Advertisement

Detectors and Signal Processing

  • Ludwig Reimer
Chapter
  • 548 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 45)

Abstract

The most effective detection systems for secondary electrons (SE), which has a low noise level and a large bandwidth, is the Everhart-Thornley detector. Electrons are collected by a positively biased grid in front of a scintillator biased at +10kV. The light emission is recorded by a photomultiplier tube. Scintillation detectors can also be used for backscattered electrons (BSE) when the solid angle of collection is increased. Other alternatives for BSE are semiconductor detectors or the conversion of BSE to SE.

Keywords

Secondary Electron Proportional Counter Quantum Energy Semiconductor Detector Fano Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    M. Hatzakis: A new method of forming scintillators for electron collector. Rev.Sci.Instr. 41, 128 (1970)ADSCrossRefGoogle Scholar
  2. 5.2
    M.E. Taylor: An improved light pipe for the SEM. Rev.Sci.Instr. 43, 1846 (1972)CrossRefGoogle Scholar
  3. 5.3
    H. Ahmed, D.C. George: The examination of hot and electron emitting surfaces in the SEM. Micron 3, 69 (1972)CrossRefGoogle Scholar
  4. 5.4
    D.C. Marshall, J. Stephen: Secondary electron detector, with an extended life, for use in a SEM. J.Phys. E 5, 1046 (1972)Google Scholar
  5. 5.5
    R.J. Woolf, D.C. Joy, D.W. Tansley: A transmission stage for the SEM. J.Phys.E 5, 230 (1972)ADSCrossRefGoogle Scholar
  6. 5.6
    J.B. Pawley: Performance of SEM scintillation materials. SEM 1974,p. 27Google Scholar
  7. 5.7
    N.R. Comins, N.M.E. Hengstberger, J.T. Thirlwall: Preparation and evaluation of P-47 scintillators for a SEM. J.Phys.E 11, 1041 (1978)ADSCrossRefGoogle Scholar
  8. 5.8
    G. Mustoe: Preparation of P-47 crystalline phosphor scintillator discs.Scanning 2, 41 (1979)Google Scholar
  9. 5.9
    B. Volbert, L. Reimer: Preparation of P-47 scintillators. Scanning 2, 107 (1979)Google Scholar
  10. 5.10
    W. Baumann, A. Niemietz, L. Reimer, B. Volbert: Preparation of P-47 scintillators for STEM. J.Micr. 122, 181 (1981)CrossRefGoogle Scholar
  11. 5.11
    N.R. Comins, J.T. Thirlwall: Quantitative studies and theoretical analysis of the performance of the scintillation electron-detector. J.Micr. 124, 119 (1981)CrossRefGoogle Scholar
  12. 5.12
    R. Autrata, P. Schauer, Jo Kvapil, Ji Kvapil: A single crystal of YAG - new fast scintillator in SEM. J.Phys. E 11, 707 (1978)Google Scholar
  13. 5.13
    R. Autrata, P. Schauer, Jo Kvapil, Ji Kvapil: A single crystal of YAL03:Ce3+ as a fast scintillator in SEM. Scanning 5, 91 (1983)CrossRefGoogle Scholar
  14. 5.14
    T.E. Everhart, R.F.M. Thornley: Wideband detector for micro-micro- ampere low-energy electron currents. J.Sci.Instr. 37, 246 (1960)ADSCrossRefGoogle Scholar
  15. 5.15
    E. Breitenberger: Scintillation spectrometer statistics. Progr.Nucl. Phys. 4, 56 (1955)Google Scholar
  16. 5.16
    B. Saleh: Photoelectron Statistics, Springer Ser.Opt.Sci., Vol. 6 ( Springer, Berlin, Heidelberg 1978 )Google Scholar
  17. 5.17
    P.R. Evrard, C. Gazier: Propiétés statistiques de certains photomultiplicateurs. Journal de Physique 26, 37 A (1965)Google Scholar
  18. 5.18
    A. Williams, D. Smith: Afterpulses in liquid scintillation counters Nucl.Instr.Meth. 112, 131 (1973)Google Scholar
  19. 5.19
