Skip to main content

Emission of Electrons and X-Ray Quanta

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

Abstract

Backscattered electrons (BSE) and secondary electrons (SE) are the most important signals for image recording. A knowledge of the dependence of the backscattering coefficient η and the secondary electron yield δ on surface tilt, material and electron energy and their angular and energy distributions is essential for the interpretation of image contrast (Chap. 6). The spatial exit distributions and information depths of these electrons are responsible for the resolution if the latter is not limited by the electron-probe size. The shot noise of the incident electron current will be increased during SE and BSE emission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Drescher, L. Reimer, H. Seidel: Rückstreukoeffizient und Sekundärelektronen-Ausbeute von 10–100 keV Elektronen und Beziehungen zur Raster-Elektronenmikroskopie. Z.angew.Phys. 29, 331 (1970)

    Google Scholar 

  2. E. Weinryb, J. Philibert: Mesure du coefficient de la rétrodiffusion des électrons de 5 à 30 keV. Compt.rend.Acad.Sci.(Paris) 258, 4535 (1964)

    Google Scholar 

  3. K.F.J. Heinrich: Interrelationships of sample composition, backscat-tering coefficient, and target current measurements. Adv. X-Ray Analysis, Vol.7, ed. by W.M. Mueller et al. ( Plenum, New York 1964 ) p. 325

    Google Scholar 

  4. J.W. Colby. Backscattered and secondary electron emission as ancillary techniques in electron probe analysis. In Electron Probe Microanalysis, ed. by A.J. Tousimis and L. Marton ( Academic, New York 1969 ) p. 177

    Google Scholar 

  5. L. Reimer, C. Tollkamp: Measuring the backscattering coefficient and secondary electron yield inside a SEM. Scanning 3, 35 (1980)

    Article  Google Scholar 

  6. H. Kulenkampff, W. Spyra: Energieverteilung rückdiffundierter Elektronen. Z.Phys. 137, 416 (1954)

    Article  ADS  Google Scholar 

  7. V.E. Cosslett, R.N. Thomas: Multiple scattering of 5–30 keV electrons in evaporated metal films. II Range-energy relations. Brit. J. Appl.Phys. 15, 1283 (1964)

    Google Scholar 

  8. L. Reimer, K. Brockmann, U-.2 Rhein: Energy losses of 20–40 keV electrons in 150–650 ug cmmetal films. J.Phys. D 11, 2151 (1978)

    Google Scholar 

  9. H. Niedrig, P. Sieber: Rückstreuung mittelschneller Elektronen an dünnen Schichten. Z.angew.Phys. 31, 27 (1971)

    Google Scholar 

  10. V.E. Cosslett, R.N. Thomas: Multiple scattering of 5–30 keV electrons. III Backscattering and absorption. Brit.J.Appl.Phys. 16, 779 (1965)

    Google Scholar 

  11. T. Just, H. Niedrig, H. Yersin: Schichtdickenbestimmung mittels Elektronen-Rückstreuung. Z.angew.Phys. 25, 89 (1968)

    Google Scholar 

  12. F.J. Hohn, H. Niedrig: Elektronenrückstreuung an dünnen Metall- und Isolatorschichten. Optik 35, 290 (1972)

    Google Scholar 

  13. H. Niedrig: Film thickness determination in electron microscopy; the electron backscattering method. Optica Acta 24, 679 (1977) H. Niedrig: Electron backscattering from thin films. J.Appl.Phys. 53, R15 (1982)

    Article  ADS  Google Scholar 

  14. L. Reimer: Transmission Electron Microscopy, Physics of Image For- mation and Microanalysis, Springer Ser.Opt.Sci., Vol. 36 ( Springer, Berlin, Heidelberg 1984 )

    Google Scholar 

  15. G. Kuhnle, J.P. Martin, H. Seiler: Schicktdickenuntersuchungen im Elektronen-Rastermikroskop. BEDO 2, 101 (1969)

    Google Scholar 

  16. H.G. Badde, H. Drescher, E.R. Krefting, L. Reimer, H. Seidel, W. Bühring: Use of Mott scattering cross sections for calculating backscattering of 10–100 keV electrons. In Proc. of 25th Anniv. Meeting of EMAr (Inst. of Physics, Bristol 1971 ) p. 74

    Google Scholar 

  17. F.J. Hohn, M. Kindt, H. Niedrig, B. Stuth: Elektronenrückstreu- messungen an dünnen Schichten auf massiven Trägersubstanzen. Optik 46, 491 (1976)

    Google Scholar 

  18. H. Seiler: Determination of the “information depth” in the SEM. SEM 1976/I, p.9

    Google Scholar 

  19. W. Reuter: The ionization function and its application to the electron probe analysis of thin films. In Proc. 6th Int. Conf. on X-Ray Optics and Microanalysis, ed. by G. Shinoda et al: ( Univ. Tokyo Press, Tokyo 1972 ) p. 121

    Google Scholar 

  20. P.B. DeNee: Measurement of mass and thickness of respirable size dust particles by SEM backscattered electron imaging. SEM 1978/I, p.741

    Google Scholar 

  21. N.G. Nakhodkin, A.A. Ostroukhov, V.A. Romanovski: Electron inelastic scattering in thin films. Sov.Phys.Solid State 4, 1112 (1962).

    Google Scholar 

  22. H. Niedrig: Ein kombiniertes Einfachstreu-und Diffusionsmodell für die Elektronen-Rückstreuung dünner Schichten. BEDO 24, 291 (1981)

    Google Scholar 

  23. D.F. Kyser, K. Murata: Application of Monte Carlo simulation to electron microprobe analysis of thin films on substrates. NBS Spec. Publ. 460 (US Dep. of Commerce, Washington 1976 ) p. 129

    Google Scholar 

  24. K.E. Hoffmann, H. Schmoranzer: Inelastic and elastic multiple scat-tering of fast electrons described by the transport equation. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 209

    Google Scholar 

  25. F.J. Hohn: Angular dependence of electron intensities backscattered by carbon films. Optik 47, 491 (1977)

    Google Scholar 

  26. H. Schmoranzer, H. Grabe: Absolute differential cross sections for scattering of 40keV electrons from thin gold and carbon foils. In Electron Microscopy 1976, Vol.I, ed. by D.G. Brandon (Tal International, Jerusalem 1976 ) p. 293

    Google Scholar 

  27. H. Kanter: Zur Rückstreuung von Elektronen im Energiebereich von 10–100 keV. Ann.Phys. 20, 144 (1957)

    Article  Google Scholar 

  28. F. Arnal, P. Verdier, P.D. Vincensini: Coefficient de retrodiffusion dans de cas d“électrons monocinétiques arrivant sur la cible sous une incidence oblique. Compt.rend Acad.Sci. (Paris) 268, 1526 (1969)

    Google Scholar 

  29. E.H. Darlington, V.E. Cosslett: Backscattering of 0.5–10 keV electrons from solid targets. J.Phys. D 5, 1969 (1972) E.H. Darlington: Backscattering of 10–100 keV electrons from thick targets. J.Phys. D 8, 85 (1975)

    Google Scholar 

  30. H. Bruining: Secondary electron emission. Physica 5, 901 (1938)

    Article  ADS  Google Scholar 

  31. B. Lödding, L. Reimer: Monte Carlo Rechnungen im Energiebereich 1–20 keV. BEDO 14, 315 (1981)

    Google Scholar 

  32. R. Castaing: Electron-probe microanalysis. Adv.Electr.Electron Phys. 13, 317 (1960)

    Article  Google Scholar 

  33. R. Herrmann, L. Reimer: Backscattering coefficient of multicomponent specimens. Scanning 6, 20 (1984)

    Article  Google Scholar 

  34. J.0. Brand: Ober die Energieverteilung rückdiffundierter Kathoden-strahlen. Ann.Phys. 26, 609 (1936)

    Article  Google Scholar 

  35. E.J. Sternglass: Backscattering of kilovolt electrons from solids. Phys.Rev. 95, 345 (1954)

    Article  ADS  Google Scholar 

  36. W. Bothe: Zur Rückdiffusion schneller Elektronen. Z.Naturforschg. 4a, 542 (1949)

    Google Scholar 

  37. H.E. Bishop: Electron scattering in thick targets. Brit.J.Appl. Phys. 18, 703 (1967)

    Google Scholar 

  38. T. Matsukawa, R. Shimizu, H. Hashimoto: Measurements of the energy distribution of backscattered kilovolt electrons with a spherical retarding-field energy analyser. J.Phys. D 7, 695 (1974)

    Google Scholar 

  39. H. Boersch, R. Wolter, H. Schoenebeck: Elastische Energieverluste kristallgestreuter Elektronen. Z.Phys. 199, 124 (1967)

    Article  ADS  Google Scholar 

  40. P. Sommerkamp: Elektronen-Rückstreumessungen an Ta und Ni, ein Beitrag zur Leistungsbilanz des Elektronenstrahlschmelzens. Z.angew.Phys. 28, 220 (1970)

    Google Scholar 

  41. H.D. Bauer: Messungen zur Energieverteilung von Rückstreuelektronen an polykristallinen Festkörpern. Exp.Techn.Phys. 27, 331 (1979)

    Google Scholar 

  42. O.C. Wells: Explanation of the low-loss image in the SEM in terms of electron scattering theory. SEM 1972, p. 170

    Google Scholar 

  43. H. Bruining: Physics and Application of Secondary Electron Emission ( Pergamon, London 1964 )

    Google Scholar 

  44. A.J. Dekker: Secondary Electron Emission. Solid State Physics 8, ed. by F. Seitz and D. Turnbull ( Academic, New York 1958 ) p. 251

    Google Scholar 

  45. R. Kollath: Sekundärelektronen-Emission fester Körper bei Bestrahlung mit Elektronen. Encyclopedia of Physics, VoZ.21, ed. by S. Flügge ( Springer, Berlin, Göttingen 1956 ) p. 232

    Google Scholar 

  46. C. Hachenberg, W. Brauer: Secondary electron emission from solids. Adv. Electr.Electron Phys. 11, 413 (1959)

    Article  Google Scholar 

  47. H. Seiler: Einige aktuelle Probleme der Sekundärelektronenemission. Z.angew.Phys. 22, 249 (1967)

    Google Scholar 

  48. H. Seiler: Secondary electron emission. In Electron Beam Inter-actions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 33

    Google Scholar 

  49. W. Dietrich, H. Seiler: Energieverteilung von Elektronen, die durch Ionen und Elektronen in Durchstrahlung an dünnen Folien ausgelöst werden. Z.Phys. 157, 576 (1960)

    Article  ADS  Google Scholar 

  50. J. Schäfer, J. Hölzl: A contribution to the dependence of secondary electron emission from the work function and Fermi energy. Thin Solid Films 18, 81 (1972)

    Article  Google Scholar 

  51. V.E. Henrich: Role of bulk and surface plasmons in the emission of slow secondary electrons: polycrystalline aluminium. Phys. Rev. B 7, 3512 (1973)

    Article  ADS  Google Scholar 

  52. T.E. Everhart, N. Saeki, R. Shimizu, T. Koshikawa: Measurement of structure in the energy distribution of slow secondary electrons from aluminium. J.Appl.Phys. 47, 2941 (1976)

    Article  ADS  Google Scholar 

  53. R.E. Chase, W.L. Gordon, R.W. Hoffman: Measurement of low energy secondary electron distributions using a double-pass cylindrical mirror analyzer. Appl.Surf.Sci 4, 271 (1980)

    Article  Google Scholar 

  54. K. Kanaya, H. Kawakatsu: Secondary electron emission due to primary and backscattered electrons. J.Phys. D 5, 1727 (1972)

    Google Scholar 

  55. V.V. Makarov, N.N. Petrov: Regularities of secondary electron emission of the elements of the periodic table. Sov.Phys.Solid State 23, 1028 (1981)

