electron Microscopy and Analysis, ed. by W.C. Nixon (Inst. of Physics, London 1971) p.310 P. Pirouz, L.M. Boswarva: Pseudo-Kikuchi pattern contrast from tilted specimens. In Scanning Electron Microscopy: systems and applications.(Inst. of Physics, London 1973 ) p. 238

    Google Scholar 

  8. P. Hagemann, L. Reimer: An experimental proof of the dependent Bloch wave model by large-angle electron scattering from thin crystals. Phil.Mag. A 40, 367 (1979)

    Google Scholar 

  9. G.R. Booker, A.M.B. Shaw, M.J. Whelan, P.B. Hirsch: Some comments on the interpretation of the Kikuchi-like reflection patterns observed by SEM. Phil.Mag. 16, 1185 (1967)

    Article  ADS  Google Scholar 

  10. E. Vicario, M. Pitaval, G. Fontaine: Etude des pseudo-lignes de Kikuchi observeés en microscopie electronique à balayage. Acta Cryst. A 27, 1 (1971)

    Google Scholar 

  11. L. Reimer, H.G. Badde, H. Seidel: Orientierungsanisotropie des Rückstreukoeffizienten and der Sekundärelektronenausbeute von 10–100 keV Elektronen. Z.angew.Phys. 31, 145 (1971)

    Google Scholar 

  12. H.G. Badde, H. Drescher, E.R. Krefting, L. Reimer, H. Seidel, W. Bühring: Use of Mott scattering cross sections for calculating backscattering of 10–100 keV electrons. In Proc. 25th Anniv.Ì0eetinq EMAG (Inst. of Physics, London 1971 ) p. 74

    Google Scholar 

  13. H. Drescher, E.R. Krefting, L. Reimer, H. Seidel: The orientation dependence of the electron backscattering coefficient of gold single crystal films. Z.Naturforschg. 29a, 833 (1974)

    ADS  Google Scholar 

  14. J.P. Spencer, C.J. Humphreys, P.B. Hirsch: A dynamical theory for the contrast of perfect and imperfect crystals in the SEM using backscattered electrons. Phil.Mag. 26, 193 (1972)

    Article  ADS  Google Scholar 

  15. R. Sandström, J.P. Spencer, C.J. Humphreys: A theoretical model for the energy dependence of electron channelling patterns in the SEM. J.Phys. D 7, 1030 (1974)

    Google Scholar 

  16. E.M. Schulson: Interpretation of the width of SEM electron channelling lines. Phys.stat.sol. (b) 46, 95 (1971)

    Article  Google Scholar 

  17. H. Seiler, G. Kuhnle: Zur Anisotropie der Elektronenausbeute in Abhängigkeit von der Energie der auslösenden Primärelektronen von 5–50 keV. Z.angew.Phys. 29, 254 (1970)

    Google Scholar 

  18. H. Niedrig: Electron backscattering from thin films. J.Appl.Phys. 53, R15 (1982)

    Article  ADS  Google Scholar 

  19. M. von Laue: Materiewellen and ihre Interferenzen (Akad. Verlagsges. Leipzig 1948

    Google Scholar 

  20. Y. Kainuma: The theory of Kikuchi pattern. Acta Cryst. 8, 247 (1955) 8.21 R. E. De Wames, W.F. Hall, G.W. Lehman: Mass dependence on the angular distribution of charged particle emission from crystals: transition to the classical limit. Phys.Rev. 174, 392 (1968)

    Google Scholar 

  21. D.S. Gemmell: Channelling and related effects in the motion of charged particles through crystals. Rev.Mod.Phys. 46, 129 (1974)

    Article  ADS  Google Scholar 

  22. H. Boersch: Ober Bänder bei Elektronenbeugung. Phys. 38, 1000 (1937)

    Google Scholar 

  23. C.R. Hall: On the thickness dependence of Kikuchi band contrast. Phil.Mag. 22, 63 (1970)

    Article  ADS  Google Scholar 

  24. M. Komura, S. Kojima, T. Ichinokawa: Contrast reversals of Kikuchi bands in transmission electron diffraction. J.Phys.Soc.Japan 33, 1415 (1972)

