Electron-Beam-Induced Current, Cathodoluminescence and Special Techniques

  • Ludwig Reimer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 45)


Electron beams generate electron-hole pairs or minority carriers in semiconductors within a small volume. They are therefore excellent tools for measuring semiconductor-device parameters such as the diffusion length, the surface recombination velocity, the relaxation time, and the position and width of depletion layers by recording the charge-collection current or electron-beaminduced current in a depletion layer. Schottky barriers as well as diffused and ion-implanted p-n junctions can be studied. By modulating the CRT with the charge-collection current, images of depletion layers and of crystal defects, which influence the recombination of minority carriers, can be displayed.


Diffusion Length Minority Carrier Depletion Layer Schottky Diode Surface Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    J.F. Bresse: Quantitative investigation in semiconductor devices by electron beam induced current mode: a review. SEM 1982/IV, p. 1487Google Scholar
  2. 7.2
    J.M. Davidson: Semiconductor material assessment by SEM. J.Micr. 100, 177 (1977)CrossRefGoogle Scholar
  3. 7.3
    D.B. Holt: Quantitative conduction mode in SEM. In Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 213Google Scholar
  4. 7.4
    H.J. Deamy: Charge collection scanning electron microscopy. J.Appl.Phys. 53, R51 (1982)ADSCrossRefGoogle Scholar
  5. 7.5
    P.M. Petroff, D.V. Lang, J.L. Strudel, R.A. Logan: Scanning transmission electron microscopy techniques for simultanous electronic analysis and observation of defects in semiconductors. SEM 1979/I, 325Google Scholar
  6. 7.6
    T.G. Sparrow, U. Valdrè: Application of STEM to semiconductor devices. Phil.Mag. 36, 1517 (1977)ADSCrossRefGoogle Scholar
  7. 7.7
    P.M. Petroff, R.A. Logan, A. Savage: Nonradiative recombination at dislocations in III-V compound semiconductors. J. Micr. 118, 255 (1980)CrossRefGoogle Scholar
  8. 7.8
    D. Fathy, T.G. Sparrow, U. Valdrè: Observation of dislocations and microplasma sites in semiconductors by direct correlations of STEBIC, STEM and ELS. J.Micr. 118, 263 (1980)CrossRefGoogle Scholar
  9. 7.9
    L.C. Kimerling, H.L. Leamy, J.R. Patel: The electrical properties of stacking faults and precipitates in heat-treated dislocation-free Czochralski silicon. Appl.Phys.Lett. 30, 217 (1977)ADSCrossRefGoogle Scholar
  10. 7.10
    D.E. Ioannou, S.M. Davidson: SEM observation of dislocations in boron implanted silicon using Schottky barrier EBIC techniques. Phys.stat.sol.(a) 48, K1 (1978)ADSCrossRefGoogle Scholar
  11. 7.11
    L.J. Balk, E. Kubalek, E. Menzel: Time-resolved and temperature dependent measurements of electron beam induced current (EBIC), voltage (EBIV) and cathodoluminescence (CL) in the SEM. SEM 1975, p. 447Google Scholar
  12. 7.12
    A.E. Grün: Lumineszenz-photometrische Messungen der Energieabsorption im Strahlungsfeld von Elektronenquellen, Eindimensionaler Fall in Luft. Z.Naturforscho. 12a, 89 (1957)ADSGoogle Scholar
  13. 7.13
    L. Reimer, H. Seidel, H. Gilde: Einfluß der Elektronendiffusion auf die Bildentstehung im Raster-Elektronenmikroskop. BEDO 1, 53 (1968)Google Scholar
  14. 7.14
    M. Hatzakis: New method of observing electron penetration profiles in solids. Appl.Phys.Lett. 18, 7 (1971)ADSCrossRefGoogle Scholar
  15. 7.15
    R. Shimizu, T. Ikuta, T.E. Everhart, W.J. De Vore: Experimental and theoretical study of energy dissipation profiles of keV electrons in PMMA. J.Appl.Phys. 46, 1581 (1975)ADSCrossRefGoogle Scholar
  16. 7.16
    H.E. Bishop: A Monte Carlo calculation on the scattering of electrons in copper. Proc.Phys.Soc. 85, 855 (1965)ADSCrossRefGoogle Scholar
  17. 7.17
    R. Shimizu, T.E. Everhart: Monte-Carlo simulation of the energy dissipation of an electron beam in an organic specimen. Optik 36, 59 (1972)Google Scholar
  18. 7.18
    J.F. Bresse: Electron beam induced current in silicon planar p-n junctions: physical model of carrier generation. SEM 1972, p. 105Google Scholar
  19. 7.19
    S.M. Davidson, C.A. Dimitriadis: Advances in the electrical assessment of semiconductors using the SEM. J.Micr. 118, 275 (1980)CrossRefGoogle Scholar
  20. 7.20
    W. van Roosbroeck: Injected current carrier transport in a semi- infinite semiconductor and the determination of lifetimes and surface recombination velocities. J.Appl.Phys. 26, 380 (1955)ADSCrossRefGoogle Scholar
  21. 7.21
    J.F. Bresse, D. Lafeuille: SEM beam induced current in planar p-njunctions, diffusion length and generation factor measurements. In Proc. 25th Anniv. Meeting of EMAG, ed. by W.C. Nixon (Inst. of Physics, London 1971 ) p. 220Google Scholar
  22. 7.22
    C.J. Wu, D.B. Wittry: Investigation of minority-carrier diffusion length by electron bombardment of Schottky barriers. J.Appl.Phys. 49, 2827 (1978)ADSCrossRefGoogle Scholar
  23. 7.23
    W.H. Hackett, R.H. Saul, R.W. Dixon, G.W. Kammlott: SEM character-ization of GaP red-emitting diodes. J.Appl.Phys. 43, 2857 (1972)Google Scholar
  24. 7.24
    W.H. Hackett: Electron beam excited minority-carrier diffusion profiles in semiconductors. J.Appl.Phys. 43, 1469 (1972)Google Scholar
  25. 7.25
    F. Berz, H.K. Kuiken: Theory of lifetime measurements with the SEM: steady state. Solid State Electron. 19, 437 (1976)ADSCrossRefGoogle Scholar
  26. 7.26
    C. van Opdorp: Methods of evaluating diffusion lengths and near- junction luminescence-efficiency from SEM scans. Philips Res.Rep. 32, 192 (1977)Google Scholar
  27. 7.27
    van Roos: On the determination of diffusion lengths by means of angle lapped p-n junctions. Solid State Electron. 22, 113 (1978)ADSCrossRefGoogle Scholar
  28. 7.28
    J.D. Kamm: A method for investigation of fluctuations in doping concentration and minority carrier diffusion length in semiconductors by SEM. Solid State Electron. 19, 921 (1976)ADSCrossRefGoogle Scholar
  29. 7.29
    P.H. Hoff, T.E. Everhart: Carrier profiles and collection efficien-cies in Gaussian p-n junctions under electron bombardment. IEEE Trans. ED-17, 452 (1970)Google Scholar
  30. 7.30
    G.E. Possin, C.G. Kirkpatrick: Electron beam depth profiling in semiconductors. SEM 1979/I, p.425; Electron-beam measurements of minority carrier liefetime distributions in ion-beam-damaged silicon. J.Appl.Phys. 50, 4033 (1979)ADSCrossRefGoogle Scholar
  31. 7.31
    J.Y. Chi, H.C. Gatos: Non-destructive determination of the depth of planar p-n junctions by SEM. IEEE Trans. ED-24, 1366 (1977)Google Scholar
  32. 7.32
    N.C. MacDonald, T.E. Everhart: Direct measurement of the depletion layer width variation vs applied bias for a p-n junction. Appl.Phys. Lett. 7, 267 (1965)Google Scholar
  33. 7.33
    M. Aven, J.Z. Devine, R.B. Bolon, G.W. Ludwig: SEM and cathodolumines-cence of ZnSexTel-x p-n junctions. J.Apo.Phys. 43, 4136 (1972)ADSCrossRefGoogle Scholar
  34. 7.34
    A. Georges, J.M. Fournier, D. Bois: Time resolved EBIC: a non destructive technique for an accurate determination of p-n junction depth. SEM 1982/I, p.147Google Scholar
  35. 7.35
    W. Zimmermann: Measurement of spatial variations of the carrier lifetime in silicon power devices. Phys.stat.sol.(a) 12, 671 (1972)ADSCrossRefGoogle Scholar
  36. 7.36
    D.R. Hunter, D.H. Paxman, M. Burgess, G.R. Booker: Use of the SEM for measuring minority carrier lifetimes and diffusion lengths in semiconductor devices. In Scanning Electron Microscopy: systems and applications (Inst. of Physics, London 1973 ) p. 208Google Scholar
  37. 7.37
    K.H. Kuiken: Theory of lifeteime measurements with the SEM: transient analysis. Solid State Electron. 19, 447 (1976)ADSCrossRefGoogle Scholar
  38. 7.38
    S. Othmer: Determination of the diffusion length and drift mobility in silicon by use of a modulated SEM beam. SEM 1978/I, p.727Google Scholar
  39. 7.39
    C. Munakata: On the voltage induced by an electron beam in a bulk semiconductor crystal. Jap.J.Appl.Phys. 5, 756 (1966)ADSCrossRefGoogle Scholar
  40. 7.40
    C. Munakata: Measurement of potential distribution in a semiconductorcrystal with an electron beam. Jap.J.Appl.Phys. 6, 548 (1967)ADSCrossRefGoogle Scholar
  41. 7.41
    C. Munakata: An electron beam method of measuring resistivity distribution in semiconductors. Jap.J.Appl.Phys. 6, 693 (1967)Google Scholar
  42. 7.42
    C. Munakata: An application of beta conductivity to measurement of resistivity distribution. J.Phys. E 1, 639 (1968)Google Scholar
  43. 7.43
    A. Gopinath: On SEM conduction mode signals in bulk semiconductor devices. J.Phys. D 3, 467 (1970)Google Scholar
  44. 7.44
    A. Gopinath, T. deMonts de Savasse: On SEM conduction-mode signals in bulk semiconductor devices: annular geometry. J.Phys. D 4, 2031 (1971)Google Scholar
  45. 7.45
    J. Tauc: Photo and Thermoelectric Effects in Semiconductors ( Pergamon, Oxford 1962 ) p. 89zbMATHGoogle Scholar
  46. 7.46
    A.M.B. Shaw, G.R. Booker: A new method for obtaining SEM beam-induced conductivity images. SEM 1969, p. 459Google Scholar
  47. 7.47
    L. Pensak: Conductivity induced by electron bombardment in thin insulating films. Phys.Rev. 75, 472 (1949)ADSCrossRefGoogle Scholar
  48. 7.48
    F. Ansbacher, W. Ehrenberg: Electron bombardment conductivity of dielectric films. Proc.Phys.Soc. A 64, 362 (1951)Google Scholar
  49. 7.49
    L. Reimer, J. Senss: Change of conductivity in amorphous selenium films by electron bombardment (10 to 100 keV). Phys.stat.sol.(a) 2, 809 (1970)ADSCrossRefGoogle Scholar
  50. 7.50
    T.E. Everhart, O.C. Wells, T.K. Matta: A novel method of semiconduc- tor device measurement. Proc. IEEE 52, 1642 (1964)CrossRefGoogle Scholar
  51. 7.51
    A.J. Gonzales: On the electron beam induced current analysis of semiconductor devices. SEM 1974, p. 941Google Scholar
  52. 7.52
    J.D. Schick: Failure analysis of integrated circuits with SEM beam induced currents. SEM 1974, p. 949Google Scholar
  53. 7.53
    H. Raith: Spezielle Anwendungen des JEOL-Raster-Elektronenmikroskopes insbesondere auf dem Gebiet der Halbleitertechnik. BEDO 1, 275 (1968)Google Scholar
  54. 7.54
    G.V. Lukianoff: Electrical junction delineation by SEM beam technique. Sol. Stat.Technol. 14, 39 (1971)Google Scholar
  55. 7.
    H.J. Leamy, L.C. Kimerling, S.D. Ferris: Silicon single crystal characterization by SEM. SEM 1976/I, p.529Google Scholar
  56. 7.56
    A.J.R. de Kock, S.D. Ferris, L.C. Kimerling, H.J. Leamy: SEM observation of dopant striae in silicon. J.Appl.Phys. 48, 301 (1977)ADSCrossRefGoogle Scholar
  57. 7.57
    J.Y. Chi, H.C. Gatos: Determination of dopant concentration diffusion length and lifetime variations in silicon by SEM. J.Appl.Phys. 50, 3433 (1979)ADSCrossRefGoogle Scholar
  58. 7.58
    A.J.R. de Kock, S.D. Ferris, L.C. Kimerling, H.J. Leamy: Investiga-tion of defects and striations in as-grown Si crystals by SEM using Schottky diodes. Appl.Phys.Lett. 27, 313 (1975)ADSCrossRefGoogle Scholar
  59. 7.59
    S. Kawado, Y. Hayafuji, T. Adachi: Observation of lattice defects in silicon by SEM utilizing beam induced current generated in Schottky barriers. Jap.J.Appl.Phys. 14, 407 (1975)ADSCrossRefGoogle Scholar
  60. 7.60
    K.V. Ravi, C.J. Varker, C.E. Volk: Electrically active stacking faults in silicon. J.Electrochem.Soc. 120, 533 (1973)CrossRefGoogle Scholar
  61. 7.61
    C. Donolato: On the theory of SEM charge-collection imaging of localized defects in semiconductors. Optik 52, 19 (1978)Google Scholar
  62. 7.62
    C. Donolato: Contrast formation in SEM charge-collection images of semiconductor defects. SEM 1979/I, p.257Google Scholar
  63. 7.63
    C.J. Varker, G. Ehlenberger: Investigation of pre-breakdown sites in shallow diffused structures with the SEM. SEM 1971, p. 441Google Scholar
  64. 7.64
    E. Reß, G. Reß: REM-Darstellung von Sperrschichten in der Fehler- analyse elektronischer Halbleiterbauteile. BEDO 6, 363 (1973)Google Scholar
  65. 7.65
    R.C. Hughes: Hole mobility and transport in thin Si02 films. Appl.Phys.Lett. 26, 436 (1975)ADSCrossRefGoogle Scholar
  66. 7.66
    N.C. MacDonald, T.E. Everhart: Selective electron-beam irradiation of metal-oxide-semiconductor structures. J.Appl.Phys. 39, 2433 (1968)ADSCrossRefGoogle Scholar
  67. 7.67
    R. Hetzel: Electron-beam induced-current investigations on MOS NMOS devices. Sol.Stat.Electron. 22, 735 (1979)ADSCrossRefGoogle Scholar
  68. 7.68
    T.P. Ma, G. Scoggan, R. Leone: Comparison of interface-state genera- tion by 25-keV electron beam irradiation in p-type and n-type MOS capacitors. Appl.Phys.Lett. 27, 61 (1975)ADSCrossRefGoogle Scholar
  69. 7.69
    D. Green, J.E. Sandor, T.E. O’Keeffe, R.K. Matta: Reversible changes in transistor characteristics caused by SEM examination. Appl.Phys.Lett. 6, 3 (1965)ADSCrossRefGoogle Scholar
  70. 7.70
    W.J. Keery, K.O. Leedy, K.F. Galloway: Electron beam effects on microelectronic devices. SEM 1976/I, p.507Google Scholar
  71. 7.71
    N.C. MacDonald: Quantitative SEM: solid state applications. SEM 1969 p. 431Google Scholar
  72. 7.72
    M.D. Muir, P.R. Grant: Cathodoluminescence. In Quantitative Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 287Google Scholar
  73. 7.73
    D.B. Holt: Quantitative SEM studies of cathodoluminescence in adamantine semiconductors. In Quantitative Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 335Google Scholar
  74. 7.74
    G.F.J. Garlick: Cathodo-and radioluminescence. In Luminescence of Inorganic Solids, ed. by P. Goldberg ( Academic, New York 1966 ) p. 685Google Scholar
  75. 7.75
    W. Bröcker, G. Pfefferkorn: Bibliography on cathodoluminescence.SEM 1976/I, p.725; 1977/I, p.455; 1978/I, p.333; 1980/I, p.298Google Scholar
  76. 7.76
    S.M. Davidson, A.W. Vaidya: High resolution temperature measurements in microwave devices. In Proc.Int.Symp. on GaAs and Related Compounds ( Inst.of Physics, Bristol 1977 ) p. 28tGoogle Scholar
  77. 7.77
    P.M. Williams, A.D. Yoffe: Monochromatic cathodoluminescence image in SEM. Nature 221, 952 (1969)ADSCrossRefGoogle Scholar
  78. 7.78
    J.B. Steyn, P. Giles, P.B. Holt: An efficient spectroscopic system for cathodoluminescence mode SEM. J.Micr. 107, 107 (1976)CrossRefGoogle Scholar
  79. 7.81
    S.M. Davidson, A. Rasul: Applications of a high performance SEM- based cathodoluminescence analysis system to compound semiconductor devices. SEM 1977/I, p.225Google Scholar
  80. 7.80
    H.C. Casey, R.H. Kaiser: Analysis of n-type GaAs with electron-beam-excited radiative recombination. J.Electrochem.Soc. 114, 149 (1967)CrossRefGoogle Scholar
  81. 7.81
    D.A. Cusano: Radiative recombination from GaAs directly excited by electron beams. Solid State Commun. 2, 353 (1964)ADSCrossRefGoogle Scholar
  82. 7.82
    A. Rasul, S.M. Davidson: Recombination around dislocations in GaP. In Proc.Int.Symp. on GaAs and Related Compounds (Inst. of Physics, Bristol 1977 ) p. 306Google Scholar
  83. 7.83
    H. Boersch, C. Radeloff, G. Sauerbrey: Ober die an Metallen durch Elektronen ausgelöste sichtbare und ultraviolette Strahlung. Z.Phys. 165, 464 (1961)ADSCrossRefGoogle Scholar
  84. 7.84
    H. Boersch, P. Dobberstein, D. Fritzsche, G. Sauerbrey: Transition radiation, Bremsstrahlung und Plasmastrahlung. Z.Phys. 187, 97 (1965)ADSCrossRefGoogle Scholar
  85. 7.85
    D.F. Kyser, D.B. Wittry: Cathodoluminescence in GaAs, In The Electron Microprobe, ed. by T.D. McKinley et al. ( Wiley, New York 1964 ) p. 691Google Scholar
  86. 7.86
    D.B. Wittry, D.F. Kyser: Measurement of diffusion lengths in direct- gap semiconductors by electron-beam excitation. J.Appl.Phys. 38, 375 (1967)ADSCrossRefGoogle Scholar
  87. 7.87
    B. Akamatsu, P. Hénoc, A.C. Papadopoulo: Diffusion length measure-ment in InP and GaAs by filtered cathodoluminescence in a SEM. SEM 1983/IV, p. 1579Google Scholar
  88. 7.88
    T.S. Rao-Sahib, D.B. Wittry: Measurement of diffusion lengths in p-type GaAs by electron beam excitation. J.Appl.Phys. 40, 3745 (1969)ADSCrossRefGoogle Scholar
  89. 7.89
    H.C. Casey, J.S. Jayson: Cathodoluminescent measurements in GaP (Zn,0). J.Appl.Phys. 42, 2774 (1971)ADSCrossRefGoogle Scholar
  90. 7.90
    G.A.C. Jones, B.R. Nag, A. Gopinath: Temperature variation of cathodoluminescence in direct gap semiconductors. SEM 1973, p.309Google Scholar
  91. 7.91
    M. Hastenrath, E. Kubalek: Time-resolved cathodoluminescence in SEM. SEM 1982/I, p.157Google Scholar
  92. 7.93
    A. Rasul, S.M. Davidson: SEM measurements of minority carrier lifetimes at dislocations in GaP, employing photon counting. SEM 1977/I, p.233Google Scholar
  93. 7.94
    M. Hastenrath, L.J. Balk, K. Löhnert: Time resolved cathodoluminescence in the SEM by use of the streak technique. J.Micr. 118, 303 (1980)CrossRefGoogle Scholar
  94. 7.95
    M. Hastenrath, L.J. Balk, K. Löhnert: Time resolved cathodoluminescence in SEM. SEM 1982/I, p.157Google Scholar
  95. 7.96
    H.C. Casey: Investigation of inhomogeneities in GaAs by electrobeam excitation. J.Electrochem Soc. 114, 153 (1967)CrossRefGoogle Scholar
  96. 7.97
    D.B. Holt, B.D. Chase: Scanning-electron-beam-excited charge collection micrography of GaAs lasers. J.Mat.Sci. 3, 178 (1968) 7.97 D.A. Shaw, P.R. Thornton: Cathodoluminescent studies of laser quality GaAs. J.Mat.Sci. 3, 507 (1968)Google Scholar
  97. 7.98
    A.L. Esquivel, W.N. Lin, D.B. Wittry: Cathodoluminescence study of plastically deformed GaAs. Appl.Phys.Lett. 22, 414 (1973)ADSCrossRefGoogle Scholar
  98. 7.99
    P.R. Grant, S.H. White: Cathodoluminescence and microstructure of quartz overgrowths on quartz. SEM 1978/I, p.789Google Scholar
  99. 7.100
    D. Krensley, N.K. Tovey: Cathodoluminescence in quartz sand grains. SEM 1978/I, p.887Google Scholar
  100. 7.101
    J. Hersener, Th. Ricker: Lumineszenzuntersuchungen an Leuchtstoffen. BEDO 4/2, 523 (1971)Google Scholar
  101. 7.102
    W. Bröcker, E.R. Krefting, L. Reimer: Abhängigkeit des Kathodolumineszenzsignals vom Kippwinkel der Probe im Raster-Elektronenmikroskop. BEDO 10, 647 (1977)Google Scholar
  102. 7.103
    S.K. Obyden, G.V. Saparin, G.V. Spivak: Observation of long persistance luminescent materials using colour TV SEM. Scanning 3, 181 (1980)CrossRefGoogle Scholar
  103. 7.104
    D. Hoder, R. Herbst, A.M. Multier-Lajous: Ein einfaches Verfahren zur Herstellung von Farb-Kathodolumineszenz-Aufnahmen am Rasterelektronenmikroskop. BEDO 12/1, 273 (1979)Google Scholar
  104. 7.105
    E.M. Hörl, F. Buschbeck: Rasterelektronenmikroskopie unter Verwendung eines Farbmonitors. BEDO 8, 233 (1975)Google Scholar
  105. 7.106
    F. Buschbeck, E.M. Hörl: Electronic adding-up and storing of SEM colour images. SEM 1978/I, p.835Google Scholar
  106. 7.107
    A. Steckenborn: Minority carrier lifetime mapping in the SEM. J.Micr. 118, 302 (1980)CrossRefGoogle Scholar
  107. 7.108
    W. Bröcker, E.R. Krefting, L. Reimer: Beobachtung der Strahlenschädigung während des Abrastvorganges im Raster-Elektronen mikroskop mit Hilfe der Kathodolumineszenz. BEDO 7, 75 (1974)Google Scholar
  108. 7.109
    G.V. Saparin, G.V. Spivak: Applications of stroboscopic cathodoluminescence microscopy. SEM 1979/I, p.267Google Scholar
  109. 7.110
    M. DeMets, A. Lagasse: An investigation of some organic chemicals as cathodoluminescent dyes using the SEM. J.Micr. 94, 151 (1971)Google Scholar
  110. 7.111
    M. DeMets, K.J. Howlett, A.O. Yoffe: Cathodoluminescent spectra of organic compounds. J.Micr. 102, 125 (1974)Google Scholar
  111. 7.112
    M. DeMets: Relationship between cathodoluminescence and molecular structure of organic compounds. Microscopica Acta 76, 405 (1975)Google Scholar
  112. 7.113
    R. Herbst, D. Hoder: Cathodoluminescence in biological studies.Scanning 1, 35 (1978)Google Scholar
  113. 7.114
    W. Bröcker, G. Pfefferkorn: Application of the cathodoluminescence method in biology and medicine. SEM 1979/II, p.125Google Scholar
  114. 7.115
    E.M. Hörl, P. Roschger: CL SEM investigations of biological material at liquid helium and liquid nitrogen temperatures. SEM 1980/I, p.285Google Scholar
  115. 7.116
    E. Zeitler, M.G.R. Thomson: Scanning transmision electron microscopy. Optik 31, 258 and 359 (1970)Google Scholar
  116. 7.117
    J. Weise: Messung des Materialtransportes in dünnen Al-Filmen mit dem Raster-Elektronenmikroskop. BEDO 4/2, 477 (1971)Google Scholar
  117. 7.118
    P. Furrer: Verbindung von Raster-und Durchstrahlungselektronenmikroskopie zur Untersuchung des Ausscheidungsverlaufs in dünnenGoogle Scholar
  118. 7.119
    Folien. BEDO 4/2, 463 (1971) R. Blaschke: Ein Präparathalter für Durchstrahlungsexperimente und für Stereobildpaare. BEDO 3, 161 (1970)Google Scholar
  119. 7.120
    B.J. Crawford, C.R.W. Liley: A simple transmission stage using the standard collection system in the SEM. J.Phys. E 3, 461 (1970)Google Scholar
  120. 7.121
    J.A. Swift, A.C. Brown, C.A. Saxton: Scanning transmission electron microscopy with the Cambridge Stereoscan Mk II. J.Phys. E 2, 744 (1969)Google Scholar
  121. 7.122
    A. Ishikawa, F. Mizuno, Y. Uchikawa, S. Maruse: High resolution and spectroscopic cathodoluminescent images in SEM. Jap.J.Appl.Phys. 12, 286 (1973)ADSCrossRefGoogle Scholar
  122. 7.123
    A.B. Bok: Mirror electron microscopy: theory and applications. In Modern Diffraction and Imaging Methods in Material Science, ed. By S. Amelinckx et al. ( North-Holland, Amsterdam 1978 ) p. 655Google Scholar
  123. 7.124
    A.B. Bok, J.B. Le Poole, J. Roos, H. De Lang, H. Bethge, J. Heydenreich, N.E. Barnett: Mirror Electron Microscopy. Adv. in Optical and Electron Microscopy,Vol.4, ed. by R. Barer and V.E. Cosslett (Academic, New York 1971) p.161Google Scholar
  124. 7.125
    R.E. Ogilvie, M.A. Schippert, S.H. Moll, D.M. Koffman: Scanning electron mirror microscopy. SEM 1969, p. 425Google Scholar
  125. 7.126
    G.V. Spivak, V.P. Ivannikov, A.E. Luk’yanov, E.I. Rau: Development of scanning mirror electron microscopy for quantitative evaluation of electric microfields. J.Micr.Spectr. Electron. 3, 89 (1978)Google Scholar
  126. 7.127
    J. Witzani, E.M. Hörl: Scanning electron mirror microscopy. Scanning 4, 53 (1980)CrossRefGoogle Scholar
  127. 7.128
    R.S. Paden, W.C. Nixon: Retarding field SEM. J. Phys. 2, 1073 (1968)Google Scholar
  128. 7.129
    J.B. Pawley, J.T. Norton: A chamber attached to the SEM for fracturing and coating frozen biological samples. J.Micr. 112, 169 (1977)Google Scholar
  129. 7.130
    A. Maas: Direct observation and analysis of crystal growth processes in a SEM. In Electron Microscopy 19/4, Vol.1 ed. by J.V. Sanders and D.J. Goodchild (Australian Acad. of Science, Canberra) 0. 162Google Scholar
  130. 7.131
    G. Finnström: Dynamic studies of the reduction of iron oxides in the SEM. In Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders and D.J. Goodchild ( Australian Acad.of Science, Canberra) D. 164Google Scholar
  131. 7.132
    W.C. Lane: The environmental control stage. SEM 1970, p.41 7.133 N.C. Lyon, E. Gasiecki, D.F. Parsons: A differentially pumped hydration chamber for STEM. SEM 1976/I, p.101Google Scholar
  132. 7.133
    G.D. Danilatos, R.Postle: The environmental SEM and its application. SEM 1982/í, p.1Google Scholar
  133. 7.135
    G.D. Danilatos, V.N.E. Robinson: Principles of SEM at high specimen chamber pressures. Scanning 2, 72 (1979)CrossRefGoogle Scholar
  134. 7.136
    G.D. Danilatos: Design and construction of an atmospheric or environmental SEM. Scanning 4, 9 (1981)CrossRefGoogle Scholar
  135. 7.137
    D.G. Davies, A. Howie, L. Staveley-Smith: Scanning electron acoustic microscopy. SPIE 368, 58 (1983)CrossRefGoogle Scholar
  136. 7.138
    D.G. Davies: Scanning electron acoustic microscopy. SEM 1983/III, p. 1163Google Scholar
  137. 7.139
    G.S. Cargill. Ultrasonic imaging in SEM. Nature 286, 691 (1980); Electron-acoustic microscopy. Physics Today 34, 27 (Oct. 1981)CrossRefGoogle Scholar
  138. 7.140
    ’ A. Rosencwaig, R.M. White: Imaging of dopant regions in silicon with thermal-wave electron microscopy. Appl.Phys.Lett. 38, 165 (1981)Google Scholar
  139. 7.141
    ’ A. Rosencwaig, R.M. White: Imaging of dopant regions in silicon with thermal-wave electron microscopy. Appl.Phys.Lett. 38, 165 (1981)Google Scholar
  140. 7.142
    L.J. Balk, N.Kultscher: Scanning electron acoustic microscopy. BEDO 16, 107 (1983)Google Scholar
  141. 7.143
    J. Kessler: Polarized Electrons, 2nd ed., Springer Ser. Atoms Plasmas, Vol. 1 ( Springer, Berlin Heidelberg 1985 )Google Scholar
  142. 7.144
    K. Koike, K. Hayakawa: Scanning electron microscope observation of magnetic domains using spin-polarized secondary electrons. Jap. J. Appl.Phys. 23, L187 (1984)ADSGoogle Scholar
  143. 7.145
    J. Kirschner, R. Feder: Spin polarization in double diffraction of low-energy electrons from W (001): experiment and theory. Phys. Rev. Lett. 42, 1008 (1979)ADSCrossRefGoogle Scholar
  144. 7.146
    D.T. Pierce, S.M. Girvin, J. Unguris, R.J. Celotta: Absorbed current electron spin polarization detector. Rev.Sci.Instr. 52, 1437 (1981)ADSCrossRefGoogle Scholar
  145. 7.147
    N. Müller, W. Eckstein, W. Heiland: Electron spin polarization in field emission from EuS-coated tungsten tip. Phys.Rev.Lett. 29, 1651 (1972)ADSCrossRefGoogle Scholar
  146. 7.148
    D.T. Pierce, R.J. Celotta, G.C. Wang, W.N. Unertl, A. Galejs, C.E. Kuyatt, S.R. Mielczarek: GaAs spin polarized electron source. Rev.Sci. Instr. 51, 478 (1980)CrossRefGoogle Scholar
  147. 7.149
    J. Unguris, D.T. Pierce, A. Galejs, R.J. Celotta: Spin and energy analysed secondary electron emission from a ferromagnet. Phys. Rev. Lett. 49, 72 (1982)ADSCrossRefGoogle Scholar
  148. 7.150
    E. Kisker, W. Gudat, K. Schröder: Observation of a high spin polarization of secondary electrons from single crystal Fe and Co. Sol. State Commun. 44, 591 (1982)ADSCrossRefGoogle Scholar
  149. 7.151
    D.T. Pierce, R.J. Celotta: Spin polarization in electron scattering from surfaces. Adv.Electr.Electron Phys. 56, 219 (1981)CrossRefGoogle Scholar
  150. 7.152
    K. Koike, K. Hayakawa: Spin polarization due to low-energy electron diffraction at the W(001) surface. Jap.J.Appl.Phys. 22, 1332 (1983)ADSCrossRefGoogle Scholar
  151. 7.153
    M. Hatzakis: Lithographic processes in VLSI circuit fabrication. SEM 1979/I, p.275Google Scholar
  152. 7.154
    D. Stephani: Monte-Carlo calculations of backscattered electrons at registration marks. J.Vac.Sci.Technol. 16, 1739 (1979)ADSCrossRefGoogle Scholar
  153. 7.155
    K. Murata: Monte Carlo simulation of electron scattering in resist film/substrate targets. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 311Google Scholar
  154. 7.156
    M. Kisza, Z. Maternia, Z. Radzimski: Backscattering of electrons from complex structures. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 109Google Scholar
  155. 7.157
    D.F. Kyser: Monte Carlo simulation of spatial resolution limits in electron beam lithography. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 331Google Scholar
  156. 7.158
    T.H.P. Chang: Proximity effect in electron-beam lithography. J.Vac.Sci.Technol. 12, 1271 (1975)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfätlische Wilhelms-Univeraität MünsterMünsterFed. Rep. of Germany

Personalised recommendations