    C. Wells: The construction of a SEM and its application to the study of fibres. PhD Diss. Cambridge Univ. 1957Google Scholar
  20. 5.20
    O.C. Wells: New contrast mechanism for SEM. Appl.Phys.Lett. 16, 151 (1970)ADSCrossRefGoogle Scholar
  21. 5.21
    O.C. Wells, C.G. Bremer: Collector turret for SEM. Rev.Sci.Instr. 41, 1034 (1970)ADSCrossRefGoogle Scholar
  22. 5.22
    R. Blaschke, K. Schur: Der Informationsgehalt des Rückstreubildes im Raster-Elektronenmikroskop. BEDO 7, 33 (1974)Google Scholar
  23. 5.23
    K. Schur, R. Blaschcke, G. Pfefferkorn: Improved conditions for backscattered electron SEM micrographs on polished sections using a modified scintillator detector. SEM 1974, p. 1003Google Scholar
  24. 5.24
    V.N.E. Robinson: The construction and uses of an efficient back-scattered electron detector for SEM. J.Phys.E 7, 650 (1974)ADSCrossRefGoogle Scholar
  25. 5.25
    V.N.E. Robinson: Imaging with backscattered electrons in a SEM. Scanning 3, 15 (1980)CrossRefGoogle Scholar
  26. 5.26
    J. Jackman: New SEM depends on multifunction-detector. Ind.Res. and Developm. Jan. 1980, p. 115Google Scholar
  27. 5.27
    M. Lange, L. Reimer, C. Tollkamp: Testing of detector strategies in SEM by isodensities. J.Micr. 134, 1 (1984)CrossRefGoogle Scholar
  28. 5.28
    L. Reimer, W. Pöpper, W. Bröcker: Experiments with a small solid angle detector for BSE. SEM 1978/I, p.705Google Scholar
  29. 5.29
    S.H. Moll, F. Healey, B. Sullivan, W. Johnson: A high efficiency, nondirectional backscattered electron detection mode for SEM. SEM 1978/I, p.303Google Scholar
  30. 5.30
    L. Reimer, B. Volbert: Detector system for backscattered electrons by conversion to secondary electrons. Scanning 2, 283 (1979)Google Scholar
  31. 5.31
    B. Volbert, L. Reimer: Advantages of two opposite Everhart-Thornley detectors in SEM. SEM 1980/IV, p.1Google Scholar
  32. 5.32
    A.R. Walker, G.R. Booker: A simple energy filtering backscattered electron detector. In Developments in Electron Microscopy and Analysis, ed by J.A. Venables ( Academic, London 1976 ) p. 119Google Scholar
  33. 5.33
    K.A. Hughes, D.V. Sulway, R.C. Wayte, P.R. Thornton: Application of secondary-electron channel multipliers to SEM. J.Appl.Phys. 38, 4922 (1967)ADSCrossRefGoogle Scholar
  34. 5.34
    H. Hantsche, G. Schreiber: Zur Verwendung eines Channeltrons als Elektronendetektor im Raster-Elektronenmikroskop. BEDO 3, 167 (1970)Google Scholar
  35. B.W. Griffiths, P. Pollard, J.A. Venables: A channel plate detector for the SEM. In Electron Microscopy 1972 (Inst. of Physics,London 1972) p.176 J.A. Venables, C.J. Harland, R. bin-Jaya: Crystallographic orientation determination in the SEM using electron backscattering patterns and channel plates. In Developments in Electron Microscopy and Analysis,ed. by J.A. Venables (Academic, London 1976) p.101 J.B. Elsbrock, L.J. Balk: Untersuchung uniaxialer magnetischer Oberflächenstreufelder im Rasterelektronenmikroskop. BEDO 15/1,17 (1982)Google Scholar
  36. 5.36
    T.E. Everhart, 0.C. Wells, C.W. Oatley: Factors affecting contrast and resolution in the SEM. J.Electronics and Contr. 7, 97 (1959)CrossRefGoogle Scholar
  37. 5.37
    W. Baumann, L. Reimer: Comparison of the noise of different electron detection systems using a scintillator-photomultiplier combination. Scanning 4, 141 (1981)CrossRefGoogle Scholar
  38. 5.38
    R.C. Jones: Quantum efficiency of detectors for visible and infrared radiation. Adv.Electr.Electron Phys. 11, 87 (1959)CrossRefGoogle Scholar
  39. 5.39
    A.V. Crewe, M. Isaacson, P. Johnson: Secondary electron detection in a field emission scanning microscope. Rev.Sci.Instr. 41, 20 (1970)ADSCrossRefGoogle Scholar
  40. 5.40
    E. Miyazaki, H. Maeda, K. Miyaji: The Evoscope - a fixed-pattern generator using a Au-Si diode. Adv.Electr.Electron Phys. 22A, 331 (1966)CrossRefGoogle Scholar
  41. 5.41
    W. Czaja: Response of Si and GaP p-n junctions to a 5 to 40 keV electron beam. J.Appl.Phys. 37, 4236 (1966)ADSCrossRefGoogle Scholar
  42. 5.42
    E.D. Wolf, T.E. Everhart: Annular diode detector for high angular resolution pseudo-Kikuchi patterns. SEM 1969, p. 41Google Scholar
  43. 5.43
    J. Stephen, B.J. Smith, D.C. Marshall, E.M. Wittam: Application of a semiconductor backscattered electron detector in a SEM. J.Phys. E 8, 607 (1975)Google Scholar
  44. 5.44
    C. Wells: Effect of collector position on type-2 magnetic contrast in the SEM. SEM 1978/I, p.293Google Scholar
  45. 5.45
    C.W. Oatley: Detectors for the SEM. J.Phys.E 14, 971 (1981)ADSCrossRefGoogle Scholar
  46. 5.46
    M. Kikuchi, S. Takashima: Multi-purpose backscattered electron detector. In Electron Microscopy 1978, Vol. 1, ed. by J.M. Sturgess ( Micr. Soc. of Canada, Toronto 1978 ) p. 82Google Scholar
  47. 5.47
    D.A. Gedcke, J.B. Ayers, P.B. DeNee: A solid state backscattered electron detector capable of operating at TV scan rates. SEM 1978/I, p.581Google Scholar
  48. 5.48
    F.J. Maher, C.J. Rossouw: Design and performance of an amplifier for EBIC imaging in a SEM. J.Phys. E 16, 1238 (1983)Google Scholar
  49. 5.49
    W. Steckelmacher: Energy analysers for charged particle beams. J.Phys. E 6, 1061 (1973)Google Scholar
  50. 5.50
    H.T. Pearce-Percy: The design of spectrometers for energy loss spectroscopy. SEM 1978/I, p.41Google Scholar
  51. 5.51
    A. Rusterholz: Elektronenoptik I: Grundzüge der theoretischen Elektronenoptik. ( Birkhäuser, Basel 1950 )zbMATHGoogle Scholar
  52. 5.52
    E. Menzel, E. Kubalek: Secondary electron detection systems for quantitative voltage measurements. Scanning 5, 151 (1983)CrossRefGoogle Scholar
  53. 5.53
    C. Wells, C.G. Bremer: Improved energy analyser for the SEM. J.Phys. E 2, 1120 (1969)Google Scholar
  54. 5.54
    L.J. Balk, H.P. Feuerbaum, E. Kubalek, E. Menzel: Quantitative voltage contrast at high frequencies in the SEM. SEM 1976/I, p.615Google Scholar
  55. 5.55
    Y. Goto, A. Ito, Y. Furukawa, T. Inagaki: Hemispherical retarding type energy analyser for IC testing by electron beam. J.Vac.Sci. Techn. 19, 1030 (1981)Google Scholar
  56. 5.46
    N.P. Feuerbaum: VLSI testing using the electron probe. SEM 1979/I,p.285Google Scholar
  57. 5.57
    W.J. Tee, A. Gopinath: A voltage measurement scheme for the SEM using a hemispherical retarding analyser. SEM 1976/I, p.595Google Scholar
  58. 5.58
    C. Wells: Low-loss image for surface SEM. Appl. Phys. Lett. 19, 232 (1971)ADSCrossRefGoogle Scholar
  59. 5.59
    P. Morin, M. Pitaval, D. Besnard, G. Fontaine: Electron-channelling imaging in SEM. Phil.Mag. A 40, 511 (1979)Google Scholar
  60. 5.60
    C. Wells, A.N. Broers, C.G. Bremer: Method for examining solid specimens with improved resolution in the SEM. Appl.Phys.Lett. 23, 353 (1973)ADSCrossRefGoogle Scholar
  61. 5.61
    J. Weihrauch: Nichtdispersive Röntgenmikroanalyse am Raster-Elektronenmikroskop. BEDO 1, 121 (1968)Google Scholar
  62. 5.62
    D.A. Gedcke: The Si(Li) x-ray energy analysis system: operating principles and performance. X-Ray Spectrometr. 1, 129 (1972)CrossRefGoogle Scholar
  63. 5.63
    D.A. Gedcke: The Si(Li) x-ray energy spectrometer for x-ray microanalysis. In Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. ( Academic, London 1974 ) p. 403Google Scholar
  64. 5.64
    C.E. Fiori, D.E. Newbury: Artifacts observed in energy-dispersive x-ray spectrometry in the SEM. SEM 1978/I, p.401Google Scholar
  65. 5.65
    S.J.B. Reed, N.G. Ware: Escape peaks and internal fluorescence in x-ray spectra recorded with lithium drifted silicon detectors. J.Phys. E 5, 582 (1972)Google Scholar
  66. 5.66
    L. Ames, W. Drummond, J. Iwanczyk, A. Dabrowski: Energy resolution measurements of mercuric iodide detectors using a cooled FET preamplifier. Adv. X-Ray Analysis 26, 325 (1982)CrossRefGoogle Scholar
  67. 5.67
    N.C. Barbi, A.O. Sandborg, J.C. Russ, C.E. Soderquist: Light element analysis on the SEM using a windowless energy dispersive x-ray spectrometer. SEM 1974, p. 151Google Scholar
  68. 5.68
    J.C. Russ, G.C. Baerwaldt, W.R. McMillan: Routine use of a second generation windowless detector for energy dispersive ultra-light elements x-ray analysis. X-Ray Spectr. 5, 212 (1976)CrossRefGoogle Scholar
  69. 5.69
    T.A. Hall: Reduction of background due to backscattered electrons in energy-dispersive x-ray microanalysis. J.Micr. 100, 103 (1977)CrossRefGoogle Scholar
  70. 5.70
    B. Neumann, L. Reimer, B. Wellmanns: A permanent magnet system for electron deflection in front of an energy-dispersive x-ray spectrometer. Scanning 1, 130 (1978)CrossRefGoogle Scholar
  71. 5.71
    E. Lifshin, M.F. Ciccarelli: Present trends in x-ray analysis with the SEM. SEM 1973, p. 89Google Scholar
  72. 5.72
    P.R. Harmer, S.D. Ford, R.A. Dugdale: Electron bombardment lumines-cence stage for optical microscopy. J.Phys.E 1, 59 (1968)ADSCrossRefGoogle Scholar
  73. 5.73
    S.H. Roberts, J.W. Steeds: Cathodoluminescence from ZnS and CdSe. Scanning 3, 165 (1980)CrossRefGoogle Scholar
  74. 5.74
    B.H. Vale, R.T. Greer: SEM cathodoluminescence detection system for transmission optical fluorescence analysis. SEM 1977/I, p.241Google Scholar
  75. 5.75
    F.J. Judge, J.M. Stubbs, J. Philp: A concave mirror, light pipe photon collecting system for cathodoluminescence studies on biological specimens in the JSM 2 SEM. J.Phys. E 7, 173 (1974)Google Scholar
  76. 5.76
    H.C. Casey, R.H. Kaiser: Analysis of n-type GaAs with electron beam excited radiative recombination. J. Electrochem.Soc. 114, 149 (1967)CrossRefGoogle Scholar
  77. 5.77
    E.J. Korda, H.C. Pruden, J.P. Williams: SEM of a P-16 phosphor- cathodoluminescent and secondary electron emission modes. Appl.Phys. Lett. 10, 205 (1967)Google Scholar
  78. 5.78
    A. Boyde, S.A. Reid: New methods for cathodoluminescence in the SEM.SEM 1983/Iv, p. 1803Google Scholar
  79. 5.79
    J.B. Steyn, D.B. Holt: Monochromator-photomultiplier-photon counter detection in luminescent mode SEM. In Scanning Electron Microscopy: systems and applications, ed. by W.C. Nixon ( Inst. of Physics, London 1973 ) p. 272Google Scholar
  80. 5.80
    E.F. Bond, D. Beresford, H.H. Haggis: Improved cathodoluminescence microscopy. J.Micr. 100, 271 (1974)CrossRefGoogle Scholar
  81. 5.81
    G.A.C. Jones, B.R. Nag, A. Gopinath: Temperature dependence of cathodoluminescence in n-type GaAs: J.Phys. D 7, 183 (1974)Google Scholar
  82. 5.82
    W.R. McKinney, P.V.C. Hough: A new detector system for cathodolumi- nescence microscopy. SEM 1977/I, p.251Google Scholar
  83. 5.83
    A. Rasul, S.M. Davidson: SEM measurements of minority carrier lifetimes at dislocations in GaP, employing photon counting. SEM 1977/I, p.233Google Scholar
  84. 5.84
    L.J. Balk, E. Kubalek: Cathodoluminescence studies of semiconductors in SEM. BEDO 6, 559 (1973)Google Scholar
  85. 5.85
    E.M. Hörl: SEM of biological material using cathodoluminescence. Micron 3, 540 (1972)Google Scholar
  86. E.M. Hörl: Verbessertes Ellipsenspiegel-Detektorsystem für die Kathodolumineszenz-Rasterelektronenmikroskopie. BEDO 8, 369 (1975)Google Scholar
  87. 5.86
    L. Carlson, C.G. van Essen: An efficient apparatus for studying cathodoluminescence in the SEM. J.Phys. E 7, 98 (1974)Google Scholar
  88. 5.87
    A. Ishikawa, F. Mizuno, Y. Uchikawa, S. Maruse: High resolution and spectroscopic cathodoluminescent images in SEM. Jap.J.Appl.Phys. 12, 286 (1973)ADSCrossRefGoogle Scholar
  89. 5.88
    W. Bröcker, G. Hauck, H. Weigelt, G. Pfefferkorn: Lock-in technique applied to cathodoluminescence of biological specimens in the SEM. Scanning 4, 165 (1981)CrossRefGoogle Scholar
  90. 5.89
    K. Löhnert, M. Hastenrath, L. Balk, E. Kubalek: Optische Vielkanal- analyse der Kathodolumineszenz im Rasterelektronenmikroskop. BEDO 11, 95 (1978)Google Scholar
  91. 5.90
    M.D. Muir, P.R. Grant, G. Hubbard, J. Mundell: Cathodoluminescence spectra. SEM 1971, p. 403Google Scholar
  92. 5.91
    B. Dunger, D. Schmidt: Zum Einfluß der Bildröhre auf den Kontrast in REM-Bildern. BEDO 4/2, 381 (1971)Google Scholar
  93. 5.92
    H. Hantsche: Systematische Fehler bei Rasterabbildungen als Folge endlichen Strahldurchmessers. BEDO 3, 371 (1970)Google Scholar
  94. 5.93
    J. Bahr, B. Dunger, W. Schwarz: Zum Einfluß von Rastergrößen auf die Schärfentiefe beim Raster-Elektronenmikroskop. BEDO 3, 379 (1970)Google Scholar
  95. 5.94
    G.A.C. Jones, H. Ahmed, W.C. Nixon: Large field SEM. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 65Google Scholar
  96. 5.95
    K. Schur: Ein Moiré-Effekt im Raster-Elektronenmikroskop. BEDO 3, 143 (1970)Google Scholar
  97. 5.96
    C.E. Fiori, H. Yakowitz, D.E. Newbury: Some techniques of signal processing in SEM. SEM 1974, p. 167Google Scholar
  98. 5.97
    L. Reimer, P. Hagemann: Recording of mass thickness in STEM. Ultra- microscopy 2, 297 (1977)CrossRefGoogle Scholar
  99. 5.98
    J.P. Fleming: The display of information from scanned measuring systems by contour mapping. J.Phys. E 2, 93 (1969)Google Scholar
  100. 5.99
    P.R. Thornton, D.V. Sulway, D.A. Shaw: SEM in device diagnostics and reliability. IEEE Trans. ED 16, 360 (1969)CrossRefGoogle Scholar
  101. 5.100
    M.C. Bagget, L.H. Glassman: SEM image processing by analogue homomorphic filtering technique. SEM 1974, p. 199Google Scholar
  102. 5.101
    L.J. Balk, E. Kubalek, E. Menzel: Untersuchung von GaAIAs-Elektro- lumineszenzdioden im Rasterelektronenmikroskop. BEDO 7, 245 (1974)Google Scholar
  103. 5.102
    T.J. Pitt: Application of an array processor to image processing in electron microscopy. J.Micr. 127, 85 (1982)CrossRefGoogle Scholar
  104. 5.103
    H.C. Andrews: Computer Techniques in Image Processing (Academic, New York 1970) T.S. Huang: Picture Processing and Digital Filtering, 2nd ed. Topics Appl. Phys. Vol.6 (Springer, Berlin, Heidelberg 1979) W.K. Pratt: Digital Image Processing (Wiley, New York 1978 ) P.W. Hawkes (ed.): Computer Processing of Electron Microscope Images. Topics Curr.Physics Vol.13 (Springer, Berlin, Heidelberg 1980 )Google Scholar
  105. 5.104
    A. Rosenfeld, A.C. Kak: Digital Picture Processing (2nd ed.) Vol.1,2 ( Academic, New York 1982 )Google Scholar
  106. 5.106
    A.V. Jones, K.C.A. Smith: Image processing for scanning microscopists. SEM 1978/I, p.13Google Scholar
  107. 5.106
    K.C.A. Smith: On-line digital computer techniques in electron microscopy. J.Micr. 127, 3 (1982)CrossRefGoogle Scholar
  108. 5.107
    P.W. Hawkes: Processing electron images. In Quantitative Electron Microscopy, ed. by J.N. Chapman and A.J. Craven ( Scottish Univ. Summer School in Physics, Edinburgh 1984 ) p. 351Google Scholar
  109. 5.108
    H.J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms, 2nd ed. Springer Ser.Inf.Sci., Vol. 2 ( Springer, Berlin, Heidelberg 1982 )Google Scholar
  110. 5.109
    L. Reimer, B. Volbert, P. Bracker: Quality control of SEM micrographs by laser diffractometry. Scannino 1, 233 (1978)CrossRefGoogle Scholar
  111. 5.110
    S.J. Erasmus, D.M. Holburn, K.C.A. Smith: On-line computation of diffractograms for the analysis of SEM images. Scanning 3, 273 (1980)CrossRefGoogle Scholar
  112. 5.111
    A. Niemitz, L. Reimer: Digital image processino of multiple detector signals in SEM. Ultramicroscopy 16, 161 (1985)CrossRefGoogle Scholar
  113. 5.112
    L. Reimer: Transmission Electron Microscopy, Physics of Image Formation and Microanalysis, Springer Ser.Opt.Sci., Vol. 36 ( Springer, Berlin, Heidelberg 1984 )Google Scholar
  114. 5.113
    E.R. Weibel: G.S. Kistler, W.F. Schobe: Practical stereological methods for morphometric cytology. J.Cell.Biol. 30, 23 (1966) 5.114 H. G.ger: Grundgleichungen der Stereologie. Metrika 16, 43 (1970)Google Scholar
  115. 5.115
    E.E. Underwood: Quantitative Stereology (Addison-Wesley, Reading, Mass. 1972 )Google Scholar
  116. 5.116
    C.G. Amstutz, H. Giger: Stereological methods applied to mineralogy, petrology, mineral deposits and ceramics. J.Micr. 95, 145 (1972)CrossRefGoogle Scholar
  117. 5.117
    E.R. Weibel: Stereological techniques for electron microscopic morphometry. In Principles and Techniques of Electron Microscopy, Vol.3, ed. by M.A. Hayat (Van Nostrand-Reinhold, New York 1973 ) 0. 237Google Scholar
  118. 5.118
    J. Lebiedzik, K.G. Burke, S. Troutman, G.G. Johnson, E.W. White: New methods for quantitative characterization of multiphase particulate materials including thickness measurement. SEM 1973, p. 121Google Scholar
  119. 5.119
    W.R. Scott, E.J. Chatfield. A precision SEM image analysis system with full-feature EDXA characterization. SEM 1979/II, p.53Google Scholar
  120. 5.120
    R.J. Lee, J.F. Kelly: Overview of SEM-based automated image analysis. SEM 1980/I, p.303Google Scholar
  121. 5.121
    D.L. Johnson: Automated SEM characterization of particulate inclusions in biological tissues. SEM 1983/III, p. 1211Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfätlische Wilhelms-Univeraität MünsterMünsterFed. Rep. of Germany

Personalised recommendations