    Article  ADS  Google Scholar 

  25. L. Reimer, W. Pöpper, B. Volbert: Contrast reversals in the Kikuchi bands of backscattered and transmitted electron diffraction patterns. In Developments in Electron Microscopy and Analysis, ed. By D.L. Misell ( Inst. of Physics, London 1977 ) p. 259

    Google Scholar 

  26. M.N. Alam, M. Blackman, D.W. Pashley: High-angle Kikuchi patterns Proc.Roy.Soc. A 221, 224 (1954)

    Google Scholar 

  27. J.A. Venables, C.J. Harland: Electron backscattering patterns - a new technique for obtaining crystallographic information in the SEM. Phil.Mag. 27, 1193 (1973)

    Article  ADS  Google Scholar 

  28. D.G. Coates: Kikuchi-like reflection patterns obtained with the SEM Phil.Mag. 16, 1179 (1967)

    Google Scholar 

  29. G.R. Booker: Scanning electron microscopy: electron channeling effects, in [Ref.8.2, p.613]

    Google Scholar 

  30. D.C. Joy, D.E. Newbury, D.L. Davidson: Electron channelling patterns in the SEM. J.Appl.Phys. 53, R81 (1982)

    Article  ADS  Google Scholar 

  31. D.C. Joy: Electron channelling patterns in the SEM. In Quantitative Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 131

    Google Scholar 

  32. D.E. Newbury: The origin, detection and uses of electron channeling contrast. SEM 1974, p. 1047

    Google Scholar 

  33. E.M. Schulson, C.G. van Essen: Optimum conditions for generating channelling patterns in the SEM. J.Phys. E 2, 247 (1969)

    Google Scholar 

  34. E.D. Wolf, T.E. Everhart: Annular diode detector for high annular resolution pseudo-Kikuchi patterns. SEM 1969, p. 41

    Google Scholar 

  35. D.G. Coates: Pseudo-Kikuchi orientation analysis in the SEM. SEM 1969, p. 27

    Google Scholar 

  36. E.M. Schulson, C.G. van Essen, D.C. Joy: The generation and application of SEM electron channelling patterns. SEM 1969, p. 45

    Google Scholar 

  37. J. Frosien, W. Gaebler, H. Niedrig: New display and specimen stage for large angle Kikuchi-like patterns. In Electron Microscopy 1974, VoZ.1 ed. by J.V. Sanders and D.J. Goodchild (Australian Acad. of Science, Canberra 1974 ) p. 158

    Google Scholar 

  38. M. Brunner, H.J. Kohl, H. Niedrig: Großwinkel-Elektronen-Channeling-Diagramme zur Untersuchung epitaktisch hergestellter Schichten. Optik 49, 477 (1978)

    Google Scholar 

  39. A.R. Dinnis: Limiting factors in direct stereo viewing. In Scanning Electron Microscopy: systems and applications (Inst. of Physics, London 1973 ) p. 76

    Google Scholar 

  40. A.R. Dinnis: Stereoscopic viewing in the SEM. In Developments in Electron Microscopy and Analysis, ed. by D.L. Misell ( Inst. of Physics, London 1977 ) p. 87

    Google Scholar 

  41. C.G. van Essen, E.M. Schulson: Selected area channelling patterns in the SEM. J. Mater.Sci. 4, 336 (1969)

    Article  ADS  Google Scholar 

  42. C.G. van Essen, E.M. Schulson, R.H. Donaghay: Electron channeling patterns from small (10 pm) selected areas in the SEM. Nature 225, 847 (1970); The generation and identification of SEM channelling patterns from 10 micron areas. J.Mater.Sci. 6, 213 (1971)

    Google Scholar 

  43. G.R. Booker, R. Stickler: SEM selected area channelling patterns: dependence of area on rocking angle and working distance. J.Mater. Sci. 7, 712 (1972)

    Google Scholar 

  44. C.G. van Essen: Selected area diffraction in the SEM - towards 1 micron. In Proc. 25th Anniv. Meeting of EMAG ( Inst.of Physics, London 1971 ) p. 314

    Google Scholar 

  45. D.C. Joy, D.E. Newbury: SEM selected area channelling patterns from 1 micron specimen areas. J.Mater.Sci. 7, 714 (1972)

    Article  ADS  Google Scholar 

  46. H. Seiler: Determination of “information depth” in the SEM. SEM 1967/I, p.9

    Google Scholar 

  47. E.D. Wolf, M. Braunstein, A.I. Braunstein: Pseudo-Kikuchi pattern degradation by a thin amorphous silicon film. Appl.Phys. Lett. 15, 389 (1969)

    Google Scholar 

  48. S.M. Davidson, G.R. Booker: Decollimation of a parallel beam by thin surface films and its effect on SEM channelling patterns. In Microscopic Electronique 1970, Vol. 1, ed. by P. Favard ( Soc. Française Micr. Electronique, Paris 1970 ) p. 235

    Google Scholar 

  49. M. Hoffmann, L. Reimer: Channelling contrast on metal surfaces after ion beam etching. Scanning 4, 91 (1981)

    Article  Google Scholar 

  50. E.M. Schulson: A SEM study of the degradation of electron channelling effects in alkali halide crystals during electron irradiation. J.Mater.Sci. 6, 377 (1971)

    Article  ADS  Google Scholar 

  51. E.M. Schulson: SEM electron channelling line width (broadening) and pattern degradation in alkali halide crystals. SEM 1971, p. 489

    Google Scholar 

  52. A.D.G. Stewart: Recent developments in SEM. BEDO 1, 283 (1968) 8.54 A. Boyde: Practical problems and methods in 3D analysis of SEM images. SEM 1970, p. 105

    Google Scholar 

  53. S. Murray, A.H. Windle: Characterisation and correction of distortions in SEM micrographs. In Scanning Electron Microscopy: systems and applications (Inst. of Physics, London 1973 ) p. 88

    Google Scholar 

  54. J.D. Verhoeven, E.D. Gibson: Rotation between SEM micrograph and electron channelling patterns. J. Phys. E 8, 15 (1975)

    Article  ADS  Google Scholar 

  55. D.C. Joy, C.M. Maruszewski: The rotation between selected area channelling patterns and micrographs. J.Mater.Sci. 10, 178 (1975)

    Article  ADS  Google Scholar 

  56. D.L. Davidson: Rotation between SEM micrographs and electron channelling patterns. J.Phys. E 9, 341 (1976)

    Google Scholar 

  57. D.E. Newbury, D.C. Joy: A computer technique for the analysis of electron channelling patterns. In Proc. 25th Anniv. Meeting EMAG (Inst. of Physics, London 1971 ) p. 306

    Google Scholar 

  58. D.C. Joy, G.R. Booker, E.O. Fearon, M. Bevis: Quantitative crystallographic orientation determination of microcrystals present on solid specimens using the SEM. SEM 1971, p. 497

    Google Scholar 

  59. G.R. Booker: Electron channelling effects using the SEM. SEM 1970, p. 489

    Google Scholar 

  60. J.D. Ayers, D.C. Joy: A crystallographic study of massive precipitates in Cu-Zn and Ag-Zn alloys utilizing selected area electron channelling. Acta Met. 20, 1371 (1972)

    Article  Google Scholar 

  61. D.E. Newbury, D.C. Joy: SEM dynamical studies of the deformation of Pb-Sn superplastic alloys. In Proc. 25th Anniv. Meeting EMAG ( Inst.of Physics, London 1971 ) p. 216

    Google Scholar 

  62. D.C. Joy, E.M. Schulson, J.P. Jacubovics, C.G. van Essen: Electron channelling patterns from ferromagnetic crystals in the SEM. Phil.Mag. 20, 843 (1969)

    Article  ADS  Google Scholar 

  63. H. Solovsky, J.R. Beaman: The measurement of electron wavelength. Rev.Sci.Instr. 43, 1100 (1972)

    Article  Google Scholar 

  64. K.-J. Hanszen, G. Ade, W. Lucas, H. Sieoert, P. Becker: Berichte über Arbeiten am Röntgenverschiebeinterferometer Teil III: Erste Bestimmung des Netzebenabstandes (220) von Silizium. PTB-APh-14 ( Physikal.Techn.Bundesanstalt, Braunschweig 1981 )

    Google Scholar 

  65. L. Reimer, H. Seidel, R. Blaschke: Energieabhänoiokeit der Feinstruktur eines Channelling-Diagrammes am Beispiel des 111-Poles von Silizium. BEDO 4/2, 289 (1971)

    Google Scholar 

  66. R. Stickler, C.W. Hughes, G.R. Booker: Application of the SA-ECP method to deformation studies. SEM 1971, p. 473

    Google Scholar 

  67. J.P. Spencer, G.R. Booker, D.C. Joy, C.J. Humphreys: Electron channelling patterns from deformed crystals. SEM 1974, p. 919

    Google Scholar 

  68. D.L. Davidson: A method for quantifying electron channeling pattern degradation due to material deformation. SEM 1974, p. 927

    Google Scholar 

  69. R.C. Farrow, D.C. Joy: Measurements of electron channelling pattern linewidths in silicon. Scanning 2, 249 (1979)

    Article  Google Scholar 

  70. C.W. Grigson: Improved scanning electron diffraction system. Rev. Sci.Instr. 36, 1587 (1965)

    Article  ADS  Google Scholar 

  71. M.F. Tompsett: Scanning high-energy electron diffraction in materials science. J.Mater.Sci. 7, 1069 (1972)

    Article  ADS  Google Scholar 

  72. L. Reimer: Electron diffraction methods in TEM, STEM and SEM. Scanning 2, 3 (1979)

    Article  Google Scholar 

  73. J.A. Venables, R. bin-Jaya: Accurate microcrystallography using electron backscattering patterns. Phil.Mag. 35, 1317 (1977)

    Article  ADS  Google Scholar 

  74. D.J. Dingley: Diffraction from sub-micron areas using electron backscattering in a SEM. SEM 1984/II, p.569

    Google Scholar 

  75. J.A. Venables, C.J. Harland, R. bin-Jaya: Crystallographic orientation determination in the SEM using electron backscattering patterns and channel plates. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 101

    Google Scholar 

  76. C.J. Harland, P. Akhter, J.A. Venables: Accurate microcrystallography at high spatial resolution using electron backscattering patterns in a field emission gun SEM. J.Phys. E 14, 175 (1981)

    Google Scholar 

  77. T. Ichinokawa, M. Nishimura, H. Wada: Contrast reversals of pseudo-Kikuchi bands and lines due to detector oosition in SEM. J.Phys.Soc. Jap. 36, 221 (1974)

    Google Scholar 

  78. M. Pitaval, P. Morin, J. Baudry, E. Vicario, G. Fontaine: Advances in crystalline contrast from defects. SEM 1977/I, p. 439

    Google Scholar 

  79. W. Kossel, H. Voges: Röntgeninterferenzen an der Einkristallanti- kathode. Ann.Phys. 23, 677 (1935)

    Article  Google Scholar 

  80. W. Kossel: Zur Systematik der Röntgenreflexe eines Raumgitters. Ann. Phys. 25, 512 (1936); Messungen am vollständigen Reflexsystem eines Kristallgitters. Ann.Phys. 26, 533 (1936)

    Google Scholar 

  81. H. Yakowitz: The divergent beam x-ray technique. In Electron Probe Microanalysis, Suppl.IV, Adv.Electr.Electron Phys. ( Academic, New York 1969 ) p. 361

    Google Scholar 

  82. R. Tixier, C. Wade: Kossel patterns. J.Appl.Cryst. 3, 466 (1970)

    Article  Google Scholar 

  83. H. Yakowitz: Role of divergent beam (Kossel) x-ray technique in SEM. In Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 451

    Google Scholar 

  84. D.J. Dingley, J.W. Steeds: Application of the Kossel x-ray back reflection technique in the SEM. In Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 487

    Google Scholar 

  85. D.J. Dingley: Theory and application of Kossel x-ray diffraction in the SEM. Scanning 1, 79 (1978)

    Article  Google Scholar 

  86. N. Swindells, J.C. Ruckman: A new Kossel camera design concept for the SEM. In Scanning Electron Microscopy: systems and applications (Inst. of Physics, London 1973 ) p. 302

    Google Scholar 

  87. S. Biggin, D.J. Dingley: A general method for locating the x-ray source point in Kossel diffraction. J.Appl.Cryst. 10, 376 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1985). Crystal Structure Analysis by Diffraction. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13562-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13562-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13564-8

  • Online ISBN: 978-3-662-13562-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics