Advertisement

Imaging with Secondary and Backscattered Electrons

  • Ludwig Reimer
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 45)

Abstract

The most important topographic contrast mode with secondary electrons is caused by the dependence of the SE yield on the local tilt of the specimen surface. A fraction of the SE signal is excited by the primary electron probe and carries high-resolution information due to the small exit depth of the SE. Another fraction of poorer resolution is excited by the BSE. If, instead of using the conventional SE detector, the SE are sorted according to their exit momenta, a more quantitative interpretation of the topography may be possible. The SE are also affected by local magnetic and electrostatic fields, which create type-1 magnetic and voltage contrast, respectively. By employing pre-acceleration and a spectrometer the voltage contrast can be used to make a quantitative measurement of the surface bias.

Keywords

Secondary Electron Secondary Electron Image Surface Tilt Electron Range Topographic Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    H. Drescher, L. Reimer, H. Seidel: Rückstreukoeffizient und Sekundärelektronen-Ausbeute von 10–100 keV Elektronen und Beziehungen zur Raster-Elektronenmikroskopie. Z.angew.Phys. 29, 331 (1970)Google Scholar
  2. 6.
    T. Nagantini, A. Okura: Enhanced secondary electron detection at small working distance in the field emission SEM. SEM 1977/I, p.695 H. Koike, K. Ueno, M. Suzuki: Scanning device combined with conventional electron microscope. Proc. EMSA 1971 (Claytor’s Publ.Div., Baton Rouge) p.28Google Scholar
  3. 6.3
    J. Jackman: New SEM depends on multifunction-detector. Ind.Res. and Developm. Jan. 1980, ISSN 0160–4074, p. 115Google Scholar
  4. 6.4
    M. Lange, L. Reimer, C. Tollkamp: Testing of detector strategies in SEM by isodensities. J.Micr. 134, 1 (1984)CrossRefGoogle Scholar
  5. 6.5
    D.K. Hindermann, R.H. Davis: SEM techniques for the examination of blind and through holes. SEM 1974, p. 183Google Scholar
  6. 6.6
    A.E. Lukianov, G.V. Spivak, E.I. Rau, D.D. Gorodsky: The secondary electron SEM-collector with magnetic field. In Electron Microscopy 1922 ( Inst. of Physics, London 1972 ) p. 186Google Scholar
  7. 6.7
    K. Schur, C. Schulte, L. Reimer: Auflösungsvermögen und Kontrast von Oberflächenstufen bei der Abbildung mit einem Raster-Elektronen-mikroskop. Z.anoew.Phys. 23, 405 (1967)Google Scholar
  8. 6.8
    G. Pfefferkorn, R. Blaschke: Der Informationsgehalt rasterelektronenmikroskopischer Aufnahmen. BEDO 1, 1 (1968)Google Scholar
  9. 6.9
    L. Reimer, M. Riepenhausen, C. Tollkamp: Detector strategy for improvement of image contrast analogous to light illumination. Scanning 6, 155 (1984)CrossRefGoogle Scholar
  10. 6.10
    K. Fecher: Untersuchung dünner Schichten. BEDO 4/2, 399 (1971)Google Scholar
  11. 6.11
    H. Soezima. Solid surface observation at very low acceleration voltage (200V - 1 kV) by SEM. Surf.Sci. 86, 610 (1979)ADSCrossRefGoogle Scholar
  12. 6.
    C. Le Gressus, H. Okuzumi, D. Massignon: Changes of SEI brightness under electron irradiation as studied by electron spectroscopy. SEM 1981/I, p.251Google Scholar
  13. 6.13
    O.Lee-Deacon, C. Le Gressus, D. Massignon: Analytical SEM for surface science. In Electron Beam Interaction with Solids, ed. by D.F. Kyser ( SEM Inc., AMF O’Hare 1982 ) p. 271Google Scholar
  14. 6.
    L. Reimer: Electron signal and detector strategy. In Electron Beam Interactions with Solids,ed. by D.F. Kyser et al. (SEM Inc., AMF O’Hare 1982), D.299Google Scholar
  15. 6.15
    L. Reimer: SEM of surfaces. In Electron Microscopy 2982, Vol. 1 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 ) p. 79Google Scholar
  16. 6.16
    L. Reimer, B. Volbert: Detector system for backscattered electrons by conversion to secondary electrons. Scanning 2, 283 (1979)Google Scholar
  17. 6.17
    K.R. Peters: Conditions required for high quality high magnification images in secondary electron-I SEM. SEM 1982/1V, p. 1359Google Scholar
  18. 6.18
    J.R. Banbury, W.C. Nixon: A high-contrast directional detector for the SEM. J.Phys. E 2, 1055 (1969)Google Scholar
  19. 6.
    B. Volbert, L. Reimer: Advantages of two opposite Everhart-Thornley detectors in SEM. SEM 1980/IV, p.1Google Scholar
  20. 6.20
    L. Reimer, C. Tollkamp: Recording of topography by secondary electrons with a two-detector system. In Electron Microscopy 1982, Vol. 2 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 ) p. 543Google Scholar
  21. 6.21
    B. Volbert: True surface topography: the need for signal mixing. In Electron Microscopy 1982, Vol. 1 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 ) p. 233Google Scholar
  22. 6.
    F. Hasselbach, U. Rieke, M. Straub: An imaging secondary electron detector for the SEM. SEM 1983/11, p.647Google Scholar
  23. 6.23
    R. Blaschke, A. Boyde: Particle size in conductive coating and reslution in the SEM. Scanning 1, 64 (1978)Google Scholar
  24. 6.
    P. Echlin, G. Kaye: Thin films for high resolution conventional SEM. SEM 1979/11, p.21Google Scholar
  25. 6.
    J.D. Geller, T. Yoshioka, D.A. Hurd: Coating by ion sputtering deposition for ultrahigh resolution SEM. SEM 1979/II, p.355Google Scholar
  26. 6.
    K.R. Peters: SEM at macromolecular resolution in low energy mode on biological specimens coated with ultra thin metal films. SEM 1979/I1, p.133Google Scholar
  27. 6.
    L. Reimer, W. Pöpper, W. Bröcker: Experiments with a small solid angle detector for BSE. SEM 1978/I, p.705Google Scholar
  28. 6.
    C. Wells: Effect of collector position on type-2 magnetic contrast in the SEM. SEM 1978/I, p.293Google Scholar
  29. 6.29
    C. Wells: Effects of collector take-off angle and energy filter- ina on the BSE image in the SEM. Scanning 2, 199 (1979)CrossRefGoogle Scholar
  30. 6.30
    V.N.E. Robinson: Imaging with backscattered electrons in a SEM. Scanning 3, 15 (1980)CrossRefGoogle Scholar
  31. 6.31
    E.D. Wolf, T.E. Everhart: Annular diode detector for high angular resolution pseudo-Kikuchi patterns. SEM 1969, p. 41Google Scholar
  32. 6.32
    J.Stephen, B.J. Smith, D.C: Marshall, E.M. Wittam: Application of a semiconductor backscattered electron detector in a SEM. J.Phys. E 8, 607 (1975)Google Scholar
  33. 6.33
    P.S.D. Lin, R.P. Becker: Detection of backscattered electrons with high resolution. SEM 1975, p. 61Google Scholar
  34. 6.34
    J.L. Abraham, P.B. DeNee: Biomedical applications of backscattered electron imaging - one year’s experience with SEM histochemistry. SEM 1974, p. 251Google Scholar
  35. 6.35
    R. ChristenhuB: Zur Darstellbarkeit kristalliner Objekte in der Auflicht-Elektronenmikroskopie. BEDO 1, 67 (1968)Google Scholar
  36. 6.36
    D.C. Joy, D.E. Newbury, P.M. Hazzledine: Anomalous crystallographic contrast on rolled and annealed specimens. SEM 1972, p. 97Google Scholar
  37. 6.37
    P.F. Schmidt, H.G. Grewe, G. Pfefferkorn: SEM imaging of the cell structure of dislocation networks in cold worked Cu single crystals. Scanning 1, 174 (1978)CrossRefGoogle Scholar
  38. 6.
    H. Seiler: Determination of the “information depth” in the SEM. SEM 1976/I, p.9Google Scholar
  39. 6.39
    L. Reimer, H.G. Badde, H. Seidel: Orientierungsanisotropie des Rückstreukoeffizienten und der Sekundärelektronenausbeute von 10–100 keV Elektronen. Z.angew.Phys. 31, 145 (1971)Google Scholar
  40. 6.
    S. Kimoto, H. Hashimoto: Stereoscopic observation in SEM using multiple detectors. In The Electron Microprobe,ed. by T.D. McKinley et al. (Wiley, New York 1966) o.480Google Scholar
  41. 6.41
    L. Reimer, B. Volbert: The origin and correction of SEM imaging artifacts arising from the use of the difference signal of two detectors. Philips Electron Optics Bulletin, No. 118 (1982)Google Scholar
  42. 6.42
    J. Lebiedzik, E.W. White: Multiple detector method for quantitative determination of microtopography in the SEM. SEM 1975, p. 181Google Scholar
  43. 6.43
    J. Lebiedzik, J. Lebiedzik, R. Edwards, B. Phillips: Use of microtopography capability in the SEM for analysing fracture surfaces. SEM 1979/II, p.61; J. Lebiedzik: An automatic topographical surface reconstruction in the SEM. Scanning 2, 230 (1979)Google Scholar
  44. 6.44
    J. Jackman: New SEM depends on multifunction-detector. Ind.Res.and Developm., Jan. 1980, p. 115Google Scholar
  45. 6.45
    M.D. Ball, D.G. McMartney: The measurement of atomic number end composition in an SEM using backscattered electron detectors. J.Micr. 124, 57 (1981)CrossRefGoogle Scholar
  46. 6.
    H. Niedrig: Backscattered electrons as a tool for film thickness determination. SEM 1978/I, p.841Google Scholar
  47. 6.47
    O.C. Wells, R.J. Savoy, P.J. Bailey: Backscattered electron imaging in the SEM - measurement of surface layer mass-thickness. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 287Google Scholar
  48. 6.
    P.B. DeNee: Measurement of mass and thickness of respirable size dust particles by SEM backscattered electron imaging. SEM 1978/I, p.741Google Scholar
  49. 6.49
    A. Boyde: Photogrammetry of stereopair SEM images using separate measurements from the two images. SEM 1974, p. 101Google Scholar
  50. 6.50
    A.R. Walker, G.R. Booker: A simple energy filtering backscattered electron detector. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ), p. 119Google Scholar
  51. 6.51
    O.C. Wells: Low-loss image for surface SEM. Appl.Phys.Letters 19, 232 (1971)ADSCrossRefGoogle Scholar
  52. 6.52
    P. Morin, M. Pitaval, D. Besnard, G. Fontaine: Electron-channelling imaging in SEM. Phil.Mag. A 40, 511 (1979)Google Scholar
  53. 6.53
    O.C. Wells, A.N. Broers, C.G. Bremer: Method for examininn solid specimens with improved resolution in the SEM. Aopl.Phys.Lett. 23, 353 (1973)ADSCrossRefGoogle Scholar
  54. 6.54
    C. Wells: Explanation of the low-loss image in the SEM in terms of electron scattering theory. SEM 1972, p. 169Google Scholar
  55. 6.55
    J.P. Spencer, C.J. Humphreys, P.B. Hirsch: A dynamical theory for the contrast of perfect and imperfect crystals in the SEM using backscattered electrons. Phil. Mag. 26, 193 (1972)ADSCrossRefGoogle Scholar
  56. 6.56
    R.M. Stern, I. Ichinokawa, S. Takashima, H. Hashimoto, S. Kimoto: Dislocation images in the high resolution SEM. Phil.Mag. 26, 1495 (1972)ADSCrossRefGoogle Scholar
  57. 6.57
    G.R. Booker, D.C. Joy, J.P. Spencer, C.J. Humphreys: Imaging of crystal defects in the SEM. SEM 1973, p. 251Google Scholar
  58. 6.58
    P. Morin, M. Pitaval, E. Vicario, G. Fontaine: SEM observation of single defects in solid crystalline materials. Scanning 2, 217 (1979)CrossRefGoogle Scholar
  59. 6.
    O.C. Wells: Backscattered electron image in the SEM. SEM 1977/I p.747Google Scholar
  60. 6.
    D.E. Newbury: The utility of specimen current imaging in the SEM. SEM 1976/I, p.111Google Scholar
  61. 6.61
    J.R. Dorsey: Scanning electron probe measurements of magnetic fields. In Electron Probe Microanalysis, ed. by A.J. Tousimis and L. Marton: Adv. Electr.Electron Physics Supol. 6 ( Academic, New York 1969 ) p. 291Google Scholar
  62. 6.62
    D.C. Joy, J.P. Jakubovics: Direct observation of magnetic domains by SEM. Phil.Mag 17, 61 (1968); J. Phys. D 2, 1367 (1969)Google Scholar
  63. 6.63
    G.W. Kammlott: Observation of ferromagnetic domains with the SEM. J.Appl.Phys. 42, 5156 (1971)ADSCrossRefGoogle Scholar
  64. 6.64
    J.R. Banbury, W.C. Nixon: The direct observation of magnetic domain structure and magnetic fields in the SEM. J.Sci.Instr. 44, 889 (1967)ADSCrossRefGoogle Scholar
  65. 6.65
    G.A. Jones: On the quality of type 1 magnetic contrast obtained in the SEM. Phys.stat.sol.(a) 36, 647 (1976)ADSCrossRefGoogle Scholar
  66. 6.66
    P. Gentsch, L. Reimer: Messungen zum magnetischen Kontrast im Rasterelektronenmikroskop. BEDO 5, 299 (1972)Google Scholar
  67. 6.67
    G.A. Wardly: Magnetic contrast in the SEM. J.Appl.Phys. 42, 376 (1971)ADSCrossRefGoogle Scholar
  68. 6.68
    T. Yamamoto, K. Tsuno: Magnetic contrast in secondary electron images of uniaxial ferromagnetic materials obtained by SEM. Phys.stat.sol.(a) 28, 479 (1975)ADSCrossRefGoogle Scholar
  69. 6.69
    J. Philibert, R. Tixier: Effects of crystal contrast in SEM. Micron 1, 174 (1969)Google Scholar
  70. 6.70
    D.J. Fathers, J.P. Jacubovics, D.C. Joy, D.E. Newbury, H. Yakowitz: A new method of observing magnetic domains by SEM. Phys.stat.sol. (a) 20, 535 (1973); 22, 609 (1974)Google Scholar
  71. 6.71
    D.E. Newbury, H. Yakowitz, H.L. Myklebust: Monte Carlo calculations of magnetic contrast from cubic materials in the SEM. Appl.Phys. Lett. 23, 488 (1973)Google Scholar
  72. 6.72
    T. Yamamoto, H. Nishizawa, K.Tsuno: Magnetic domain contrast in backscattered electron images obtained with a SEM. Phil.Mag. 34, 311 (1976)ADSCrossRefGoogle Scholar
  73. 6.73
    K. Tsuno, T. Yamamoto: Observed depths of magnetic domains in high-voltage SEM. Phys.stat.sol.(a) 35, 437 (1976)ADSCrossRefGoogle Scholar
  74. 6.74
    P.J. Grundy, R.S. Tebble: Lorentz electron microscopy. Adv.Physics 17, 153 (1968)ADSCrossRefGoogle Scholar
  75. 6.75
    J.N. Chapman, E.M. Waddell, P.E. Batson, R.P. Ferrier: The Fresnel mode of Lorentz microscopy using a TEM. Ultramicroscopy 4, 283 (1979)CrossRefGoogle Scholar
  76. 6.76
    L. Marton, S. Lachenbruch: Electron optical mapping of electromagnetic fields. J.Appl.Phys. 20, 1171 (1949)ADSCrossRefGoogle Scholar
  77. 6.77
    Ch. Schwink: Ober neue quantitative Verfahren der elektronenoptischen Schattenmethode. Optik 12, 481 (1955)Google Scholar
  78. 6.78
    R.F.M. Thornley, J.D. Hutchinson: Magnetic field measurements in the SEM. Appl.Phys.Letters 13, 249 (1968)ADSCrossRefGoogle Scholar
  79. 6.79
    T. Ishiba, H. Suzuki: Measurements of magnetic field of magnetic recording head by a SEM. Jap.J.Appl.Phys. 13, 457 (1974)ADSCrossRefGoogle Scholar
  80. 6.80
    M.D. Coutts, E.R. Levin: Examination of local magnetic fields by SEM. In Microscopic Electronique 1970, Vol. 1, ed. by P. Favard ( Soc.Française Micr.Electronique, Paris 1970 ) p. 261Google Scholar
  81. 6.81
    E.I. Rau, G.V. Spivak: SEM of two-dimensional magnetic stray fields. Scanning 3, 27 (1980)CrossRefGoogle Scholar
  82. 6.82
    S. Kimoto, H. Hashimoto, K. Mase: Voltage contrast in SEM. In Electron Microscopy 1968, Vol. 1, ed. by D.S. Bocciarelli ( Tipoorafia Poliglotta Vaticana, Rome 1968 ) p. 83Google Scholar
  83. 6.83
    J.R. Banbury, W.C. Nixon: Voltage measurement in the SEM. SEM 1970, p. 743Google Scholar
  84. 6.84
    H. Yakowitz, J.P. Ballantyne, E. Munro, W.C. Nixon: The cylindrical secondary electron detector as a voltage measuring device in the SEM. SEM 1972, p. 33Google Scholar
  85. 6.85
    N.C. MacDonald: Auger electron spectroscopy in SEM: potential measurements. Appl. Phys. Lett. 16, 76 (1970)ADSCrossRefGoogle Scholar
  86. 6.86
    W.R. Hardy, S.K. Begera, D. Cavan: A voltage contrast detector for the SEM. J.Phys.E 8, 789 (1975)ADSCrossRefGoogle Scholar
  87. 6.87
    E. Menzel, E. Kubalek: Secondary electron detection systems for quantitative voltage measurements. Scanning 5, 151 (1983)CrossRefGoogle Scholar
  88. 6.88
    A.P. Janssen, P. Akhther, C.J. Harland, J.A. Venables: High spatial resolution surface potential measurements using secondary electrons. Surf.Sci. 93, 453 (1980)ADSCrossRefGoogle Scholar
  89. 6.89
    A. Gopinath, C.C. Sanger: A technique for the linearization of voltage contrast in the SEM. J.Phys. E 4, 334 (1971)Google Scholar
  90. 6.90
    A. Khursheed, A.R. Dinnis: A comparison of voltage contrast detectors. Scanning 6, 85 (1984)CrossRefGoogle Scholar
  91. 6.91
    A. Gopinath: Estimate of minimum measurable voltage in the SEM. J.Phys. E 10, 911 (1977)Google Scholar
  92. 6.92
    E. Menzel, E. Kubalek: Fundamentals of electron beam testing of integrated circuits. Scanning 5, 103 (1983)CrossRefGoogle Scholar
  93. 6.93
    Y. Petit-Clerc, J.D.C. Arette: Effect of temperature on surface charges caused by an incident electron beam on a metallic surface. Appl. Phys. Lett. 12, 227 (1968)ADSCrossRefGoogle Scholar
  94. 6.94
    D.M. Taylor: The effect of passivation on the observation of voltage contrast in the SEM. J.Phys. D 11, 2443 (1978)Google Scholar
  95. 6.95
    G.V. Lukianoff, T.R. Touw: Voltare coding: temporal versus spatial frequencies. SEM 1975, p. 465Google Scholar
  96. 6.
    E. Menzel, E. Kubalek: Electron beam test techniques for integrated circuits. SEM 1981/I, p.305Google Scholar
  97. 6.97
    E. Wolfgang: Electron beam testing: problems in practice. Scanning 5, 71 (1983)CrossRefGoogle Scholar
  98. 6.98
    G.Y. Robinson, R.M. White: SEM of ferroelectric domains in barium titanate. Appl.Phys.Lett. 10, 320 (1967)ADSCrossRefGoogle Scholar
  99. 6.99
    D.G. Coates, N. Shaw: Direct observation of ferroelectric domains in triglycine sulfate using the SEM. In Microscopie Electronique 1970, Vol. 1, ed. by P. Favard ( Soc.Française Micr.Electronique, Paris 1970 ) p. 259Google Scholar
  100. 6.100
    R. Le Bihan, M. Maussion: Observation des domaines ferroélectriques au microscope électronique à balayage. Rev.Phys.Appl. 9, 427 (1974) 6.101 R. Le Bihan, M. Maussion: Study of the surface of ferroelectric crystals with the SEM. Ferroelectrics 7, 307 (1974)Google Scholar
  101. 6.101
    M. Maussion, R. Le Bihan: Study of ferroelectric domains on KD2PO4 and BaTiO3 crystals with the SEM. Ferroelectrics 13,465 (1976) 6.103 Y. Uchikawa, S. Ikeda: Application of SEM to analysis of surface domain structure of ferroelectrics. SEM 1981/I, p.209Google Scholar
  102. 6.102
    H. Bahadur, R. Parshad: SEM of vibrating quartz crystals - a review. SEM 1980/I, p.509Google Scholar
  103. 6.103
    H.P. Feuerbaum, G. Eberharter, G. Tobolka: Visualization of travelling surface acoustic waves using a SEM. SEM 1980/I, p.503Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfätlische Wilhelms-Univeraität MünsterMünsterFed. Rep. of Germany

Personalised recommendations