Skip to main content

Electron-Beam-Induced Current, Cathodoluminescence and Special Techniques

  • Chapter
  • 850 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

Abstract

Electron beams generate electron-hole pairs or minority carriers in semiconductors within a small volume. They are therefore excellent tools for measuring semiconductor-device parameters such as the diffusion length, the surface recombination velocity, the relaxation time, and the position and width of depletion layers by recording the charge-collection current or electron-beaminduced current in a depletion layer. Schottky barriers as well as diffused and ion-implanted p-n junctions can be studied. By modulating the CRT with the charge-collection current, images of depletion layers and of crystal defects, which influence the recombination of minority carriers, can be displayed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Bresse: Quantitative investigation in semiconductor devices by electron beam induced current mode: a review. SEM 1982/IV, p. 1487

    Google Scholar 

  2. J.M. Davidson: Semiconductor material assessment by SEM. J.Micr. 100, 177 (1977)

    Article  Google Scholar 

  3. D.B. Holt: Quantitative conduction mode in SEM. In Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 213

    Google Scholar 

  4. H.J. Deamy: Charge collection scanning electron microscopy. J.Appl.Phys. 53, R51 (1982)

    Article  ADS  Google Scholar 

  5. P.M. Petroff, D.V. Lang, J.L. Strudel, R.A. Logan: Scanning transmission electron microscopy techniques for simultanous electronic analysis and observation of defects in semiconductors. SEM 1979/I, 325

    Google Scholar 

  6. T.G. Sparrow, U. Valdrè: Application of STEM to semiconductor devices. Phil.Mag. 36, 1517 (1977)

    Article  ADS  Google Scholar 

  7. P.M. Petroff, R.A. Logan, A. Savage: Nonradiative recombination at dislocations in III-V compound semiconductors. J. Micr. 118, 255 (1980)

    Article  Google Scholar 

  8. D. Fathy, T.G. Sparrow, U. Valdrè: Observation of dislocations and microplasma sites in semiconductors by direct correlations of STEBIC, STEM and ELS. J.Micr. 118, 263 (1980)

    Article  Google Scholar 

  9. L.C. Kimerling, H.L. Leamy, J.R. Patel: The electrical properties of stacking faults and precipitates in heat-treated dislocation-free Czochralski silicon. Appl.Phys.Lett. 30, 217 (1977)

    Article  ADS  Google Scholar 

  10. D.E. Ioannou, S.M. Davidson: SEM observation of dislocations in boron implanted silicon using Schottky barrier EBIC techniques. Phys.stat.sol.(a) 48, K1 (1978)

    Article  ADS  Google Scholar 

  11. L.J. Balk, E. Kubalek, E. Menzel: Time-resolved and temperature dependent measurements of electron beam induced current (EBIC), voltage (EBIV) and cathodoluminescence (CL) in the SEM. SEM 1975, p. 447

    Google Scholar 

  12. A.E. Grün: Lumineszenz-photometrische Messungen der Energieabsorption im Strahlungsfeld von Elektronenquellen, Eindimensionaler Fall in Luft. Z.Naturforscho. 12a, 89 (1957)

    ADS  Google Scholar 

  13. L. Reimer, H. Seidel, H. Gilde: Einfluß der Elektronendiffusion auf die Bildentstehung im Raster-Elektronenmikroskop. BEDO 1, 53 (1968)

    Google Scholar 

  14. M. Hatzakis: New method of observing electron penetration profiles in solids. Appl.Phys.Lett. 18, 7 (1971)

    Article  ADS  Google Scholar 

  15. R. Shimizu, T. Ikuta, T.E. Everhart, W.J. De Vore: Experimental and theoretical study of energy dissipation profiles of keV electrons in PMMA. J.Appl.Phys. 46, 1581 (1975)

    Article  ADS  Google Scholar 

  16. H.E. Bishop: A Monte Carlo calculation on the scattering of electrons in copper. Proc.Phys.Soc. 85, 855 (1965)

    Article  ADS  Google Scholar 

  17. R. Shimizu, T.E. Everhart: Monte-Carlo simulation of the energy dissipation of an electron beam in an organic specimen. Optik 36, 59 (1972)

    Google Scholar 

  18. J.F. Bresse: Electron beam induced current in silicon planar p-n junctions: physical model of carrier generation. SEM 1972, p. 105

    Google Scholar 

  19. S.M. Davidson, C.A. Dimitriadis: Advances in the electrical assessment of semiconductors using the SEM. J.Micr. 118, 275 (1980)

    Article  Google Scholar 

  20. W. van Roosbroeck: Injected current carrier transport in a semi- infinite semiconductor and the determination of lifetimes and surface recombination velocities. J.Appl.Phys. 26, 380 (1955)

    Article  ADS  Google Scholar 

  21. J.F. Bresse, D. Lafeuille: SEM beam induced current in planar p-njunctions, diffusion length and generation factor measurements. In Proc. 25th Anniv. Meeting of EMAG, ed. by W.C. Nixon (Inst. of Physics, London 1971 ) p. 220

    Google Scholar 

  22. C.J. Wu, D.B. Wittry: Investigation of minority-carrier diffusion length by electron bombardment of Schottky barriers. J.Appl.Phys. 49, 2827 (1978)

    Article  ADS  Google Scholar 

  23. W.H. Hackett, R.H. Saul, R.W. Dixon, G.W. Kammlott: SEM character-ization of GaP red-emitting diodes. J.Appl.Phys. 43, 2857 (1972)

    Google Scholar 

  24. W.H. Hackett: Electron beam excited minority-carrier diffusion profiles in semiconductors. J.Appl.Phys. 43, 1469 (1972)

    Google Scholar 

  25. F. Berz, H.K. Kuiken: Theory of lifetime measurements with the SEM: steady state. Solid State Electron. 19, 437 (1976)

    Article  ADS  Google Scholar 

  26. C. van Opdorp: Methods of evaluating diffusion lengths and near- junction luminescence-efficiency from SEM scans. Philips Res.Rep. 32, 192 (1977)

    Google Scholar 

  27. van Roos: On the determination of diffusion lengths by means of angle lapped p-n junctions. Solid State Electron. 22, 113 (1978)

    Article  ADS  Google Scholar 

  28. J.D. Kamm: A method for investigation of fluctuations in doping concentration and minority carrier diffusion length in semiconductors by SEM. Solid State Electron. 19, 921 (1976)

    Article  ADS  Google Scholar 

  29. P.H. Hoff, T.E. Everhart: Carrier profiles and collection efficien-cies in Gaussian p-n junctions under electron bombardment. IEEE Trans. ED-17, 452 (1970)

    Google Scholar 

  30. G.E. Possin, C.G. Kirkpatrick: Electron beam depth profiling in semiconductors. SEM 1979/I, p.425; Electron-beam measurements of minority carrier liefetime distributions in ion-beam-damaged silicon. J.Appl.Phys. 50, 4033 (1979)

    Article  ADS  Google Scholar 

  31. J.Y. Chi, H.C. Gatos: Non-destructive determination of the depth of planar p-n junctions by SEM. IEEE Trans. ED-24, 1366 (1977)

    Google Scholar 

  32. N.C. MacDonald, T.E. Everhart: Direct measurement of the depletion layer width variation vs applied bias for a p-n junction. Appl.Phys. Lett. 7, 267 (1965)

    Google Scholar 

  33. M. Aven, J.Z. Devine, R.B. Bolon, G.W. Ludwig: SEM and cathodolumines-cence of ZnSexTel-x p-n junctions. J.Apo.Phys. 43, 4136 (1972)

    Article  ADS  Google Scholar 

  34. A. Georges, J.M. Fournier, D. Bois: Time resolved EBIC: a non destructive technique for an accurate determination of p-n junction depth. SEM 1982/I, p.147

    Google Scholar 

  35. W. Zimmermann: Measurement of spatial variations of the carrier lifetime in silicon power devices. Phys.stat.sol.(a) 12, 671 (1972)

    Article  ADS  Google Scholar 

  36. D.R. Hunter, D.H. Paxman, M. Burgess, G.R. Booker: Use of the SEM for measuring minority carrier lifetimes and diffusion lengths in semiconductor devices. In Scanning Electron Microscopy: systems and applications (Inst. of Physics, London 1973 ) p. 208

    Google Scholar 

  37. K.H. Kuiken: Theory of lifeteime measurements with the SEM: transient analysis. Solid State Electron. 19, 447 (1976)

    Article  ADS  Google Scholar 

  38. S. Othmer: Determination of the diffusion length and drift mobility in silicon by use of a modulated SEM beam. SEM 1978/I, p.727

    Google Scholar 

  39. C. Munakata: On the voltage induced by an electron beam in a bulk semiconductor crystal. Jap.J.Appl.Phys. 5, 756 (1966)

    Article  ADS  Google Scholar 

  40. C. Munakata: Measurement of potential distribution in a semiconductorcrystal with an electron beam. Jap.J.Appl.Phys. 6, 548 (1967)

    Article  ADS  Google Scholar 

  41. C. Munakata: An electron beam method of measuring resistivity distribution in semiconductors. Jap.J.Appl.Phys. 6, 693 (1967)

    Google Scholar 

  42. C. Munakata: An application of beta conductivity to measurement of resistivity distribution. J.Phys. E 1, 639 (1968)

    Google Scholar 

  43. A. Gopinath: On SEM conduction mode signals in bulk semiconductor devices. J.Phys. D 3, 467 (1970)

    Google Scholar 

  44. A. Gopinath, T. deMonts de Savasse: On SEM conduction-mode signals in bulk semiconductor devices: annular geometry. J.Phys. D 4, 2031 (1971)

    Google Scholar 

  45. J. Tauc: Photo and Thermoelectric Effects in Semiconductors ( Pergamon, Oxford 1962 ) p. 89

    MATH  Google Scholar 

  46. A.M.B. Shaw, G.R. Booker: A new method for obtaining SEM beam-induced conductivity images. SEM 1969, p. 459

    Google Scholar 

  47. L. Pensak: Conductivity induced by electron bombardment in thin insulating films. Phys.Rev. 75, 472 (1949)

    Article  ADS  Google Scholar 

  48. F. Ansbacher, W. Ehrenberg: Electron bombardment conductivity of dielectric films. Proc.Phys.Soc. A 64, 362 (1951)

    Google Scholar 

  49. L. Reimer, J. Senss: Change of conductivity in amorphous selenium films by electron bombardment (10 to 100 keV). Phys.stat.sol.(a) 2, 809 (1970)

    Article  ADS  Google Scholar 

  50. T.E. Everhart, O.C. Wells, T.K. Matta: A novel method of semiconduc- tor device measurement. Proc. IEEE 52, 1642 (1964)

    Article  Google Scholar 

  51. A.J. Gonzales: On the electron beam induced current analysis of semiconductor devices. SEM 1974, p. 941

    Google Scholar 

  52. J.D. Schick: Failure analysis of integrated circuits with SEM beam induced currents. SEM 1974, p. 949

    Google Scholar 

  53. H. Raith: Spezielle Anwendungen des JEOL-Raster-Elektronenmikroskopes insbesondere auf dem Gebiet der Halbleitertechnik. BEDO 1, 275 (1968)

    Google Scholar 

  54. G.V. Lukianoff: Electrical junction delineation by SEM beam technique. Sol. Stat.Technol. 14, 39 (1971)

    Google Scholar 

  55. H.J. Leamy, L.C. Kimerling, S.D. Ferris: Silicon single crystal characterization by SEM. SEM 1976/I, p.529

    Google Scholar 

  56. A.J.R. de Kock, S.D. Ferris, L.C. Kimerling, H.J. Leamy: SEM observation of dopant striae in silicon. J.Appl.Phys. 48, 301 (1977)

    Article  ADS  Google Scholar 

  57. J.Y. Chi, H.C. Gatos: Determination of dopant concentration diffusion length and lifetime variations in silicon by SEM. J.Appl.Phys. 50, 3433 (1979)

    Article  ADS  Google Scholar 

  58. A.J.R. de Kock, S.D. Ferris, L.C. Kimerling, H.J. Leamy: Investiga-tion of defects and striations in as-grown Si crystals by SEM using Schottky diodes. Appl.Phys.Lett. 27, 313 (1975)

    Article  ADS  Google Scholar 

  59. S. Kawado, Y. Hayafuji, T. Adachi: Observation of lattice defects in silicon by SEM utilizing beam induced current generated in Schottky barriers. Jap.J.Appl.Phys. 14, 407 (1975)

    Article  ADS  Google Scholar 

  60. K.V. Ravi, C.J. Varker, C.E. Volk: Electrically active stacking faults in silicon. J.Electrochem.Soc. 120, 533 (1973)

    Article  Google Scholar 

  61. C. Donolato: On the theory of SEM charge-collection imaging of localized defects in semiconductors. Optik 52, 19 (1978)

    Google Scholar 

  62. C. Donolato: Contrast formation in SEM charge-collection images of semiconductor defects. SEM 1979/I, p.257

    Google Scholar 

  63. C.J. Varker, G. Ehlenberger: Investigation of pre-breakdown sites in shallow diffused structures with the SEM. SEM 1971, p. 441

    Google Scholar 

  64. E. Reß, G. Reß: REM-Darstellung von Sperrschichten in der Fehler- analyse elektronischer Halbleiterbauteile. BEDO 6, 363 (1973)

    Google Scholar 

  65. R.C. Hughes: Hole mobility and transport in thin Si02 films. Appl.Phys.Lett. 26, 436 (1975)

    Article  ADS  Google Scholar 

  66. N.C. MacDonald, T.E. Everhart: Selective electron-beam irradiation of metal-oxide-semiconductor structures. J.Appl.Phys. 39, 2433 (1968)

    Article  ADS  Google Scholar 

  67. R. Hetzel: Electron-beam induced-current investigations on MOS NMOS devices. Sol.Stat.Electron. 22, 735 (1979)

    Article  ADS  Google Scholar 

  68. T.P. Ma, G. Scoggan, R. Leone: Comparison of interface-state genera- tion by 25-keV electron beam irradiation in p-type and n-type MOS capacitors. Appl.Phys.Lett. 27, 61 (1975)

    Article  ADS  Google Scholar 

  69. D. Green, J.E. Sandor, T.E. O’Keeffe, R.K. Matta: Reversible changes in transistor characteristics caused by SEM examination. Appl.Phys.Lett. 6, 3 (1965)

    Article  ADS  Google Scholar 

  70. W.J. Keery, K.O. Leedy, K.F. Galloway: Electron beam effects on microelectronic devices. SEM 1976/I, p.507

    Google Scholar 

  71. N.C. MacDonald: Quantitative SEM: solid state applications. SEM 1969 p. 431

    Google Scholar 

  72. M.D. Muir, P.R. Grant: Cathodoluminescence. In Quantitative Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 287

    Google Scholar 

  73. D.B. Holt: Quantitative SEM studies of cathodoluminescence in adamantine semiconductors. In Quantitative Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 335

    Google Scholar 

  74. G.F.J. Garlick: Cathodo-and radioluminescence. In Luminescence of Inorganic Solids, ed. by P. Goldberg ( Academic, New York 1966 ) p. 685

    Google Scholar 

  75. W. Bröcker, G. Pfefferkorn: Bibliography on cathodoluminescence.SEM 1976/I, p.725; 1977/I, p.455; 1978/I, p.333; 1980/I, p.298

    Google Scholar 

  76. S.M. Davidson, A.W. Vaidya: High resolution temperature measurements in microwave devices. In Proc.Int.Symp. on GaAs and Related Compounds ( Inst.of Physics, Bristol 1977 ) p. 28t

    Google Scholar 

  77. P.M. Williams, A.D. Yoffe: Monochromatic cathodoluminescence image in SEM. Nature 221, 952 (1969)

    Article  ADS  Google Scholar 

  78. J.B. Steyn, P. Giles, P.B. Holt: An efficient spectroscopic system for cathodoluminescence mode SEM. J.Micr. 107, 107 (1976)

    Article  Google Scholar 

  79. S.M. Davidson, A. Rasul: Applications of a high performance SEM- based cathodoluminescence analysis system to compound semiconductor devices. SEM 1977/I, p.225

    Google Scholar 

  80. H.C. Casey, R.H. Kaiser: Analysis of n-type GaAs with electron-beam-excited radiative recombination. J.Electrochem.Soc. 114, 149 (1967)

    Article  Google Scholar 

  81. D.A. Cusano: Radiative recombination from GaAs directly excited by electron beams. Solid State Commun. 2, 353 (1964)

    Article  ADS  Google Scholar 

  82. A. Rasul, S.M. Davidson: Recombination around dislocations in GaP. In Proc.Int.Symp. on GaAs and Related Compounds (Inst. of Physics, Bristol 1977 ) p. 306

    Google Scholar 

  83. H. Boersch, C. Radeloff, G. Sauerbrey: Ober die an Metallen durch Elektronen ausgelöste sichtbare und ultraviolette Strahlung. Z.Phys. 165, 464 (1961)

    Article  ADS  Google Scholar 

  84. H. Boersch, P. Dobberstein, D. Fritzsche, G. Sauerbrey: Transition radiation, Bremsstrahlung und Plasmastrahlung. Z.Phys. 187, 97 (1965)

    Article  ADS  Google Scholar 

  85. D.F. Kyser, D.B. Wittry: Cathodoluminescence in GaAs, In The Electron Microprobe, ed. by T.D. McKinley et al. ( Wiley, New York 1964 ) p. 691

    Google Scholar 

  86. D.B. Wittry, D.F. Kyser: Measurement of diffusion lengths in direct- gap semiconductors by electron-beam excitation. J.Appl.Phys. 38, 375 (1967)

    Article  ADS  Google Scholar 

  87. B. Akamatsu, P. Hénoc, A.C. Papadopoulo: Diffusion length measure-ment in InP and GaAs by filtered cathodoluminescence in a SEM. SEM 1983/IV, p. 1579

    Google Scholar 

  88. T.S. Rao-Sahib, D.B. Wittry: Measurement of diffusion lengths in p-type GaAs by electron beam excitation. J.Appl.Phys. 40, 3745 (1969)

    Article  ADS  Google Scholar 

  89. H.C. Casey, J.S. Jayson: Cathodoluminescent measurements in GaP (Zn,0). J.Appl.Phys. 42, 2774 (1971)

    Article  ADS  Google Scholar 

  90. G.A.C. Jones, B.R. Nag, A. Gopinath: Temperature variation of cathodoluminescence in direct gap semiconductors. SEM 1973, p.309

    Google Scholar 

  91. M. Hastenrath, E. Kubalek: Time-resolved cathodoluminescence in SEM. SEM 1982/I, p.157

    Google Scholar 

  92. A. Rasul, S.M. Davidson: SEM measurements of minority carrier lifetimes at dislocations in GaP, employing photon counting. SEM 1977/I, p.233

    Google Scholar 

  93. M. Hastenrath, L.J. Balk, K. Löhnert: Time resolved cathodoluminescence in the SEM by use of the streak technique. J.Micr. 118, 303 (1980)

    Article  Google Scholar 

  94. M. Hastenrath, L.J. Balk, K. Löhnert: Time resolved cathodoluminescence in SEM. SEM 1982/I, p.157

    Google Scholar 

  95. H.C. Casey: Investigation of inhomogeneities in GaAs by electrobeam excitation. J.Electrochem Soc. 114, 153 (1967)

    Article  Google Scholar 

  96. D.B. Holt, B.D. Chase: Scanning-electron-beam-excited charge collection micrography of GaAs lasers. J.Mat.Sci. 3, 178 (1968) 7.97 D.A. Shaw, P.R. Thornton: Cathodoluminescent studies of laser quality GaAs. J.Mat.Sci. 3, 507 (1968)

    Google Scholar 

  97. A.L. Esquivel, W.N. Lin, D.B. Wittry: Cathodoluminescence study of plastically deformed GaAs. Appl.Phys.Lett. 22, 414 (1973)

    Article  ADS  Google Scholar 

  98. P.R. Grant, S.H. White: Cathodoluminescence and microstructure of quartz overgrowths on quartz. SEM 1978/I, p.789

    Google Scholar 

  99. D. Krensley, N.K. Tovey: Cathodoluminescence in quartz sand grains. SEM 1978/I, p.887

    Google Scholar 

  100. J. Hersener, Th. Ricker: Lumineszenzuntersuchungen an Leuchtstoffen. BEDO 4/2, 523 (1971)

    Google Scholar 

  101. W. Bröcker, E.R. Krefting, L. Reimer: Abhängigkeit des Kathodolumineszenzsignals vom Kippwinkel der Probe im Raster-Elektronenmikroskop. BEDO 10, 647 (1977)

    Google Scholar 

  102. S.K. Obyden, G.V. Saparin, G.V. Spivak: Observation of long persistance luminescent materials using colour TV SEM. Scanning 3, 181 (1980)

    Article  Google Scholar 

  103. D. Hoder, R. Herbst, A.M. Multier-Lajous: Ein einfaches Verfahren zur Herstellung von Farb-Kathodolumineszenz-Aufnahmen am Rasterelektronenmikroskop. BEDO 12/1, 273 (1979)

    Google Scholar 

  104. E.M. Hörl, F. Buschbeck: Rasterelektronenmikroskopie unter Verwendung eines Farbmonitors. BEDO 8, 233 (1975)

    Google Scholar 

  105. F. Buschbeck, E.M. Hörl: Electronic adding-up and storing of SEM colour images. SEM 1978/I, p.835

    Google Scholar 

  106. A. Steckenborn: Minority carrier lifetime mapping in the SEM. J.Micr. 118, 302 (1980)

    Article  Google Scholar 

  107. W. Bröcker, E.R. Krefting, L. Reimer: Beobachtung der Strahlenschädigung während des Abrastvorganges im Raster-Elektronen mikroskop mit Hilfe der Kathodolumineszenz. BEDO 7, 75 (1974)

    Google Scholar 

  108. G.V. Saparin, G.V. Spivak: Applications of stroboscopic cathodoluminescence microscopy. SEM 1979/I, p.267

    Google Scholar 

  109. M. DeMets, A. Lagasse: An investigation of some organic chemicals as cathodoluminescent dyes using the SEM. J.Micr. 94, 151 (1971)

    Google Scholar 

  110. M. DeMets, K.J. Howlett, A.O. Yoffe: Cathodoluminescent spectra of organic compounds. J.Micr. 102, 125 (1974)

    Google Scholar 

  111. M. DeMets: Relationship between cathodoluminescence and molecular structure of organic compounds. Microscopica Acta 76, 405 (1975)

    Google Scholar 

  112. R. Herbst, D. Hoder: Cathodoluminescence in biological studies.Scanning 1, 35 (1978)

    Google Scholar 

  113. W. Bröcker, G. Pfefferkorn: Application of the cathodoluminescence method in biology and medicine. SEM 1979/II, p.125

    Google Scholar 

  114. E.M. Hörl, P. Roschger: CL SEM investigations of biological material at liquid helium and liquid nitrogen temperatures. SEM 1980/I, p.285

    Google Scholar 

  115. E. Zeitler, M.G.R. Thomson: Scanning transmision electron microscopy. Optik 31, 258 and 359 (1970)

    Google Scholar 

  116. J. Weise: Messung des Materialtransportes in dünnen Al-Filmen mit dem Raster-Elektronenmikroskop. BEDO 4/2, 477 (1971)

    Google Scholar 

  117. P. Furrer: Verbindung von Raster-und Durchstrahlungselektronenmikroskopie zur Untersuchung des Ausscheidungsverlaufs in dünnen

    Google Scholar 

  118. Folien. BEDO 4/2, 463 (1971) R. Blaschke: Ein Präparathalter für Durchstrahlungsexperimente und für Stereobildpaare. BEDO 3, 161 (1970)

    Google Scholar 

  119. B.J. Crawford, C.R.W. Liley: A simple transmission stage using the standard collection system in the SEM. J.Phys. E 3, 461 (1970)

    Google Scholar 

  120. J.A. Swift, A.C. Brown, C.A. Saxton: Scanning transmission electron microscopy with the Cambridge Stereoscan Mk II. J.Phys. E 2, 744 (1969)

    Google Scholar 

  121. A. Ishikawa, F. Mizuno, Y. Uchikawa, S. Maruse: High resolution and spectroscopic cathodoluminescent images in SEM. Jap.J.Appl.Phys. 12, 286 (1973)

    Article  ADS  Google Scholar 

  122. A.B. Bok: Mirror electron microscopy: theory and applications. In Modern Diffraction and Imaging Methods in Material Science, ed. By S. Amelinckx et al. ( North-Holland, Amsterdam 1978 ) p. 655

    Google Scholar 

  123. A.B. Bok, J.B. Le Poole, J. Roos, H. De Lang, H. Bethge, J. Heydenreich, N.E. Barnett: Mirror Electron Microscopy. Adv. in Optical and Electron Microscopy,Vol.4, ed. by R. Barer and V.E. Cosslett (Academic, New York 1971) p.161

    Google Scholar 

  124. R.E. Ogilvie, M.A. Schippert, S.H. Moll, D.M. Koffman: Scanning electron mirror microscopy. SEM 1969, p. 425

    Google Scholar 

  125. G.V. Spivak, V.P. Ivannikov, A.E. Luk’yanov, E.I. Rau: Development of scanning mirror electron microscopy for quantitative evaluation of electric microfields. J.Micr.Spectr. Electron. 3, 89 (1978)

    Google Scholar 

  126. J. Witzani, E.M. Hörl: Scanning electron mirror microscopy. Scanning 4, 53 (1980)

    Article  Google Scholar 

  127. R.S. Paden, W.C. Nixon: Retarding field SEM. J. Phys. 2, 1073 (1968)

    Google Scholar 

  128. J.B. Pawley, J.T. Norton: A chamber attached to the SEM for fracturing and coating frozen biological samples. J.Micr. 112, 169 (1977)

    Google Scholar 

  129. A. Maas: Direct observation and analysis of crystal growth processes in a SEM. In Electron Microscopy 19/4, Vol.1 ed. by J.V. Sanders and D.J. Goodchild (Australian Acad. of Science, Canberra) 0. 162

    Google Scholar 

  130. G. Finnström: Dynamic studies of the reduction of iron oxides in the SEM. In Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders and D.J. Goodchild ( Australian Acad.of Science, Canberra) D. 164

    Google Scholar 

  131. W.C. Lane: The environmental control stage. SEM 1970, p.41 7.133 N.C. Lyon, E. Gasiecki, D.F. Parsons: A differentially pumped hydration chamber for STEM. SEM 1976/I, p.101

    Google Scholar 

  132. G.D. Danilatos, R.Postle: The environmental SEM and its application. SEM 1982/í, p.1

    Google Scholar 

  133. G.D. Danilatos, V.N.E. Robinson: Principles of SEM at high specimen chamber pressures. Scanning 2, 72 (1979)

    Article  Google Scholar 

  134. G.D. Danilatos: Design and construction of an atmospheric or environmental SEM. Scanning 4, 9 (1981)

    Article  Google Scholar 

  135. D.G. Davies, A. Howie, L. Staveley-Smith: Scanning electron acoustic microscopy. SPIE 368, 58 (1983)

    Article  Google Scholar 

  136. D.G. Davies: Scanning electron acoustic microscopy. SEM 1983/III, p. 1163

    Google Scholar 

  137. G.S. Cargill. Ultrasonic imaging in SEM. Nature 286, 691 (1980); Electron-acoustic microscopy. Physics Today 34, 27 (Oct. 1981)