    Google Scholar 

  56. P.W. Palmberg: Secondary emission studies on Ge and Na-covered Ge.J.Appl.Phys. 38, 2137 (1967)

    Google Scholar 

  57. K. Kanaya, S. Ono: Interaction of electron beam with the target in SEM. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 69

    Google Scholar 

  58. H. Mayer, J. Hölzl: Experimentelle Bestimmung der maximalen Austrittstiefen monoenergetischer Sekundärelektronen. Phys.Stat.Sol. 18, 779 (1966)

    Article  ADS  Google Scholar 

  59. I.M. Bronshtein, V.A. Dolinin: The secondary electron emission of solids at large angles of incidence of the primary beam. Sov.Phys. Solid State 9, 2133 (1968)

    Google Scholar 

  60. W. Oppel, H. Jahrreiss: Messungen der Winkelverteilung von Sekundär-elektronen an dünnen freitragenden Al-und Au-Schichten. Z.Phys. 252, 107 (1972)

    Article  ADS  Google Scholar 

  61. J. Burns: Angular distribution of secondary electrons from (100) faces of Cu and Ni. Phys. Rev. 119, 102 (1960)

    Article  ADS  Google Scholar 

  62. G. Appelt: Fine structure measurements in the energy angular distri-bution of secondary electrons from a (110) face of copper. Phys.stat. sol. 27, 657 (1968)

    Article  ADS  Google Scholar 

  63. R.F. Willis, N.E. Christensen: Secondary-electron-emission spectro-scopy of tungsten: angular dependence and phenomenology. Phys. Rev. B 18, 5140 (1978)

    Article  Google Scholar 

  64. J. Schäfer, R. Schoppe, J. Hölzl, R. Feder: Experimental and theoretical study of the angular resolved secondary electron spectroscopy (ARSES) for W (100) in the energy range 0 E 20 eV. Surf. Sci. 107, 290 (1981)

    Article  Google Scholar 

  65. J.P. Martin: Zum Einfluß der Objektkontamination auf das rastermikroskopische Bild. BEDO 4/2, 387 (1971)

    Google Scholar 

  66. A.G. Knapp: The effect of electron bombardment on the secondary electron emission from Na3A1F6. J.Appl.Phys. 50, 5961 (1979)

    Google Scholar 

  67. M.S. Chung, T.E. Everhart: Simple calculation of energy distribution of low-energy secondary electrons emitted from metals under electron bombardment. J. Appl.Phys. 45, 707 (1974)

    Article  ADS  Google Scholar 

  68. H.W. Streitwolf: Zur Theorie der Sekundärelektronenemission von Metallen: der Anregungsprozeß. Ann.Physik 3, 183 (1959)

    Article  ADS  MATH  Google Scholar 

  69. J.J. Quinn: Range of excited electrons in metals. Phys.Rev. 126, 1453 (1962)

    Article  ADS  MATH  Google Scholar 

  70. R. Bindi, H. Lanteri, P. Rostaing: A new approach and resolution method of the Boltzmann equation applied to secondary electron emission by reflection from polycrystalline aluminium. J.Phys. D 13, 267 (1980)

    Google Scholar 

  71. J. Schou: Transport theory for kinetic emission of secondary electrons from solids. Phys. Rev. B 22, 2141 (1980)

    Article  Google Scholar 

  72. M. Rösler, W. Brauer: Theory of secondary electron emission. Phys. stat.sol.(b) 104, 161 and 575 (1981)

    Google Scholar 

  73. L. Reimer: Electron signal and detector strategy. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 299

    Google Scholar 

  74. K. Murata: Monte Carlo calculations on electron scattering and secondary electron production in the SEM. SEM 1973, p.267. Murata: Spatial distribution of backscattered electrons in the SEM and electron microprobe. J.Appl.Phys. 45, 4110 (1974)

    Article  ADS  Google Scholar 

  75. F. Hasselbach. U. Rieke: Spatial distribution of secondaries released by backscattered electrons in silicon and gold for 20–70 keV primary energy. In Electron Microscopy 1982, Vol. 1, 253 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 )

    Google Scholar 

  76. L. Reimer, H. Drescher: Secondary electron emission of 10–100 keV electrons from transparent films of Al and Au. J.Phys. D 10, 805 (1977)

    Google Scholar 

  77. H. Jahrreiß: Secondary electron emission from thin films. Thin Solid Films 12, 187 (1972)

    Article  ADS  Google Scholar 

  78. J. Kadlec, L. Eckertovâ: Zur Bestimmung der Sekundärelektronen-emission dünner Schichten. Z.angew.Phys. 30, 141 (1970)

    Google Scholar 

  79. H.J. Fitting: Transmission, energy distribution and secondary electron excitation of fast electrons in thin solid films. Phys.stat.sol.(a) 26, 525 (1974)

    Article  ADS  Google Scholar 

  80. V.N.E. Robinson: The dependence of emitted secondary electrons upon the direction of travel of the exciting electrons. J.Phys. D 8, L74 (1975)

    Google Scholar 

  81. A. van der Zeil: Noise ( Prentice Hall, Englewood Cliffs, NY 1970 )

    Google Scholar 

  82. W. Shockley, J.R. Pierce: A theory of noise for electron multipliers Proc.Inst.Radio Ing. 26, 321 (1938)

    Google Scholar 

  83. B. Kurrelmeyer, L.J. Hayner: Shot effect of secondary electrons from nickel and beryllium. Phys. Rev. 52, 952 (1937)

    Article  ADS  Google Scholar 

  84. T.E. Everhart, 0.C. Wells, C.W. Oatley: Factors affecting contrast and resolution in the SEM. J.Electronics Contr. 7, 97 (1959)

    Article  Google Scholar 

  85. L. Reimer: Rauschen der Sekundärelektronenemission. BEDO 4/2, 299 (1971)

    Google Scholar 

  86. B.K. Arawal: X-Ray Spectroscopy, an Introduction, Springer Ser.Opt. Sci. Vol. 15 ( Springer, Berlin, Heidelberg 1979 )

    Google Scholar 

  87. R.H. Pratt, H.K. Tseng, C.M. Lee, L. Kissel: Bremsstrahlung energy spectra from electrons of kinetic energy 1 keV T1• 2000 keV incident on neutral atoms 2 Z 92. Atomic Data and Nuclear Data Tables 20, 175 (1977)

    Article  ADS  Google Scholar 

  88. H.K. Tseng, R.H. Pratt, C.M. Lee: Electron bremsstrahlung angular distributions in the 1–500 keV energy range. Phys.Rev.A 19, 187 (1979)

    Article  ADS  Google Scholar 

  89. A. Sommerfeld: Ober die Beugung und Bremsung der Elektronen. Ann.Phys. 11, 257 (1931)

    Article  Google Scholar 

  90. P. Kirkpatrick, L. Wiedmann: Theoretical continuous x-ray energy and polarization. Phys.Rev. 67, 321 (1945)

    Article  ADS  Google Scholar 

  91. H.H. Kramers: On the theory of x-ray absorption and of the continu-ous x-ray spectrum. Phil.Mag. 46, 836 (1923)

    Google Scholar 

  92. P. Bernsen. L. Reimer: Total rate imaging with x-rays in a SEM.SEM 1984/íV, p. 1707

    Google Scholar 

  93. H. Kulenkampff: Das kontinuierliche Röntgenspektrum. Handbuch der Physik, Bd.23/2, ed. by H. Geiger and K. Scheel (Springer, Berlin 1933) 0. 142

    Google Scholar 

  94. S.T. Stephenson: The continuous x-ray spectrum. Handb.Physik 30, ed. by S. Flügge ( Springer, Berlin 1957 ) p. 337

    Google Scholar 

  95. W.L. Baun: Changes in x-ray emission spectra observed between the pure elements and elements in combination with others to form compounds or alloys. Adv.Electr.Electron Phys.Suool. 6, 155 (1969)

    Google Scholar 

  96. A. Faessler, M. Goehring: Röntgenspektrum und Bindungszustand. Die Ka-Fluoreszenzstrahlung des Schwefels. Naturwiss. 39, 169 (1952)

    Article  ADS  Google Scholar 

  97. E.H.S. Burhop: Le rendement de fluorescence. J.Phys.Radium 16, 625 (1955)

    Article  Google Scholar 

  98. W. Bambynek, B. Crasemann, R.W. Fink, H.U. Freund, H. Mark, C.D. Swift, R.E. Price, P.V. Rao: X-Ray fluorescence yields, Auger, and CosterKronig transition probabilities. Rev.Mod.Phys. 44, 716 (1972)

    Article  ADS  Google Scholar 

  99. K.F.J. Heinrich: Electron-Beam X-Ray Microanalysis ( Van Nostrand, New York 1981 )

    Google Scholar 

  100. N.A. Dyson: X-Rays in Atomic and Nuclear Physics ( Longman, London 1973 )

    Google Scholar 

  101. K.F.J. Heinrich: X-Ray absorption uncertainty. In The Electron Microprobe, ed. by T.D. McKinley et al. (Wiley, New York 1966) p.296

    Google Scholar 

  102. J.Z. Frazer: A computer fit to mass absorption coefficient data. Rep.S.I.O. 67–29, Inst. for the Study of Matter (Univ. of California,La Jolla 1967 )

    Google Scholar 

  103. G. Springer, B. Nolan: Mathematical expression for the evaluation of x-ray emission and critical energies, and of mass absorption coefficients. Canad. J. Spectr. 21, 134 (1976)

    Google Scholar 

  104. R. Theisen: Quantitative Electron Microprobe Analysis (Springer, Berlin, Heidelberg 1965 )

    Google Scholar 

  105. E.H.S. Burhop: The Auger Effect (Univ. Press, Cambridge 1952 ) 4.106 T.A. Carlson: Photoelectron and Auger Electron Spectroscopy ( Plenum, New York 1974 )

    Google Scholar 

  106. T. Aberg, G. Howart: Theory of the Auger Effect. Encyclopedia of Physics, Vol.32, ed. by S. Flügge ( Springer, Berlin, Heidelberg 1982 ) p. 469

    Google Scholar 

  107. H.H. Madden: Chemical information from Auger electron spectroscopy. J.Vac.Sci.Technol. 18, 677 (1981)

    Article  ADS  Google Scholar 

  108. M.P. Seah: A review of quantitative Auger electron spectroscopy. SEM 1983/1I, p.521

    Google Scholar 

  109. M.L. Tarng, G.K. Wehner: Escape length of Auger electrons. J.Appl. Phys. 44, 1534 (1973)

    Google Scholar 

  110. M.P. Seah, W.A.D. Dench: Quantitative electron spectroscopy of surfaces. A standard data base for electron inelastic mean free paths in solids. Surf.Interface Anal. 1, 2 (1979)

    Article  Google Scholar 

  111. J. Szajman, R.C.G. Leckey: An analytical expression for the calculation of electron mean free paths in solids. J.Electron Spectr. 23, 83 (1981)

    Article  Google Scholar 

  112. J. Szajman, J. Liesegang, J.G. Jenkin, R.C.G. Leckey: Is there a universal mean-free-path curve for electron inelastic scattering in solids. J.Electron Spectr. 23, 97 (1981)

    Article  Google Scholar 

  113. H.E. Bishop, J.C. Rivière: Estimation of the efficiencies of production and detection of electron-excited Auger emission. J.Appl. Phys. 40, 1740 (1969)

    Google Scholar 

  114. J. Kirschner: The role of backscattered electrons in scanning Auger microscopy. SEM 1976/I, p.215

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1985). Emission of Electrons and X-Ray Quanta. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13562-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13562-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13564-8

  • Online ISBN: 978-3-662-13562-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics