Advertisement

Electron Scattering and Diffusion

  • Ludwig Reimer
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 45)

Abstract

Elastic and inelastic scattering processes result in zig-zag trajectories of electrons in a solid until the electrons come to rest by gradual deceleration or leave the specimen as backscattered electrons. Elastic large-angle scattering differs considerably from that characterized by the widely used Rutherford cross-sections and Mott cross-sections have to be used for more accurate calculations. The ionisation cross-section of inner shells is important for calculating the number of characteristic x-ray quanta generated. The influence of inelastic scattering on deceleration can be treated by Bethe’s continuous-slowing-down approximation without knowing the inelastic scattering processes in detail. The angular, spatial and energy distributions after passage through thin films or surface layers can be treated by multiple-scattering theories. The total electron diffusion is a very complex process. Of practical interest are the dependence of transmission on specimen thickness, the electron range and also the depth and spatial distributions of dissipated energy since this can result in the generation of electron-hole pairs in semiconductors, in phonons or heat and in radiation damage by the electron beam. The so-called diffusion models are very crude and detailed calculations using the transport equation or the Monte Carlo method can only be made numerically on a computer.

Keywords

Angular Distribution Elastic Scattering Inelastic Scattering Electron Scattering Incident Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1
    L. Reimer: Transmission Electron Microscopy, Physics of Image Formation and:Microanalysis, Springer Ser.Opt.Sci., Vol. 36 ( Springer, Berlin, Heidelberg 1984 )Google Scholar
  2. 3.2
    R.D. Birkhoff: The Passage of Fast Electrons Through Matter. Encyclopedia of Physics, Vol.34, ed. by S. Flügge ( Springer, Berlin 1958 ) p. 53Google Scholar
  3. 3.3
    J.M. Lévy-Leblond: Nonrelativistic particles and wave equations. Comm.Math.Phys. 6, 286 (1967) W. Greiner: Theoretische Physik, Bd.4: Quantenmechanik (Harry Deutsch, Thun, Frankfurt 1979 ) p. 300Google Scholar
  4. 3.4
    H.S.W. Massey, E.H.S. Burhop, H.B. Gilbody: Electronic and Ionic Impact Phenomena. VoZ.I. Collision of Electrons with Atoms ( Clarendon, Oxford 1965 )Google Scholar
  5. 3.5
    H.L. Cox, R.A. Bonham: Elastic electron scattering amplitudes for neutral atoms calculated using the partial wave method at 10, 40, 70 and 100 kV for Z = 1 to Z = 54. J.Chem.Phys. 47, 2599 (1967)Google Scholar
  6. 3.6
    F. Lenz: Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z.Naturforschg. 9a, 185 (1954)ADSzbMATHGoogle Scholar
  7. 3.7
    H. Raith: Komplexe Atomstreuamplituden für die elastische Elektro-nenstreuung an Festkörperatomen. Acta Cryst. A24, 85 (1968)Google Scholar
  8. 3.8
    L. Reimer, K.H. Sommer: Messungen und Berechnungen zum elektronen-mikroskopischen Streukontrast für 17 bis 1200 keV-Elektronen. Z.Naturforschg. 23a, 1569 (1968)Google Scholar
  9. 3.9
    N.F. Mott, H.S.W. Massey: The Theory of Atomic Collisions, 3rd. ed.,(Oxford Univ. Press, London 1965 )Google Scholar
  10. 3.10
    D.W. Walker: Relativistic effects in low energy electron scatterinc, from atoms. Adv. Physics 20, 257 (1971)ADSGoogle Scholar
  11. 3.11
    J. Kessler: Polarized Electrons, 2nd ed. Springer Ser. Atoms Plasmas, Voll (Springer, Berlin, Heidelberg 1985 )Google Scholar
  12. 3.12
    W. Bühring: Computational improvements in phase shift calculations of elastic electron scattering. Z.Phys. 187, 180 (1965)ADSGoogle Scholar
  13. 3.13
    A.C. Yates: Spin polarization of low-energy electrons scattered elastically from atoms and molecules. Phys. Rev. 176, 173 (1968)ADSGoogle Scholar
  14. 3.14
    L. Reimer, E.R. Kreftino: Calculation and tabulation of Mott cross-sections for large-angle electron scattering. Scannina 6, 128 (1984)Google Scholar
  15. 3.15
    S. Ichimura, M. Aratama. R. Shimizu: Monte Carlo calculation approach to quantitative Auger electron spectroscopy. J.Appl.Phys. 51, 2853 (1980)ADSGoogle Scholar
  16. 3.16
    H. Raether: Excitations of Plasmons and Interband Transitions by Electrons. Springer Tracts Mod.Phys. 88 ( Springer, Berlin, Heidelberg 1980 )Google Scholar
  17. 3.17
    J. Daniels, C. von Festenberg, H. Raether, K. Zeppenfeld: Optical constants of solids by electron spectroscopy. Springer Tracts Mod. Phys. 54, 77 ( Springer, Berlin, Heidelberg 1970 )Google Scholar
  18. 3.18
    C. Colliex, B. Jouffrey: Diffusion inelastique des electrons dans un solide par excitation de niveaux atomiques profonds. Phil. Mag. 25, 491 (1972)ADSGoogle Scholar
  19. 3.19
    R.D. Leapman, V.E. Cosslett: Electron energy loss spectroscopy: mean free paths for some characteristic x-ray excitations. Phil. Mag 33, 1 (1976)ADSGoogle Scholar
  20. 3.20
    M. Isaacson: All you might want to know about ELS and are afraid to ask: a tutorial. SEM 1978/I, p.763Google Scholar
  21. 3.21
    C. Colliex, O.L. Krivanek, P. Trebbia: Electron energy loss spectros-copy in the electron microscope: a review of recent Progress. In Electron Microscopy and Analysis 1981, ed. by M. Goringe ( Inst. of Physics, London 1982 ) p. 183Google Scholar
  22. 3.22
    M. Creuzburg, H. Raether: Ober die charakteristischen Energieverluste bei Elektronenstreuung an Si-Spaltflächen. Z.Phys. 777, 436 (1963)ADSGoogle Scholar
  23. 3.23
    J. Lohff: Charakteristische Energieverluste bei der Streuung mittelschneller Elektronen an Aluminium-Oberflächen. Z.Phys. 171, 422 (1963)ADSGoogle Scholar
  24. 3.24
    C.J. Powell: Characteristic energy losses of 8 keV electrons in liquid Al, Bi, In, Ga, Hg and Au. Phys.Rev. 175, 972 (1968)ADSGoogle Scholar
  25. 3.25
    J. Schilling: Energieverlustmessungen von schnellen Elektronen an Oberflächen von Ga, In, Al und Si. Z.Phys. B 25, 61 (1976)Google Scholar
  26. 3.26
    H. Froitzheim: Electron Energy Loss Spectroscopy, In Electron Sreetrosoapy of Surface Analysis, ed.by H. Ibach, Topics Current Phys. Vol. 4 ( Springer, Berlin, Heidelberg 1977 ) p. 205Google Scholar
  27. 3.27
    J.J. Thomson: Ionization by moving electrified particles, Phil. Mag. 23, 449 (1912)Google Scholar
  28. 3.28
    C. Moller: Zur Theorie des Durchgangs schneller Elektronen durch Materie. Ann.Phys. 14, 531 (1932)zbMATHGoogle Scholar
  29. 3.29
    M. Gryzinski: Classical theory of atomic collisions I. Theory of inelastic collisions. Phys. Rev. A 138, 336 (1965)MathSciNetGoogle Scholar
  30. 3.30
    C.R. Worthington, S.G. Tomlin: The intensity of emission of characteristic x-radiation. Proc.Phys.Soc. A 69, 401 (1956)Google Scholar
  31. 3.31
    C.J. Powell: Cross-sections for ionization of inner-shell electrons by electrons. Rev.Mod.Phys. 48,33 (1976); Inelastic scattering of electrons. In Electron Beam Interaction with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 19Google Scholar
  32. 3.32
    J. Philibert, R. Tixier: Some problems with quantitative electron probe microanalysis. In Quantitative Electron Probe Microanalysis, ed. by K.F.J. Heinrich, Nat.Bur. Stand. Spec.Publ. 298, Washington 1968, p. 13Google Scholar
  33. 3.33
    S.A. Goudsmit, J.L. Saunderson: Multiple scattering of electrons. Phys.Rev. 57, 24 (1940); 58, 36 (1940)Google Scholar
  34. 3.34
    H.W. Lewis: Multiple scattering in an infinite medium. Phys.Rev. 78, 526 (1950)ADSzbMATHGoogle Scholar
  35. 3.35
    G. i1olière: Theorie der Streuung schneller geladener Teilchen II. Mehrfachstreuung und Vielfachstreuung. Z. Naturforschg. 3a, 78 (1948)Google Scholar
  36. 3.36
    H.S. Snyder, W.T. Scott: Multiple scattering of fast charged particles. Phys.Rev. 76, 220 (1949)ADSzbMATHGoogle Scholar
  37. 3.37
    H.A. Bethe: Molière’s theory of multiple scattering. Phys.Rev. 89, 1256 (1953)ADSzbMATHMathSciNetGoogle Scholar
  38. 3.38
    W. Bothe: Durchgang von Elektronen durch Materie, in Handbuch der Physik 22/2, ed. by H. Geiger and K. Scheel ( Springer, Berlin 1933 ) p. 1Google Scholar
  39. 3.39
    V.E. Cosslett, R.N. Thomas: Multiple scattering of 5–30 keV electrons in evaporated metal films. I. Total transmission and angular distribution. Brit.J. Appl.Phys. 15, 883 (1964)Google Scholar
  40. 3.40
    H. Koike, K. Ueno, M. Suzuki: Scanning device combined with conventional electron microscope. Proc. 29th Ann. Meeting of EMSA ( Claitor’s Publ.Div., Baton Rouge, LA 1971 ) p. 28Google Scholar
  41. 3.41
    P. Gentsch, H. Gilde, L. Reimer: Measurement of the top-bottom effect in STEM of thick amorphous specimens. J.Micr. 100, 81 (1974)Google Scholar
  42. 3.42
    J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: Quantitative x-ray analysis in the electron microscope. SEM 1977/I, p.315Google Scholar
  43. 3.43
    K. Jost, J. Kessler: Die Ortsverteilung mittelschneller Elektronen bei Mehrfachstreuung. Z.Phys. 176, 126 (1963)ADSGoogle Scholar
  44. 3.44
    L. Reimer, H. Gilde, K.H. Sommer: Die Verbreiterung eines Elektronen-strahles (17–1200 keV) durch Mehrfachstreuung. Optik 30, 590 (1970)Google Scholar
  45. 3.45
    T. Groves: Thick specimens in the CEM and STEM. Resolution and image formation. Ultramicroscopy 1, 15 and 170 (1975)Google Scholar
  46. 3.46
    H. Rose: The influence of plural scattering on the limit of resolution in electron microscopy. Ultramicroscopy 1, 167 (1975)Google Scholar
  47. 3.47
    H. Bethe: Zur Theorie des Durchganges schneller Korpuskularstrahlen durch Materie. Ann.Phys. 5, 325 (1930)zbMATHGoogle Scholar
  48. 3.48
    H. Bethe: Quantenmechanik der Ein-und Zwei-Elektronenprobleme. In Handbuch der Physik 24, ed. by J. Geiger and K. Scheel ( Springer, Berlin 1933 ) p. 273Google Scholar
  49. 3.49
    R.D. Evans: The Atomic Nucleus. Internat.Ser. in Pure and Appl. Phys. ( McGraw Hill, New York 1955 )Google Scholar
  50. 3.50
    N. Bohr: The penetration of atomic particles through matter. Kgl. Danske Videnskabernes.Selskat, Matematisk-fysike Medd. 18, No. 8 (1948)Google Scholar
  51. 3.51
    H.A. Bethe, J. Ashkin: Passage of radiations through matter. Exp.Nucl.Phys. Vol.1, ed. by E. Segrè (Wiley, New York 1953)p.166Google Scholar
  52. 3.52
    M.J. Berger, S.M. Seltzer: Tables of energy loss and ranges of electrons and positrons. Nat.Acad.Sci., Nat. Res.Council Pub1.1133 Washington DC (1964) p. 205Google Scholar
  53. 3.53
    R.M. Sternheimer: Density effect for the ionization loss of charged particles. Phys.Rev. 145, 247 (1966)ADSGoogle Scholar
  54. 3.54
    R.R. Wilson: Range and ionization measurements on high speed protons. Phys.Rev. 60, 749 (1941)ADSGoogle Scholar
  55. 3.55
    R. Whiddington: The transmission of cathode rays through matter. Proc.Roy.Soc. A86, 360 (1912); 89, 554 (1914)Google Scholar
  56. 3.56
    H.M. Terrill: Loss of velocity of cathode rays in matter. Phys.Rev. 22, 101 (1923)ADSGoogle Scholar
  57. 3.57
    L. Reimer, K. Brockmann, U. Rhein: Energy losses of 20–40 keV electrons in 150–650ug cm-2 metal films. J.Phys.D 11, 2151 (1978)ADSGoogle Scholar
  58. 3.58
    L. Landau: On the energy loss of fast electrons by ionization. J.Phys. USSR 8, 201 (1944)Google Scholar
  59. 3.59
    O. Blunck, S. Leisegang: Zum Energieverlust schneller Elektronen in dünnen Schichten. Z.Phys. 128, 500 (1959)ADSGoogle Scholar
  60. 3.60
    D.F. Hebbard, P.R. Wilson: The effect of multiple scattering on energy loss distributions. Austr.J.Phys. 8, 90 (1955)ADSGoogle Scholar
  61. 3.61
    C.N. Yang: Actual path length of electrons in foils. Phys. Rev. 84, 599 (1951)ADSGoogle Scholar
  62. 3.62
    A.F. Makhov: The penetration of electrons into solids. Sov.Phys. Solid State 2, 1934, 1942 and 1945 (1961)Google Scholar
  63. 3.63
    A.Ya. Vyatskin, A.N. Pilyankevich: Some energy characteristics of electron passage through a solid. Sov. Phys.Solid State 5, 1662 (1964)Google Scholar
  64. 3.64
    V.E. Cosslett, R.N. Thomas: Multiple scattering of 5–30 keV electrons in evaporated metal films. II Range-energy relations. Brit. J. Appl.Phys. 15, 1283 (1964)Google Scholar
  65. 3.65
    J.R. Young: Penetration of electrons and ions in aluminium. J.Appl.Phys. 27, 1 (1956)ADSGoogle Scholar
  66. 3.66
    W.F. Libby: Measurement of radioactive tracers. Anal. Chem. 19, 2 (1947)Google Scholar
  67. 3.67
    R.O. Lane, D.J. Zaffarano: Transmission of 0–50 keV electrons by thin films with application to beta-spectra. Phys.Rev. 94, 916 (1954)Google Scholar
  68. 3.68
    T.E. Everhart, P.H. Hoff: Determination of kilovolt electron energy dissipation vs penetration distance in solid materials. J.Appl.Phys. 42, 5837 (1971)ADSGoogle Scholar
  69. 3.69
    K. Kanaya, S. Okayama: Penetration and energy-loss theory of electrons in solid targets. J. Phys. D 5, 43 (1972)ADSGoogle Scholar
  70. 3.70
    L. Katz, A.S. Penfold: Range-energy relations for electrons and the determination of beta-ray end-point energies by absorption. Rev.Mod.Phys. 24, 28 (1952)ADSGoogle Scholar
  71. 3.71
    A.E. Grün: Lumineszenz-photometrische Messungen der Energieabsorption im Strahlungsfeld von Elektronenquellen, Eindimensionaler Fall in Luft. Z. Naturforschg. 12a, 89 (1957)ADSGoogle Scholar
  72. 3.72
    L. Reimer, H. Seidel, H. Gilde: Einfluß der Elektronendiffusion auf die Bildentstehung im Raster-Elektronenmikroskop. BEDO 1, 53 (1968)Google Scholar
  73. 3.73
    A. Cohn, G. Caledonia: Spatial distribution of the fluorescent radiation emission caused by an electron beam. J.Appl.Phys. 41, 3767 (1970)ADSGoogle Scholar
  74. 3.74
    W. Ehrenberg, D.E.N. King: The penetration of electrons into luminescent materials. Proc.Phys.Soc. 81, 751 (1963)ADSGoogle Scholar
  75. 3.75
    M. Hatzakis: New method of observing electron penetration profiles in solids. Appl.Phys. Letters 18, 7 (1971)Google Scholar
  76. 3.76
    B. Linnemann, L. Reimer: Electron flux inside a gas target. Scanning 4, 199 (1981)Google Scholar
  77. 3.77
    L. Reimer: Monte-Carlo-Rechnungen zur Elektronendiffusion. Optik 27, 86 (1968)Google Scholar
  78. 3.78
    D.F. Kyser, D.B. Wittry: Spatial distribution of excess carriers in electron-beam excited semiconductors. Proc. IEEE 55, 733 (1967)Google Scholar
  79. 3.79
    C. Donolato: On the theory of SEM charge-collection imaging of localized defects in semiconductors. Optik 52, 19 (1978)Google Scholar
  80. 3.80
    J.F. Bresse: Electron beam induced current in silicon planar p-n junctions: physical model of carrier generation. Determination of some physical parameters in silicon. SEM 1972, p. 105Google Scholar
  81. 3.81
    T.E. Everhart: Simple theory concerning the reflection of electrons from solids. J.Appl.Phys. 31, 1483 (1960)ADSGoogle Scholar
  82. 3.82
    N.G. Nakhodkin, A.A. Ostroukhov, V.A. Romanovskii: Electron inelastic scattering in thin films•. Sov.Phys.Solid State 4, 1112 (1962)Google Scholar
  83. 3.83
    V.E. Cosslett, R.N. Thomas: Multiple scattering of 5–30keV electrons in evaporated metal films. III Backscattering and absorption. Brit.J.Appl.Phys. 16, 779 (1965)ADSGoogle Scholar
  84. 3.84
    G.J. Iafrate, W.S. McAfee, A. Ballato: Electron backscattering from solids and double layers. J.Vac.Sci.Techn. 13, 843 (1976)ADSGoogle Scholar
  85. 3.85
    G.D. Archard: Backscattering of electrons. J. Appl. Phys. 32, 1505 (1961)ADSGoogle Scholar
  86. 3.86
    H.A. Bethe, M.E. Rose, L.P. Smith: The multiple scattering of electrons. Proc.Amer.Phil.Soc. 78, 573 (1938)Google Scholar
  87. 3.87
    K. Kanaya, S. Ono: The energy dependence of a diffusion model for an electron probe into solid targets. J.Phys. D 11, 1495 (1978)Google Scholar
  88. 3.88
    H.W. Thümmel: Durchgang von Elektronen und Betastrahlung durch Materieschichten. Streuabsorptionsmodelle (Akad. Verlag, Berlin 1974 )Google Scholar
  89. 3.89
    H. Niedrig: Ein kombiniertes Einfachstreu-und Diffusionsmodell für die Elektronen-Rückstreuung dünner Schichten. BEDO 14, 291 (1981)Google Scholar
  90. 3.90
    H. Niedrig: Analytic models in electron backscattering. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 51Google Scholar
  91. 3.91
    H.J. Dudek: Ein Rechenmodell zur räumlichen Beschreibung der Elektronenstrahl-Materie-Wechselwirkung. Optik 56, 149 (1980)Google Scholar
  92. 3.92
    Z.T. Bödy: On the backscattering of electrons from solids. Brit. J.Appl. Phys. 13, 483 (1962)ADSGoogle Scholar
  93. 3.93
    L.V. Spencer: Theory of electron penetration. Phys.Rev. 98, 1597 (1955)ADSzbMATHGoogle Scholar
  94. 3.94
    D.J. Fathers, P. Rez: A transport equation theory of electron backscattering. SEM 1979/I, p.55; In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 193Google Scholar
  95. 3.95
    K.E. Hoffmann, H. Schmoranzer: Inelastic and elastic multiple scattering of fast electrons described by the transport equation. In Electron Beam Interactions with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 209Google Scholar
  96. 3.96
    H.E. Bishop: A Monte Carlo calculation on the scattering of electrons in copper. Proc.Phys.Soc. 85, 855 (1965)ADSGoogle Scholar
  97. 3.97
    K. Murata, T. Matsukawa, R. Shimizu: Application of Monte Carlo calculations based on the single scattering model to electron probe microanalysis. In Proc. 6th Int. Conf. on X-Ray Optics and Microanalysis, ed. by G. Shinoda et al. (Univ. Tokyo Press, Tokyo 1972) p.105Google Scholar
  98. 3.98
    E.R. Krefting, L. Reimer: Monte-Carlo Rechnungen zur Elektronen-diffusion. In Quantitative Analysis with Electron Microprobes and Secondary Ion Mass Spectrometry,ed. by E. Preuss (Kernforschungsanlage Jülich 1973) Jül-Conf.-8, p.114Google Scholar
  99. 3.99
    K.F.J. Heinrich, D.E. Newbury, H. Yakowitz (eds.): Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy. NBS Spec.Publ. 460 ( U.S. Dep. of Commerce, Washington D.C. 1976 )Google Scholar
  100. 3.100
    J. Hénoc, F. Maurice: Characteristics of a Monte Carlo program for microanalysis study of energy loss. In [Ref. 3.99, p.61]Google Scholar
  101. 3.101
    R.L. Myklebust, D.E. Newbury, H. Yakowitz: NBS Monte Carlo electron trajectory calculation program. In [Ref. 3.99, p.105]Google Scholar
  102. 3.102
    D.F. Kyser, K. Murata: Application of Monte-Carlo simulation to electron microprobe analysis of thin films on substrates. In [Ref. 3.99, p.129] D.F. Kyser: Monte Carlo calculations for electron microscopy, microanalysis and microlithography. In Electron Beam Interaction with Solids, ed. by D.F. Kyser et al. ( SEM Inc., AMF O’Hare 1982 ) p. 119Google Scholar
  103. 3.103
    R. Shimizu, Y. Kataoka, T. Matsukawa, T. Ikuta, K. Murata, H. Hashimoto: Energy distribution measurement of transmitted electrons and Monte Carlo simulation for kilovolt electrons. J.Phys.D. 8, 820 (1975)ADSGoogle Scholar
  104. 3.104
    R. Shimizu, Y. Kataoka, T. Ikuta, T. Koshikawa, H. Hashimoto: A Monte Carlo approach to the direct simulation of electron penetration in solids. J.Phys.D 9, 101 (1976)ADSGoogle Scholar
  105. 3.105
    M. Kotera, K. Murata, K. Nagami: Monte Carlo simulation of 1–10keV electron scattering in a gold target. J.Appl.Phys. 52, 997 (1981);… in an aluminium target. J.Appl.Phys. 52, 7403 (1981)ADSGoogle Scholar
  106. 3.106
    J.J. Quinn: Range of excited electrons in metals. Phys.Rev. 126, 1453 (1962)ADSzbMATHGoogle Scholar
  107. 3.107
    H.W. Streitwolf: Zur Theorie der Sekundärelektronenemission von Metallen: der Anregungsproze6. Ann.Physik 3, 183 (1959)ADSzbMATHGoogle Scholar
  108. 3.108
    H.J. Dudek: Zeitlicher Temperaturanstieg im Material bei Elektronenbestrahlung. BEDO 3, 179 (1970)Google Scholar
  109. 3.109
    R. Christenhuß, L. Reimer: Schichtdickenabhängigkeit der Wärmeerzeugung durch Elektronenbestrahlung im Energiebereich zwischen 9 and 100keV. Z.angew.Phys. 23, 397 (1967)Google Scholar
  110. 3.110
    L.G. Pittaway: The temperature distribution in thin foil and semi-infinite targets bombarded by an electron beam. Brit.J.Appl.Phys. 15, 967 (1964)ADSGoogle Scholar
  111. 3.111
    H. Kohl, H. Rose, H. Schnabl: Dose-rate effect at low temperatures in FBEM and STEM due to object-heating. Optik 58, 11 (1981)Google Scholar
  112. 3.112
    T. Kosuge, H. Hashimoto. M. Sato, S. Kimoto: Quality of the secondary electron image at low accelerating voltages. In Microscopie Electronique 1970, Vol. I, ed. by P. Farvard ( Soc.Française Micr. Electronique, Paris 1970 ) p. 201Google Scholar
  113. 3.113
    T. Ichinokawa, M. Iijama, A. Onoguchi, T. Kobayashi: Charging effect of specimen in SEM. Jap.J.Appl.Phys. 13, 1272 (1974)ADSGoogle Scholar
  114. 3.114
    P.N. Dilly: Enhanced contrast of cilia using low accelerating voltages as an aid to low power survey and counting. Scanning 3, 283 (1980)Google Scholar
  115. 3.115
    L.A. Weitzenkamp: Measurement of fibre potentials in a SEM. J.Phys.E 2, 561 (1969)ADSGoogle Scholar
  116. 3.116
    D.R. Clarke, P.R. Stuart: An anomalous contrast effect in the SEM. J.Phys.E 3, 705 (1970)ADSGoogle Scholar
  117. 3.117
    R.D.VanVeld, T.J. Shaffner: Charging effects in SEM. SEM 1971,p. 17Google Scholar
  118. 3.118
    P. Echlin: Sputter coating techniques for SEM. SEM 1975, p. 217Google Scholar
  119. 3.119
    P.N. Panayi, D.C. Cheshire, P. Echlin: A cool sputtering system for coating heat-sensitive specimens. SEM 1977, p. 463Google Scholar
  120. 3.120
    G.E. Pfefferkorn: Specimen preparation techniques. SEM 1970, p.89Google Scholar
  121. 3.120
    R.O. Kelley, R.A.F. Dekker, J.G. Bluemink: Ligand-mediated osmium binding: its application in coating biological specimens for SEM. J.Ultrastruct.Res. 45, 254 (1973)Google Scholar
  122. 3.122
    L.E. Malick, R.B. Wilson: Evaluation of a modified technique for SEM examination of vertebrate specimens without evaporated metal layers. SEM 1975, p. 259Google Scholar
  123. 3.123
    G.V. Spivak, E.I. Rau, A.E. Lukianov, V.I. Petrov, M.V. Bicov: Des images non alterees des isolants dans un microscope electronique a balayage. In Electron Microscopy 1972 ( Inst. of Physics, London 1972 ) p. 492Google Scholar
  124. 3.124
    P. Morin, M. Pitaval, E. Vicario: Direct observation of insulators by SEM. In Developments in Electron Microscopy and Analysis, ed. by J.A. Venables ( Academic, London 1976 ) p. 115Google Scholar
  125. 3.125
    G.E. Pfefferkorn, H. Grüter, M. Pfautsch: Observations on the prevention of specimen charging. SEM 1972, p. 147Google Scholar
  126. 3.126
    P.R. Thornton: Scanning Electron Microscopy: Applications to Materials and Devices ( Chapman and Hall, London 1968 ) p. 179Google Scholar
  127. 3.127
    C.K. Crawford: Ion charge neutralization effects in SEM. SEM 1980/IV, p.11Google Scholar
  128. 3.128
    G.D. Danilatos, R. Postle: The environmental SEM and its application. SEM 1982/I, p.1Google Scholar
  129. 3.129
    L. Reimer: Irradiation changes in organic and inorganic objects. Lab.Invest. 14, 1082 (1965)Google Scholar
  130. 3.130
    K. Stenn, G.F. Bahr: Specimen damage caused by the beam of the transmission electron microscope, a correlative consideration. J.Ultrastruct. Res. 31, 526 (1970)Google Scholar
  131. 3.131
    B.M. Siegel and D.R. Beaman (eds): Physical Aspects of Electron Microscopy and Microbeam Analysis ( Wiley, New York 1975 )Google Scholar
  132. 3.132
    R.M. Glaeser: Radiation damage and biological electron microscopy In [Ref.3.131, p.205] M.S. Isaacson: Inelastic scattering and beam damage of biological molecules. In [Ref.3.131, p.247]Google Scholar
  133. 3.133
    L. Reimer: Review of the radiation damage problem of organic specimens in electron microscopy. In [Ref.3.131, p.231]Google Scholar
  134. 3.134
    M.S. Isaacson: Specimen Damage in the electron microscope. In Principles and Techniques of Electron Microscopy, Vol. 7, ed. By M.A. Hayat ( Van Nostrand-Reinhold, New York 1977 ) p. 1Google Scholar
  135. 3.135
    R.M. Glaeser, K.A. Taylor: Radiation damage relative to transmission electron microscopy of biological specimens at low temperatures: a review. J.Micr. 122, 127 (1978)Google Scholar
  136. 3.136
    V.E. Cosslett: Radiation damage in the high resolution électron microscopy of biological materials: a review. J.Micr. 113, 113 (1978)Google Scholar
  137. 3.137
    W. Bröcker, E.R. Krefting, L. Reimer: Beobachtung der Strahlenschädigung während des Abrastvorganges im Raster-Elektronenmikroskop mit Hilfe der Kathodolumineszenz. BEDO 7, 75 (1974)Google Scholar
  138. 3.138
    W. Bröcker, L. Reimer: Specimen damage by negative oxygen ions from the SEM cathode detected by CdS cathodoluminescence. Scanning 1, 60 (1978)Google Scholar
  139. 3.139
    O.C. Wells: Ion damage to the specimen in the SEM studied by the EBIC technique. Scanning 1, 182 (1978)Google Scholar
  140. 3.140
    J.J. Hren: Barriers to AEM: Contamination and Etching. In Introduct-ion to Analytical Electron Microscopy, ed. by J.J. Hren et al. ( Plenum, New York 1979 ) p. 481Google Scholar
  141. 3.141
    J.P. Martin, R. Speidel: Zur Verwendung von Dünnschicht-Apertur-blenden im Elektronen-Rastermikroskop, BEDO 4/2, 345 (1971)Google Scholar
  142. 3.142
    K.H. Müller: Elektronen-Mikroschreiber mit geschwindigkeits- gesteuerter Strahlführung. Optik 33, 296 (1971)Google Scholar
  143. 3.141
    J.T. Fourie: Contamination phenomena in cryopumped TEM and ultra-high vacuum field-emission STEM systems. SEM 1976/I, p.53Google Scholar
  144. 3.144
    H.G. Heide: Die Objektverschmutzung im Elektronenmikroskop und das Problem der Strahlenschädigung durch Kohlenstoffabbau. Z.angew. Phys. 15, 116 (1963)Google Scholar
  145. 3.145
    G. Love, V.D. Scott, N.M.T. Dennis, L. Laurenson: Sources of contamination in electron optical equipment. Scanning 4, 32 (1981) 3.146 E.K. Brandis, F.W. Anderson, R. Hoover: Reduction of carbon contamination in the SEM. SEM 1971, p. 505Google Scholar
  146. 3.146
    E.K. Brandis, F.W. Anderson, R. Hoover: Reduction of carbon contamination in the SEM. SEM 1971, p. 505Google Scholar
  147. 3.147
    H.G. Heide: Die Objektraumkühlung im Elektronenmikroskop. Z.angew. Phys. 17, 73 (1964)Google Scholar
  148. 3.148
    L. Reimer, M. Wächter: Contribution to the contamination problem in TEM. Ultramicroscopy 3, 169 (1978)Google Scholar
  149. 3.149
    R. Buhl: Verringerung der Kontamination durch Ionen-Bombardement der das Präparat umgebenden Wände. Optik 19, 122 (1962)Google Scholar
  150. 3.150
    T. Marshall: Residual gas analysis in a SEM. J.Micr. 133, 119 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfätlische Wilhelms-Univeraität MünsterMünsterFed. Rep. of Germany

Personalised recommendations