    Article  Google Scholar 

  138. ’ A. Rosencwaig, R.M. White: Imaging of dopant regions in silicon with thermal-wave electron microscopy. Appl.Phys.Lett. 38, 165 (1981)

    Google Scholar 

  139. ’ A. Rosencwaig, R.M. White: Imaging of dopant regions in silicon with thermal-wave electron microscopy. Appl.Phys.Lett. 38, 165 (1981)

    Google Scholar 

  140. L.J. Balk, N.Kultscher: Scanning electron acoustic microscopy. BEDO 16, 107 (1983)

    Google Scholar 

  141. J. Kessler: Polarized Electrons, 2nd ed., Springer Ser. Atoms Plasmas, Vol. 1 ( Springer, Berlin Heidelberg 1985 )

    Google Scholar 

  142. K. Koike, K. Hayakawa: Scanning electron microscope observation of magnetic domains using spin-polarized secondary electrons. Jap. J. Appl.Phys. 23, L187 (1984)

    ADS  Google Scholar 

  143. J. Kirschner, R. Feder: Spin polarization in double diffraction of low-energy electrons from W (001): experiment and theory. Phys. Rev. Lett. 42, 1008 (1979)

    Article  ADS  Google Scholar 

  144. D.T. Pierce, S.M. Girvin, J. Unguris, R.J. Celotta: Absorbed current electron spin polarization detector. Rev.Sci.Instr. 52, 1437 (1981)

    Article  ADS  Google Scholar 

  145. N. Müller, W. Eckstein, W. Heiland: Electron spin polarization in field emission from EuS-coated tungsten tip. Phys.Rev.Lett. 29, 1651 (1972)

    Article  ADS  Google Scholar 

  146. D.T. Pierce, R.J. Celotta, G.C. Wang, W.N. Unertl, A. Galejs, C.E. Kuyatt, S.R. Mielczarek: GaAs spin polarized electron source. Rev.Sci. Instr. 51, 478 (1980)

    Article  Google Scholar 

  147. J. Unguris, D.T. Pierce, A. Galejs, R.J. Celotta: Spin and energy analysed secondary electron emission from a ferromagnet. Phys. Rev. Lett. 49, 72 (1982)

    Article  ADS  Google Scholar 

  148. E. Kisker, W. Gudat, K. Schröder: Observation of a high spin polarization of secondary electrons from single crystal Fe and Co. Sol. State Commun. 44, 591 (1982)

    Article  ADS  Google Scholar 

  149. D.T. Pierce, R.J. Celotta: Spin polarization in electron scattering from surfaces. Adv.Electr.Electron Phys. 56, 219 (1981)

    Article  Google Scholar 

  150. K. Koike, K. Hayakawa: Spin polarization due to low-energy electron diffraction at the W(001) surface. Jap.J.Appl.Phys. 22, 1332 (1983)

    Article  ADS  Google Scholar 

  151. M. Hatzakis: Lithographic processes in VLSI circuit fabrication. SEM 1979/I, p.275

    Google Scholar 

  152. D. Stephani: Monte-Carlo calculations of backscattered electrons at registration marks. J.Vac.Sci.Technol. 16, 1739 (1979)

    Article  ADS  Google Scholar 

  153. K. Murata: Monte Carlo simulation of electron scattering in resist film/substrate targets. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 311

    Google Scholar 

  154. M. Kisza, Z. Maternia, Z. Radzimski: Backscattering of electrons from complex structures. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 109

    Google Scholar 

  155. D.F. Kyser: Monte Carlo simulation of spatial resolution limits in electron beam lithography. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 331

    Google Scholar 

  156. T.H.P. Chang: Proximity effect in electron-beam lithography. J.Vac.Sci.Technol. 12, 1271 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1985). Electron-Beam-Induced Current, Cathodoluminescence and Special Techniques. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13562-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13562-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13564-8

  • Online ISBN: 978-3-662-13562-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics