Advertisement

Analytical Electron Microscopy

  • Ludwig Reimer
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 36)

Abstract

X-ray spectrometers can be coupled to a transmission electron microscope to record x-ray quanta emitted from the specimen. With an energy-dispersive spectrometer, quantitative analysis is possible for elements with atomic numbers above ten.

Keywords

Analytical Electron Microscopy Bragg Reflection Kikuchi Line Ewald Sphere Detector Diaphragm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 9.1
    C.J. Cooke, P. Duncumb: “Performance Analysis of a Combined Electron Microscope and Electron Probe Microanalyser ‘EMMA’,” in Fifth Intern. Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt, K.H. Gaukler (Springer, Berlin, Heidelberg, New York 1969) p.245.Google Scholar
  2. 9.2
    C.J. Cooke, I.K. Openshaw: “Combined High Resolution Electron Microscopy and X-Ray Microanalysis,” in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.175.Google Scholar
  3. 9.3
    J.B. LePoole: “Miniature Lens,” in Electron Microscopy 1964, Vol.A, ed. by M. Titlbach (Czechoslovak Acad. Sci., Prague 1964) p.439.Google Scholar
  4. 9.4
    P.F. Chapman: “A Microanalysis Attachment for the Elmiskop I,” in Fifth Intern. Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt, K.H. Gaukler (Springer, Berlin, Heidelberg, New York 1969) p.241.Google Scholar
  5. 9.5
    H. Neff: Über die Röntgen-Emissionsanalyse von elektronenmikroskopischen Präparaten. Z. Instrumentenkd. 72, 125 (1964).Google Scholar
  6. 9.6
    E. Fuchs: X-ray spectrometer attachment for Elmiskop I electron microscope. Rev. Sci. Instrum. 37, 623 (1966).ADSGoogle Scholar
  7. 9.7
    D.A. Gedcke: “The Si(Li) X-Ray Spectrometer for X-Ray Microanalysis,” in Quantitative Scanning Electron Microscopy, ed. by D.B. Holt et al. (Academic, London 1974) p.403.Google Scholar
  8. 9.8
    T.A. Hall: Reduction of background due to backscattered electrons in energy-dispersive x-ray microanalysis. J. Micr. 110, 103 (1977).Google Scholar
  9. 9.9
    B. Neumann, L. Reimer: A permanent magnet system for electron deflection in front of an energy dispersive x-ray spectrometer. Scanning 1, 130 (1978).Google Scholar
  10. 9.10
    N.C. Barbi, A.O. Sandborg, J.C. Russ, C.E. Soderquist: “Light Element Analysis on the SEM Using a Windowless Energy Dispersive X-Ray Spectrometer,” in Scanning Electron Microscopy 1974, ed. by O. Johari (IIT Research Inst., Chicago 1974) p.289.Google Scholar
  11. 9.11
    J.C. Russ: “Procedures for Quantitative Ultralight Element Energy Dispersive X-Ray Analysis,” in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.289.Google Scholar
  12. 9.12
    S.J.B. Reed: Electron Microprobe Analysis (Cambridge University Press, London 1975).Google Scholar
  13. 9.13
    J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York 1981).Google Scholar
  14. 9.14
    K.F.J. Heinrich: Electron Beam X-Ray Microanalysis (Van-Nostrand, New York 1981).Google Scholar
  15. 9.15
    M.H. Jacobs, J. Baborovska: “Quantitative Microanalysis of Thin Foils with a Combined Electron Microscope-Microanalyser (EMMA-3),” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.136.Google Scholar
  16. 9.16
    G.W. Lorimer, G. Cliff, J.N. Clark: “Determination of the Thickness and Spatial Resolution for the Quantitative Analysis of Thin Foils,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.153.Google Scholar
  17. 9.17
    R. König: “Quantitative X-Ray Microanalysis of Thin Foils,” in Electron Microscopy in Mineralogy, ed. by H.R. Wenk (Springer, Berlin, Heidelberg, New York 1976) p.526.Google Scholar
  18. 9.18
    J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: “Quantitative X-Ray Analysis in the Electron Microscope,” in Scanning Electron Microscopy 1977/I ed. by O. Johari (IIT Research Inst., Chicago 1977) p.315.Google Scholar
  19. 9.19
    J. Philibert, R. Tixier: “Electron Probe Microanalysis of TEM Specimens,” in Physical Aspects of Electron Microscopy and Analysis, ed. by B.M. Siegel, D.R. Beaman (Wiley, New York 1975) p.333.Google Scholar
  20. 9.20
    G.W. Lorimer, S.A. Al-Salman, G. Cliff: “The Quantitative Analysis of Thin Specimens: Effects of Absorption, Fluorescence and Beam Spreading,” in Development in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.369.Google Scholar
  21. 9.21
    C.R. Hall: On the production of characteristic x-rays in thin metal crystals. Proc. Roy. Soc. A295, 140 (1966).ADSGoogle Scholar
  22. 9.22
    D. Cherns, A. Howie, M.H. Jacobs: Characteristic x-ray production in thin crystals. Z. Naturforsch. A28, 565 (1973).ADSGoogle Scholar
  23. 9.23
    B. Neumann, L. Reimer: Anisotropic x-ray generation in thin and bulk single crystals. J. Phys. D13, 1737 (1980).ADSGoogle Scholar
  24. 9.24
    J. Bentley, N.J. Zaluzec, E.A. Kenik, R.W. Carpenter: “Optimization of an Analytical Electron Microscope for X-Ray Microanalysis,” in Scanning Electron Microscopy 1979/II, ed. by O. Johari (SEM Inc. AMF O’Hare 1979) p.581.Google Scholar
  25. 9.25
    J. Philibert, R. Tixier: Electron penetration and the atomic number correction in electron probe microanalysis. J. Phys. D1, 685 (1968).ADSGoogle Scholar
  26. 9.26
    M.J. Nasir: “Quantitative Analysis on Thin Films in EMMA-4 Using Block Standards,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.142.Google Scholar
  27. 9.27
    G. Cliff, G.W. Lorimer: “Quantitative Analysis of Thin Metal Foils Using EMMA-4 — the Ratio Technique,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.140.Google Scholar
  28. 9.28
    G. Cliff, G.W. Lorimer: The quantitative analysis of thin specimens. J. Micr. 103, 203 (1975).Google Scholar
  29. 9.29
    M.N. Thompson, P. Doig, J.W. Edington, P.E.J. Flewitt: The influence of specimen thickness on x-ray count rates in STEM microanalysis. Philos. Mag. 35, 1537 (1977).ADSGoogle Scholar
  30. 9.30
    T.P. Schreiber, A.M. Wims: A quantitative x-ray microanalysis thin film method using K-, L-and M-lines. Ultramicroscopy 6, 323 (1981).Google Scholar
  31. 9.31
    C.E. Lyman, P.E. Manning, D.J. Duquette, E. Hall: “STEM Microanalysis of Duplex Stainless Steel Weld Metal,” in Scanning Electron Microscopy 1978/I ed. by O. Johari (SEM Inc., 0MF O’Hare 1978) p.213.Google Scholar
  32. 9.32
    D.B. Williams, J.I. Goldstein: “STEM/X-Ray Microanalysis Across α/γ Interfaces in Fe-Ni meteorites,” in Electron Microscopy 1978, Vol.1, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.416.Google Scholar
  33. 9.33
    A.M. Ritter, W.G. Morris, M.F. Henry: “Factors Affecting the Measurement of Composition Profiles in STEM,” in Scanning Electron Microscopy 1979/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1979) p.121.Google Scholar
  34. 9.34
    T.A. Hall: “The Microprobe Assay of Chemical Elements,” in Physical Techniques in Biological Research, Vol.1, Part A, ed. by G. Oster (Academic, New York 1971) p.157.Google Scholar
  35. 9.35
    T.A. Hall, H. Clarke Anderson, T. Appleton: The use of thin specimens for x-ray microanalysis in biology. J. Micr. 99, 177 (1973).Google Scholar
  36. 9.36
    T.A. Hall, B.L. Gupta: “EDS Quantitation and Application to Biology,” in Introduction to Analytical Electron Microscopy, ed. by J.J. Hren, J.F. Goldstein, D.C. Joy (Plenum, New York 1979) p.169.Google Scholar
  37. 9.37
    A.R. Spurr: Choice and preparation of standards for x-ray microanalysis of biological materials with special reference to macrocyclic polyether complexes. J. Microscopie Biol. Cell 22, 237 (1975).Google Scholar
  38. 9.38
    G.M. Roomans, H.L.M. van Gaal: Organometallic and organometalloid compounds as standards for microprobe analysis of epoxy resin embedded tissue. J. Micr. 109, 235 (1977).Google Scholar
  39. 9.39
    H. Shuman, A.V. Somlyo, A.P. Somlyo: Quantitative electron probe micro-analysis of biological thin sections: methods and validity. Ultramicroscopy 1, 317 (1976).Google Scholar
  40. 9.40
    T.O. Ziebold: Precision and sensitivity in electron microprobe analysis. Anal. Chem. 39, 858 (1967).Google Scholar
  41. 9.41
    D.C. Joy, D.M. Maher: “Sensitivity Limits for Thin Specimens X-Ray Analysis,” in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.325.Google Scholar
  42. 9.42
    A.J.F. Metherell: “Energy Analysing and Energy Selecting Microscopes,” in Advances in Optical and Electron Microscopy, Vol.4, ed. by R. Barer, V.E. Cosslett (Academic, London 1971) p.263.Google Scholar
  43. 9.43
    W. Steckelmacher: Energy analysers for charged particle beams. J. Phys. E 6, 1061 (1973).ADSGoogle Scholar
  44. 9.44
    H.T. Pearce-Percy: “The Design of Spectrometers for Energy Loss Spectroscopy,” in Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1978) p.41.Google Scholar
  45. 9.45
    D.B. Wittry: An electron spectrometer for use with the TEM. J. Phys. D 2, 1757 (1969).ADSGoogle Scholar
  46. 9.46
    H. Hintenberger: Improved magnetic focusing of charged particles. Rev. Sci. Instrum. 20, 748 (1949).ADSGoogle Scholar
  47. 9.47
    S. Penner: Calculations of properties of magnetic deflection systems. Rev. Sci. Instrum. 32, 150 (1961).ADSGoogle Scholar
  48. 9.48
    A.V. Crewe, M. Isaacson, D. Johnson: A high resolution electron spectrometer for use in transmission electron microscopy. Rev. Sci. Instrum. 42, 411 (1971).ADSGoogle Scholar
  49. 9.49
    R.F. Egerton: A simple electron spectrometer for energy analysis in the transmission microscope. Ultramicroscopy 3, 39 (1978).Google Scholar
  50. 9.50
    R.F. Egerton: Design of an aberration-corrected electron spectrometer for the TEM. Optik 57, 229 (1980).Google Scholar
  51. 9.51
    H. Shuman: Correction of the second-order aberrations of uniform field magnetic sectors. Ultramicroscopy 5, 45 (1980).Google Scholar
  52. 9.52
    R.F. Egerton: The use of electron lenses between a TEM specimen and an electron spectrometer. Optik 56, 363 (1980).Google Scholar
  53. 9.53
    D.E. Johnson: Pre-spectrometer optics in CTEM/STEM. Ultramicroscopy 5, 163 (1980).Google Scholar
  54. 9.54
    A.W. Blackstock, R.D. Birkhoff, M. Slater: Electron accelerator and high resolution analyser. Rev. Sci. Instrum. 26, 274 (1955).ADSGoogle Scholar
  55. 9.55
    J. Lohff: Charakteristische Energieverluste bei der Streuung mittelschneller Elektronen an Aluminium-Oberflächen. Z. Phys. 171, 442 (1963).ADSGoogle Scholar
  56. 9.56
    Y. Kokubo, H. Koike, T. Someya: “Development of Energy Analyzer for Scanning and Transmission Microscope,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.374.Google Scholar
  57. 9.57
    W. Kraus, P. Fazekas: Electron energy-loss spectrometry using an electron microscope in combination with an electrostatic cylindrical mirror. Siemens Forsch. Entwicklungsber. 6, 172 (1977).Google Scholar
  58. 9.58
    A.V. Crewe, J. Wall, L.M. Welter: A high resolution scanning transmission electron microscope. J. Appl. Phys. 39, 5861 (1968).ADSGoogle Scholar
  59. 5.59
    H. Boersch: Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Phys. 139, 115 (1954).ADSGoogle Scholar
  60. 5.60
    H. Boersch, H. Miessner: Ein hochempfindlicher Gegenfeid-Energieanalysator für Elektronen. Z. Phys. 168, 298 (1962).ADSGoogle Scholar
  61. 9.61
    H. Boersch, S. Schweda: Eine inverse Gegenfeldmethode zur Energieanalyse von Elektronen und Ionenstrahlen. Z. Phys. 167, 1 (1962).ADSGoogle Scholar
  62. 9.62
    H. Brack: Über eine Anordnung zur Filterung von Elektroneninterferenzen. Z. Naturforsch. A17, 1066 (1962).ADSGoogle Scholar
  63. 9.63
    H. Boersch, R. Wolter, H. Schoenebeck: Elastische Energieverluste kristall-gestreuter Elektronen: Z. Phys. 199, 124 (1967).ADSGoogle Scholar
  64. 9.64
    M.T. Browne, S. Lockovic, R.E. Burge: “Instrumentation and Recording for the Vacuum Generators HB5 STEM Instrument,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.27.Google Scholar
  65. 9.65
    H. Boersch, J. Geiger, W. Stickel: Das Auflösungsvermögen des elektrostatisch-magnetischen Energieanalysators für schnelle Elektronen. Z. Phys. 180, 415 (1964).ADSGoogle Scholar
  66. 9.66
    J. Geiger, M. Nolting, B. Schröder: “How to Obtain High Resolution with a Wien Filter Spectrometer,” in Microscopie Electronique 1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.111.Google Scholar
  67. 9.67
    W.H.J. Anderson, J.B. LePoole: A double wienfilter as a high resolution, high transmission electron energy analyser. J. Phys. E3, 121 (1970).ADSGoogle Scholar
  68. 9.68
    W.H.J. Andersen, J. Kramer: “A Double-Focusing Wien Filter as a Full-Image Energy Analyser for the Electron Microscope,” in Electron Microscopy 1972, (The Institute of Physics, London 1972) p.146.Google Scholar
  69. 9.69
    G.H. Curtis, J. Silcox: A Wien filter for use as an energy analyzer with an electron microscope. Rev. Sci. Instrum. 42, 630 (1971).ADSGoogle Scholar
  70. 9.70
    G. Möllenstedt: Die elektrostatische Linse als hochauflösender Geschwindig-keitsanalysator. Optik 5, 499 (1949).Google Scholar
  71. 9.71
    G. Möllenstedt, W. Dietrich: Verbesserung der Optik des hochauflösenden elektrostatischen Geschwindigkeitsanalysators. Optik 12, 246 (1955).Google Scholar
  72. 9.72
    K. Keck, H. Deichsel: Die Verwendung der Elektronen-Einzellinse als “lichtstarkes” Energiefilter für Elektronenstrahlen. Optik 17, 401 (1960).Google Scholar
  73. 9.73
    A.J.F. Metherell, R.F. Cook: Resolution and dispersion of the four classes of Möllenstedt electron energy analysers. Optik 34, 535 (1972).Google Scholar
  74. 9.74
    S. Kuwabara, T. Uefuji, Y. Takamatsu: A simple electrostatic energy filter for electron diffraction and electron microscopy. Jpn. J. Appl. Phys. 13, 1495 (1974).ADSGoogle Scholar
  75. 9.75
    F. Lenz: Über das chromatische Auflösungsvermögen von Elektronenlinsen bei der Geschwindigkeitsanalyse. Optik 10, 439 (1953).Google Scholar
  76. 9.76
    R. Shirota, T. Yanaka: “An Energy Analyser with Rotation Symmetrical Lenses,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.368.Google Scholar
  77. 9.77
    L. Reimer, U. Riediger: Energieverlustspektroskopie mit einer modifizierten Kaustikmethode in einem 100 keV-Transmissionselektronenmikroskop. Optik 46, 67 (1976).Google Scholar
  78. 9.78
    T. Ichinokawa: Electron energy analysis by a cylindrical magnetic lens. Jpn. J. Appl. Phys. 7, 799 (1968).ADSGoogle Scholar
  79. 9.79
    K.Z. Considine, K.C.A. Smith: “An Energy Analyser for High Voltage Microscopy,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.329.Google Scholar
  80. 9.80
    Y. Kamiya, K. Shimizu, T. Suzuki: The velocity analyser for high energy electrons. Optik 41, 421 (1974).Google Scholar
  81. 9.81
    R. Castaing: Quelques application du filtrage magnetique des vitesses en microscopie electronique. Z. Angew. Phys. 27, 171 (1969).Google Scholar
  82. 9.82
    R. Castaing, L. Henry: Filtrage magnétique des vitesses en microscopie électronique. C. R. Acad. Sci. Paris 255, 76 (1962).Google Scholar
  83. 9.83
    H. Rose, E. Plies: Entwurf eines fehlerarmen magnetischen Energie-Analysators. Optik 40, 336 (1974).Google Scholar
  84. 9.84
    H.T. Pearce-Percy, D. Krahl, J. Jaeger: “A 4-Magnet Imaging Spectrometer for a Fixed-Beam Transmission Microscope,” in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.348.Google Scholar
  85. 9.85
    G. Zanchi, J.Ph. Perez, J. Sevely: Adaption of a magnetic filtering device in a one megavolt electron microscope. Optik 43, 495 (1945).Google Scholar
  86. 9.86
    G. Zanchi, J. Sevely, B. Jouffrey: An energy filter for high voltage electron microscopy. J. Micr. Spectr. Electr. 2, 95 (1977).Google Scholar
  87. 9.87
    B.L. Jones, D.G. Jenkins, G.R. Booker: “Use of Silicon Linear Photodiode Arrays for Detection of High-Energy Electrons,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.73.Google Scholar
  88. 9.88
    B.L. Jones, D.M. Walton, G.R. Booker: “Developments in the Use of One-and Two-Dimensional Self-Scanned Silicon Photodiode Arrays as Imaging Devices in Electron Microscopy,” in Developments in Electron Microscopy and Anlaysis 1981, ed. by M.J. Goringe (The Institute of Physics, London 1981) p.135.Google Scholar
  89. 9.89
    H. Shuman: Parallel recording of electron energy loss spectra. Ultramicroscopy 6, 163 (1981).Google Scholar
  90. 9.90
    P.E. Batson: Digital data acquisition of electron energy loss intensities. Ultramicroscopy 3, 367 (1979).Google Scholar
  91. 9.91
    R.F. Egerton, D. Kenway: An acquisition, storage, display and processing system for electron energy-loss spectra. Ultramicroscopy 4, 221 (1979).Google Scholar
  92. 9.92
    D.C. Misell, A.F. Jones: The determination of the single-scattering line profile from the observed spectrum. J. Phys. A2, 540 (1969).ADSGoogle Scholar
  93. 9.93
    D.W. Johnson, J.C.H. Spence: “Determination of the Single Scattering Electron Energy Loss Distribution from Plural Scattering Data,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.386.Google Scholar
  94. 9.94
    J. Daniels, C. von Festenberg, H. Raether, K. Zeppenfeld: “Optical Constants of Solids by Electron Spectroscopy,” in Springer Tracts Mod. Phys., Vol.54 (Springer, Berlin, Heidelberg, New York 1970) p.77.Google Scholar
  95. 9.95
    R.W. Ditchfield, A.G. Cullis: “Identification of Impurity Particles in Epitaxially Grown Si Films Using Combined Electron Microscopy and Energy Analysis,” in Microscopie Electronique 1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p. 125.Google Scholar
  96. 9.96
    R.F. Cook: “Electron Energy Loss Spectroscopy of Glass,” in Microscopie Electronique, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.127.Google Scholar
  97. 9.97
    M. Isaacson: Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine, and uracil. J. Chem. Phys. 56, 1803 and 1813 (1972).ADSGoogle Scholar
  98. 9.98
    J. Hainfeld, M. Isaacson: The use of electron energy loss spectroscopy for studying membrane architecture. Ultramicroscopy 3, 87 (1978).Google Scholar
  99. 9.99
    D.R. Spalding, A.J.F. Metherell: Plasmons losses in Al-Mg alloys. Philos. Mag. 18, 41 (1968).ADSGoogle Scholar
  100. 9.100
    S.L. Cundy, A.J.F. Metherell, M.J. Whelan, P.N.T. Unwin, R.B. Nicholson: Studies of segregation and the initial stages of precipitation at grain boundaries in an Al-7wt% Mg alloy with an energy analysing electron microscope. Proc. Roy. Soc. A307, 267 (1968).ADSGoogle Scholar
  101. 9.101
    D.R. Spalding, R.E. Villagrana, G.A. Chadwick: A study of copper distribution in lamellar Al-CuAl2 eutectics using an energy analysing microscope. Philos. Mag. 20, 471 (1969).ADSGoogle Scholar
  102. 9.102
    R.F. Cook, S.L. Cundy: Plasmon energy losses in Al-Zn alloys. Philos. Mag. 20, 665 (1969).ADSGoogle Scholar
  103. 9.103
    G. Hibbert, J.W. Eddington: Experimental errors in combined electron microscopy and energy analysis. J. Phys. D5, 1780 (1972).ADSGoogle Scholar
  104. 9.104
    G. Hibbert, J.W. Edington: Superposition effects in the energy analysing electron microscope. Philos. Mag. 26, 1071 (1972).ADSGoogle Scholar
  105. 9.105
    R.F. Cook, A. Howie: Effect of elastic constraints on electron energy loss measurements in inhomogeneous alloy. Philos. Mag. 20, 641 (1969).ADSGoogle Scholar
  106. 9.106
    D.R. Spalding: Electron microscopy evidence of plasmon-dislocation interactions. Philos. Mag. 34, 1073 (1976).ADSGoogle Scholar
  107. 9.107
    R.F. Egerton: Measurement of inelastic/elastic scattering ratio for fast electrons and its use in the study of radiation damage. Phys. Status Solidi A37, 663 (1976).ADSGoogle Scholar
  108. 9.108
    D.B. Wittry, R.P. Ferrier, V.E. Cosslett: Selected-area electron spectro-metry in the transmission electron microscope. J. Phys. D2, 1767 (1969).ADSGoogle Scholar
  109. 9.109
    C. Colliex, B. Jouffrey: Diffusion inelastique des electrons dans un solide par excitation de niveaux atomiques profonds. Philos. Mag. 25, 491 (1972).ADSGoogle Scholar
  110. 9.110
    R.F. Egerton, M.J. Whelan: “High Resolution Microanalysis of Light Elements by Electron Energy Loss Spectrometry,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.384.Google Scholar
  111. 9.111
    R.D. Leapman, V.E. Cosslett: Electron energy loss spectrometry: mean free paths for some characteristic x-ray excitations. Philos. Mag. 33, 1 (1976).ADSGoogle Scholar
  112. 9.112
    M. Isaacson, D. Johnson: The microanalysis of light elements using transmitted energy loss electrons. Ultramicroscopy 1, 33 (1975).Google Scholar
  113. 9.113
    C. Colliex, V.E. Cosslett, R.D. Leapman, P. Trebbia: Contribution of electron energy loss spectroscopy to the development of analytical electron microscopy. Ultramicroscopy 1, 301 (1976).Google Scholar
  114. 9.114
    J. Sevely. J.Ph. Perez, B. Jouffrey: “Energy Losses of Electrons Through Al and Carbon Films from 300 keV up to 1200 keV,” in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p.32.Google Scholar
  115. 9.115
    R.D. Leapman, V.E. Cosslett: Electron spectrometry of inner shell excitation. Vacuum 26, 423 (1977).Google Scholar
  116. 9.116
    R.F. Egerton: Formulae for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy 3, 243 (1978).Google Scholar
  117. 9.117
    G. Lehmpfuhl, J. Taftø: “The Channelling Effect in Electron Energy Loss Spectroscopy,” in Electron Microscopy 1980, Vol.3, ed. by P. Brederoo, V.E. Cosslett (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.62.Google Scholar
  118. 9.118
    R.F. Egerton, C.J. Rossouw, M.J. Whelan: “Progress Towards a Method for the Quantitative Microanalysis of Light Elements by Electron Energy-Loss Spectrometry,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.129.Google Scholar
  119. 9.119
    D.C. Joy, D.M. Maher: Electron energy loss spectroscopy: detectable limits for elemental analysis. Ultramicroscopy 5, 333 (1980).Google Scholar
  120. 9.120
    H. Boersch: Gegenfeldfilter für Elektronenbeugung und Elektronenmikroskopie. Z. Phys. 134, 156 (1953).ADSGoogle Scholar
  121. 9.121
    H. Watanabe: Energy selecting microscope. Jpn. J. Appl. Phys. 3, 480 (1964).ADSGoogle Scholar
  122. 9.122
    S.L. Cundy, A.J.F. Metherell, M.J. Whelan: An energy analysing electron microscope. J. Sci. Instrum. 43, 712 (1966).ADSGoogle Scholar
  123. 9.123
    S.L. Cundy, A. Howie, U. Valdrè: Preservation of electron microscopic image contrast after inelastic scattering. Philos. Mag. 20, 147 (1969).ADSGoogle Scholar
  124. 9.124
    Y. Kihn, G. Zanchi, J. Sevely, B. Jouffrey: Application du filtrage en energie des electrons a l’observation des objets epais en microscopie electronique. J. Micr. Spectr. Electr. 1, 363 (1976).Google Scholar
  125. 9.125
    H.T. Pearce-Percy, J.M. Cowley: On the use of energy filtering to increase the contrast of STEM images of thick biological materials. Optik 44, 273 (1976).Google Scholar
  126. 9.126
    M. Isaacson, J.P. Langmore, H. Rose: Determination of the non-localization of the inelastic scattering of electrons by electron microscopy. Optik 41, 92 (1974).Google Scholar
  127. 9.127
    A.V. Crewe, J. Wall: Contrast in high resolution STEM. Optik 30, 461 (1970).Google Scholar
  128. 9.128
    A.El Hili: Analyse quantitative à haute résolution par images electroniques filtrées. J. Microscopie 5, 669 (1966).Google Scholar
  129. 9.129
    B. Jouffrey: “Electron Energy Loss Spectroscopy,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.351.Google Scholar
  130. 9.130
    C.J. Wilson, P.E. Batson, A.J. Craven, L.M. Brown: “Differentiated Energy Loss Spectroscopy in STEM,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p. 365.Google Scholar
  131. 9.131
    K.M. Adamson-Sharpe, F.P. Ottensmeyer: Spatial resolution and detection sensitivity in microanalysis by electron energy loss selected imaging. J. Micr. 122, 302 (1981).Google Scholar
  132. 9.132
    Y. Kamiya, R. Uyeda: Effect of incoherent waves on the electron microscopic image of crystals. J. Phys. Soc. Jpn. 16, 1361 (1961).ADSGoogle Scholar
  133. 9.133
    Y. Kamiya, Y. Nakai: Diffraction contrast effect of electrons scattered in-elastically through large angles. J. Phys. Soc. Jpn. 31, 195 (1971).ADSGoogle Scholar
  134. 9.134
    S.L. Cundy, A.J.F. Metherell, M.J. Whelan: Contrast preserved by elastic and quasi-elastic scattering of fast electrons near Bragg beams. Philos. Mag. 15, 623 (1967).ADSGoogle Scholar
  135. 9.135
    R. Castaing, P. Hénoc, L. Henry, M. Natta: Degré de cohérence de la diffusion électronique par interaction électron-phonon. C. R. Acad. Sci. Paris 265, 1293 (1967).Google Scholar
  136. 9.136
    S. Kuwabara, T. Uefuji: Variation of electron microscopie thickness fringes of Al single crystals with energy loss. J. Phys. Soc. Jpn. 38, 1090 (1975).ADSGoogle Scholar
  137. 9.137
    J.B. LePoole: Ein neues Elektronenmikroskop mit stetig regelbarer Vergrößerung. Philips Tech. Rundsch. 9, 33 (1947).Google Scholar
  138. 9.138
    M.E. Haine, R.S. Page, R.G. Garfitt: A three-stage electron microscope with stereographic dark field and electron diffraction capabilities. J. Appl. Phys. 21, 173 (1950).ADSGoogle Scholar
  139. 9.139
    W.D. Riecke, E. Ruska: Über ein Elektronenmikroskop mit Einrichtungen für Feinbereichsbeugung und Dunkelfeldabbildung durch Einzelreflex. Z. Wiss. Mikrosk. 63, 288 (1957).Google Scholar
  140. 9.140
    A.W. Agar: Accuracy of selected-area microdiffraction in the electron microscope. Br. J. Appl. Phys. 11, 185 (1960).ADSGoogle Scholar
  141. 9.141
    W. Riecke: Über die Genauigkeit der Übereinstimmung von ausgewähltem und beugendem Bereich bei der Feinbereichs-Elektronenbeugung im LePoolschen Strahlengang. Optik 18, 278 (1961).Google Scholar
  142. 9.142
    W. Riecke: Verzeichnung und Auflösung der im LePoolschen Strahlengang aufgenommenen Beugungsdiagramme. Optik 18, 373 (1961).Google Scholar
  143. 9.143
    W.C.T. Dowell: Fehler von Beugungsdiagrammen, die mittels Elektronenlinsen erzeugt und abgebildet sind. Optik 20, 581 (1963).Google Scholar
  144. 9.144
    J.C. Lodder, K.G. van der Berg: A method for accurately determining lattice parameters using electron diffraction in a commercial electron microscope. J. Micr. 100, 93 (1974).Google Scholar
  145. 9.145
    F. Fujimoto, K. Komaki, S. Takagi, H. Koike: Diffraction patterns obtained by scanning electron microscopy. Z. Naturforsch. A27, 441 (1972).ADSGoogle Scholar
  146. 9.146
    A.P. Pogany, P.S. Turner: Reciprocity in electron diffraction and microscopy. Acta Cryst. A24, 103 (1968).Google Scholar
  147. 9.147
    M.N. Thompson: “A Scanning Transmission Microscope: Some Techniques and Applications,” in Scanning Electron Microscopy: Systems and Applications, ed. by W.C. Nixon (The Institute of Physics, London 1973) p.176.Google Scholar
  148. 9.148
    D.M. Maher: “Scanning Electron Diffraction in TEM and SEM Operating in the Transmission Mode,” in Scanning Electron Microscopy 1974, ed. by O. Johari (IIT Research Inst., Chicago 1974) p.215.Google Scholar
  149. 9.149
    K.J. van Oostrum, A. Leenhouts, A. Jore: A new scanning micro-diffraction technique. Appl. Phys. Lett. 23, 283 (1973).ADSGoogle Scholar
  150. 9.150
    R.H. Geiss: Electron diffraction from areas less than 3 nm in diameter. Appl. Phys. Lett. 27, 174 (1975).ADSGoogle Scholar
  151. 9.151
    R.H. Geiss: “STEM Electron Diffraction from 30 Å Diameter Areas,” in Developments in Electron Microscopy and Analysis 1975, ed. by J.A. Venables (Academic, London 1976) p.61.Google Scholar
  152. 9.152
    J.P. Chevalier, A.J. Craven: Microdiffraction, application to short range order in a quenched copper-platinum alloy. Philos. Mag. 36, 67 (1977).ADSGoogle Scholar
  153. 9.153
    W.D. Riecke: Beugungsexperimente mit sehr feinen Elektronenstrahlen. Z. Angew. Phys. 27, 155 (1969).Google Scholar
  154. 9.154
    B. Bengtsson, B. Loberg, D.A. Porter, K.E. Easterling: “The Performance of a 200 kV STEM,” in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.450.Google Scholar
  155. 9.155
    L.M. Brown, A.J. Craven, L.G.P. Jones, A. Griffith, W.M. Stobbs, C.J. Wilson: “Application of a High Resolution STEM to Material Science,” in Scanning Electron Microscopy 1976/I, ed. by O. Johari (IIT Research Inst., Chicago 1976) p.353.Google Scholar
  156. 9.156
    H. von Harrach, C.E. Lyman, G.E. Verney, D.C. Joy, G.R. Booker: “Performance of the Oxford Field-Emission Scanning Transmission Electron Microscope,” in Developments in Electron Microscopy and Analysis 1975, ed. by J.A Venables (Academic, London 1976) p.7.Google Scholar
  157. 9.157
    L. Reimer: Electron diffraction methods in TEM, STEM and SEM. Scanning 2, 3 (1979).Google Scholar
  158. 9.158
    W. Kossel, G. Möllenstedt: Elektroneninterferenzen im konvergenten Bündel. Naturwissenschaften 26, 660 (1938).ADSGoogle Scholar
  159. 9.159
    W. Kossel, G. Möllenstedt: Dynamische Anomalie von Elektroneninterferenzen. Ann. Phys. 42, 287 (1942).Google Scholar
  160. 9.160
    P. Goodman, G. Lehmpfuhl: Elektronenbeugungsuntersuchungen im konvergenten Bündel mit dem Siemens Elmiskop I. Z. Naturforsch. A20, 110 (1965).ADSGoogle Scholar
  161. 9.161
    H. Raith: Elektronenbeugung im konvergenten Bündel an gekühlten Präparaten mit dem Siemens-Elmiskop I. Z. Naturforsch. A20, 855 (1965).ADSGoogle Scholar
  162. 9.162
    D.J.H. Cockayne, P. Goodman, J.C. Mills, A.F. Moodie: Design and generation of an electron diffraction camera for the study of small crystalline regions. Rev. Sci. Instrum. 38, 1097 (1967).ADSGoogle Scholar
  163. 9.163
    J.M. Cowley, D.J. Smith, G.A. Sussex: “Application of a High Voltage STEM,” in Scanning Electron Microscopy 1970, ed. by O. Johari (IIT Research Inst., Chicago 1970) p.11.Google Scholar
  164. 9.164
    P. Goodman: Observation of background contrast in convergent beam patterns. Acta Cryst. A28, 92 (1972).Google Scholar
  165. 9.165
    C. van Essen: “SEM Channelling Patterns from 2 μm Selected Areas,” in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.237.Google Scholar
  166. 9.166
    L. Reimer, P. Hagemann: “The Use of Transmitted and Backscattered Electrons in the Scanning Mode of a TEM,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p. 135.Google Scholar
  167. 9.167
    R.J. Woolf, D.C. Joy, J.M. Titchmarsh: “Scanning Transmission Electron Diffraction in the SEM,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.498.Google Scholar
  168. 9.168
    A.J. Craven: “Specimen Orientation in STEM,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.311.Google Scholar
  169. 9.169
    G. Möllenstedt, H.R. Meyer: Strahlengang zur Strukturanalyse von Einkristallen durch Elektronen-Transmissions-Doppelwinkelabrasterung. Optik 42, 487 (1975).Google Scholar
  170. 9.170
    J.A. Fades: “Another Way to Form Zone-Axis Patterns,” in Electron Microscopy and Analysis 1979, ed. by T. Mulvey (The Institute of Physics, London 1979) p.9.Google Scholar
  171. 9.171
    H. Mahl, W. Weitsch: Kleinwinkelbeugung mit Elektronenstrahlen. Naturwissenschaften 47, 301 (1960); Z. Naturforsch. A15, 1051 (1960).ADSGoogle Scholar
  172. 9.172
    R.P. Ferrier: “Small Angle Electron Diffraction in the Electron Microscope,” in Advances in Optical and Electron Microscopy, Vol.3, ed. by R. Barer, V.E. Cosslett (Academic, London 1969) p.155.Google Scholar
  173. 9.173
    R.H. Wade, J. Silcox: Small angle electron scattering from vacuum condensed metallic films. Phys. Status Solidi 19, 57 and 63 (1967).Google Scholar
  174. 9.174
    J. Smart, R.E. Burge: Small-angle electron diffraction patterns of assemblies of spheres and viruses. Nature 205, 1296 (1965).ADSGoogle Scholar
  175. 9.175
    V. Drahoš, A. Delong: “Low-Angle Electron Diffraction from Defined Specimen Area,” in Microscopie Electronique 1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.147.Google Scholar
  176. 9.176
    R.T. Murray, R.P. Ferrier: Biological applications of electron diffraction. J. Ultrastruct. Res. 21, 361 (1967).Google Scholar
  177. 9.177
    G.A. Bassett, A. Keller: Low-angle scattering in an electron microscope applied to polymers. Philos. Mag. 9, 817 (1964).ADSGoogle Scholar
  178. 9.178
    P.H. Denbigh, C.W.B. Grigson: Scanning electron diffraction with energy analysis. J. Sci. Instrum. 42, 305 (1965).ADSGoogle Scholar
  179. 9.179
    L. Reimer, K. Freking: Versuch einer quantitativen Erfassung der Textur von Au-Aufdampfschichten. Z. Phys. 184, 119 (1965).ADSGoogle Scholar
  180. 9.180
    M.F. Tompsett: Review: Scanning high-energy electron diffraction in materials science. J. Mat. Sci. 7, 1069 (1972).ADSGoogle Scholar
  181. 9.181
    C.W. Grigson: Improved scanning electron diffraction system. Rev. Sci. Instrum. 36, 1587 (1965).ADSGoogle Scholar
  182. 9.182
    F.C.S.M. Totthill, W.C. Nixon, C.W.B. Grigson: “Ultra-High Vacuum Modification of an AEI EM6 Electron Microscope for Studies of Nucleation in Evaporated Films,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.229.Google Scholar
  183. 9.183
    A.M. MacLeod, J.N. Chapman: A digital scanning and recording system for spot electron diffraction patterns. J. Phys. E 10, 37 (1977).ADSGoogle Scholar
  184. 9.184
    R.C. Newman, D.W. Pashley: The sensitivity of electron diffraction as a means of detecting thin surface films. Philos. Mag. 46, 927 (1955).Google Scholar
  185. 9.185
    F. Heise: Ein Zusatzgerät für Elektronenbeugung mit streifendem Einfall. Optik 9, 139 (1952).Google Scholar
  186. 9.186
    W. Riecke, F. Stöcklein: Eine Objektkammer mit universell beweglichem Präparattisch für Elektronenbeugungsuntersuchungen. Z. Phys. 156, 163 (1959).ADSGoogle Scholar
  187. 9.187
    M. Eisfeldt, K.H. Herrmann, F. Thon: “Ein Elektronenbeugungsgerät als Zusatzeinrichtung zum Elmiskop I,” in Proc. European Regional Conf. on Electron Microscopy, Vol.1, ed. by A.L. Houwink, B.J. Spit (Nederlandse Vereniging voor Electronenmicroscopie, Delft 1960) p.139.Google Scholar
  188. 9.188
    J.A. Venables, C.J. Harland: Electron back-scattering patterns — a new technique for obtaining crystal information in the SEM. Philos. Mag. 27, 1193 (1973).ADSGoogle Scholar
  189. 9.189
    M.N. Alam, M. Blackman, D.W. Pashley: High-angle Kikuchi patterns. Proc. Roy Soc. A221, 224 (1954).ADSGoogle Scholar
  190. 9.190
    L. Reimer, W. Pöpper, B. Volbert: “Contrast Reversals in the Kikuchi Bands of Backscattered and Transmitted Electron Diffraction Patterns,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.259.Google Scholar
  191. 9.191
    D.G. Coates: Kikuchi-like reflection patterns obtained with the SEM. Philos. Mag. 16, 1179 (1967).ADSGoogle Scholar
  192. 9.192
    G.R. Booker: “Scanning Electron Microscopy: Electron Channelling Effects,” in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx (North-Holland, Amsterdam 1970) p.613.Google Scholar
  193. 9.193
    L. Reimer: “Electron Specimen Interactions in SEM,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.83.Google Scholar
  194. 9.194
    J.W. Steeds, G.J. Tatlock, J. Hampson: Real space crystallography. Nature 241, 435 (1973).ADSGoogle Scholar
  195. 9.195
    G.J. Tatlocks, J.W. Steeds: Real space crystallography in molybdenite. Nature Phys. Sci. 246, 126 (1973).ADSGoogle Scholar
  196. 9.196
    J.W. Steeds, P.M. Jones, G.M. Rackham, M.D. Shannon: “Crystallographic Information from Zone Axis Patterns,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.351.Google Scholar
  197. 9.197
    J.W. Steeds, P.M. Jones, J.E. Loveluck, K.E. Cooke: The dependence of zone axis patterns on string integrals or the number of bound states in high energy electron diffraction. Philos. Mag. 36, 309 (1977).ADSGoogle Scholar
  198. 9.198
    M.D. Shannon, J.W. Steeds: On the relationship between projected crystal potential and the form of certain zone axis patterns in high energy electron diffraction. Philos. Mag. 36, 279 (1977).ADSGoogle Scholar
  199. 9.199
    W. Witt: Zur absoluten Präzisionsbestimmung von Gitterkonstanten mit Elektroneninterferenzen am Beispiel von Thallium-(I)-Chlorid. Z. Naturforsch. A19, 1363 (1964).ADSGoogle Scholar
  200. 9.200
    J.M. Corbett, F.W. Boswell: Use of thin single crystals as reference standards for precision electron diffraction. J. Appl. Phys. 37, 2016 (1966).ADSGoogle Scholar
  201. 9.201
    A.L. MacKay. Calibration of diffraction patterns taken in the electron microscope. J. Phys. E3, 248 (1970).MathSciNetADSGoogle Scholar
  202. 9.202
    J.T. Jubb, E.E. Laufer: The beam-tilt device of an electron microscope as an internal diffraction standard. J. Phys. E9, 871 (1976).ADSGoogle Scholar
  203. 9.203
    E.E. Laufer, J.T. Jubb, K.S. Milliken: The use of the beam tilt circuitry of an electron microscope for rapid determination of lattice constants. J. Phys. E8, 671 (1975).ADSGoogle Scholar
  204. 9.204
    H. König: Gitterkonstantenbestimmung im Elektronenmikroskop. Naturwissenschaften 33, 343 (1946).ADSGoogle Scholar
  205. 9.205
    F.W.C. Bosswell: A standard substance for precise electron diffraction measurements. Phys. Rev. 80, 91 (1950).ADSGoogle Scholar
  206. 9.206
    C. Lu, E.W. Malmberg: ZnO smoke as a reference standard in electron wavelength calibration. Rev. Sci. Instrum. 14, 271 (1943).ADSGoogle Scholar
  207. 9.207
    R. Rühle: Über Gesetzmäßigkeiten in Texturaufnahmen von Elektronenbeugungsbildern. Optik 7, 279 (1950).Google Scholar
  208. 9.208
    Z.G. Pinsker: Electron Diffraction, translated by J.A. Spink, E. Feigl (Butterworths, London 1953).Google Scholar
  209. 9.209
    B.K. Vainshtein: Structure Analysis by Electron Diffraction, translated by E. Feigl, J.A. Spink (Pergamon, Oxford 1964).Google Scholar
  210. 9.210
    J.A. Gard: Interpretation of electron micrographs and diffraction patterns: the electron optical investigation of clays. Mineralogical Soc. London (1971).Google Scholar
  211. 9.211
    J.M. Cowley: Crystal structure determination by electron diffraction. Prog. Mater. Sci. 13, 267 (1966).Google Scholar
  212. 9.212
    S. Nagakura: A method for correcting the primary extinction effect in electron diffraction. Acta Cryst. 10, 601 (1957).Google Scholar
  213. 9.213
    B.K. Vainshtein, A.N. Lobacher: Dynamic scattering and its use in structural electron diffraction studies. Sov. Phys. Cryst. 6, 609 (1961).Google Scholar
  214. 9.214
    J.M. Cowley: Structure analysis of single crystals by electron diffraction. Acta Cryst. 6, 516, 522, and 846 (1953).Google Scholar
  215. 9.215
    J.M. Cowley: “The Theoretical Basis for Electron Diffraction Structure Analysis,” in Electron Microscopy 1962, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p. JJ-1.Google Scholar
  216. 9.216
    S. Fujime, D. Watanabe, S. Ogawa: On forbidden reflection spots and unexpected streaks appearing in electron diffraction patterns from hexagonal Co. J. Phys. Soc. Jpn. 19, 711 (1964).ADSGoogle Scholar
  217. 9.217
    J.F. Brown, D. Clark: The use of the three-stage electron microscope in crystal-structure analysis. Acta Cryst. 5, 615 (1952).Google Scholar
  218. 9.218
    J.A. Gard: The use of the stereoscopic tilt device of the electron microscope in unit-cell determinations. Br. J. Appl. Phys. 7, 361 (1956).ADSGoogle Scholar
  219. 9.219
    J.A. Gard: “Interpretation of Electron Diffraction Patterns,” in Electron Microscopy in Mineralogy, ed. by H.W. Wenk (Springer, Berlin, Heidelberg, New York 1976) p.52.Google Scholar
  220. 9.220
    R.R. Dayal, J.A. Gard, F.P. Glasser: Crystal data on FeAl03. Acta Cryst. 18, 574 (1965).Google Scholar
  221. 9.221
    J.A. Gard, ü.M. Bennet: “A Goniometric Specimen Stage, and Its Use in Crystallography,” in Electron Microscopy 1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.593.Google Scholar
  222. 9.222
    G. Cliff, J.A. Gard, G.W. Lorimer, H.F.W. Taylor: Tacharanite. Mineral. Mag. 40, 113 (1975).Google Scholar
  223. 9.223
    S. Kuwabara: Accurate determination of hydrogen positions in NH4Cl by electron diffraction. J. Phys. Soc. Jpn. 14, 1205 (1959).ADSGoogle Scholar
  224. 9.224
    V.V. Udalova, Z.G. Pinsker: Electron diffraction study of the structure of ammonium sulfate. Sov. Phys. Cryst. 8, 433 (1963).Google Scholar
  225. 9.225
    J.A. Gard, H.F.W. Taylor, L.W. Staples: “Studies in Crystal Structure Using Electron Diffraction of Single Crystals,” in Vierter Internationaler Kon-greß für Elektronenmikroskopie Berlin 1958, Vol.1, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen, Heidelberg 1960) p.449.Google Scholar
  226. 9.226
    H.M. Otte, J. Dash, H.F. Schaake: Electron microscopy and diffraction of thin films. Interpretation and correlation of images and diffraction patterns. Phys. Status Solidi 5, 527 (1964).Google Scholar
  227. 9.227
    C. Laird, E. Eichen, W.R. Bitler: Accuracy in the use of electron diffraction spot patterns for determining crystal orientations. J. Appl. Phys. 37, 2225 (1966).ADSGoogle Scholar
  228. 9.228
    K. Lücke, H. Perlwitz, W. Pitsch: Elektronenmikroskopische Bestimmung der Orientierungsverteilung der Kristal lite in gewalztem Kupfer. Phys. Status Solidi 7, 733 (1964).Google Scholar
  229. 9.229
    F. Haessner, U. Jakubowksi, M. Wilkens: Anwendung elektronenmikroskopischer Feinbereichsbeugung zur Ermittlung der Walztextur von Kupfer. Phys. Status Solidi 7, 701 (1964).Google Scholar
  230. 9.230
    P.L. Ryder, W. Pitsch: The uniqueness of orientation determination by selected area electron diffraction. Philos. Mag. 15, 437 (1967).ADSGoogle Scholar
  231. 9.231
    P.L. Ryder, W. Pitsch: On the accuracy of orientation determination by selected area diffraction. Philos. Mag. 18, 807 (1968).ADSGoogle Scholar
  232. 9.232
    D.J. Mazey, R.S. Barnes, A. Howie: On interstitial dislocation loops in aluminium bombarded with alpha-particles. Philos. Mag. 7, 1861 (1962).ADSGoogle Scholar
  233. 9.233
    M.H. Loretto, L.M. Clarebrough, P. Humble: Nature of dislocation loops in quenched Al. Philos. Mag. 13, 953 (1966).ADSGoogle Scholar
  234. 9.234
    M. von Heimendahl: Determination of metal foil thickness and orientation in electron microscopy. J. Appl. Phys. 35, 457 (1964).ADSGoogle Scholar
  235. 9.235
    S.S. Sheinin, C.D. Cann: The determination of orientation from Kikuchi patterns. Phys. Status Solidi 11, K1 (1965).ADSGoogle Scholar
  236. 9.236
    R. Bonnet, F. Durand: Precise determination of the relative orientation of two crystals from the analysis of two Kikuchi patterns. Phys. Status Solidi A27, 543 (1975).ADSGoogle Scholar
  237. 9.237
    W. Griem, P. Schwaab, U. Stockhofe: Behandlung von Epitaxie-Fragen bei der Elektronenbeugung mit Hilfe der Datenverarbeitung. Arch. Eisenhüttenwesen 43, 509 (1972).Google Scholar
  238. 9.238
    W. Griem, P. Schwaab: Behandlung von gesetzmäßigen Verwachsungen nichtkubischer und teilkohärenter Phasen bei der Elektronenbeugung. Arch. Eisenhüttenwesen 44, 677 (1973).Google Scholar
  239. 9.239
    R. Bonnet, E.E. Laufer: Precise determination of the relative orientation of two crystals from the analysis of spot diffraction patterns. Phys. Status Solidi A40, 599 (1977).ADSGoogle Scholar
  240. 9.240
    M.D. Drazin, M.H. Otte: The systematic determination of crystallographic orientations from three octahedral traces on a plane surface. Phys. Status Solidi 3, 824 (1963).Google Scholar
  241. 9.241
    A.G. Crocker, M. Bevis: The determination of the orientation and thickness of thin foils from transmission electron micrographs. Phys. Status Solidi 6, 151 (1964).Google Scholar
  242. 9.242
    G. Thomas: Transmission Electron Microscopy of Metals (Wiley, New York 1962).Google Scholar
  243. 9.243
    A. Baltz: Rotation of image and selected area diffraction patterns in the RCA-EMU3 electron microscope. Rev. Sci. Instrum. 33, 246 (1962).ADSGoogle Scholar
  244. 9.244
    P. Delavignette: Determination of some instrumental constants of the electron microscope Philips EM 200. J. Sci. Instrum. 40, 461 (1963).ADSGoogle Scholar
  245. 9.245
    H. Raether: Reflexion von schnellen Elektronen an Einkristallen. Z. Phys. 78, 527 (1932).ADSGoogle Scholar
  246. 9.246
    R.D. Heidenreich: Theory of the ‘forbidden’ (222) electron reflection in the diamond structure. Phys. Rev. 77, 271 (1950).ADSzbMATHGoogle Scholar
  247. 9.247
    M. Takagi, S. Morimoto: The forbidden 222 electron reflection from Ge. J. Phys. Soc. Jpn. 18, 819 (1963).ADSGoogle Scholar
  248. 9.248
    H. Göttsche: Zur Struktur dünner Ag-Schichten. Z. Phys. 134, 517 (1953).ADSGoogle Scholar
  249. 9.249
    W. Pitsch: Kristallographische Eigenschaften von Eisennitrid-Ausscheidungen im Ferrit. Arch. Eisenhüttenwesen 32, 493 and 573 (1961).Google Scholar
  250. 9.250
    S. Ogawa, D. Watanabe, H. Watanabe, T. Komoda: “The Direct Observation of the Long Period of the Ordered Alloy CuAu (II) by Means of Electron Microscope,” in Vierter Internationaler Kongreß für Elektronenmikroskopie Berlin 1958, Vol.1, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen, Heidelberg 1960) p.334.Google Scholar
  251. 9.251
    D.W. Pashley, A.E.B. Presland: The observation of antiphase boundaries during the transition from CuAu I to CuAu II. J. Inst. Met. 87, 419 (1959).Google Scholar
  252. 9.252
    S. Ogawa: On the antiphase domain structures in ordered alloys. J. Phys. Soc. Jpn. 17, Suppl.B-II, 253 (1962).Google Scholar
  253. 9.253
    I. Ackermann: Beobachtungen an dynamischen Interferenzerscheinungen im konvergenten Elektronenbündel. Ann. Phys. 2, 19 and 41 (1948).Google Scholar
  254. 9.254
    P.M. Kelly, A. Jostsons, R.G. Blake, J.G. Napier: The determination of foil thickness by STEM. Phys. Status Solidi A31, 771 (1975).ADSGoogle Scholar
  255. 9.255
    R.G. Blake, A. Jostsons, P.M. Kelly, J.G. Napier: The determination of extinction distances and anomalous absorption coefficients by STEM. Philos. Mag. A37, 1 (1978).ADSGoogle Scholar
  256. 9.256
    J.W. Steeds, K.K. Fung: “Application of Convergent Beam Electron Microscopy in Materials Science,” in Electron Microscopy 1978, Vol.1, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.620.Google Scholar
  257. 9.257
    J.W. Steeds: “Convergent Beam Electron Diffraction,” in Analytical Electron Microscopy, ed. by J.J. Hren, J.I. Goldstein, D.C. Joy (Plenum, New York 1979) p.387.Google Scholar
  258. 9.258
    P.M. Jones, G.M. Rackham, J.W. Steeds: Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination. Proc. Roy. Soc. A354, 197 (1977).ADSGoogle Scholar
  259. 9.259
    B.F. Buxton: Bloch waves and higher order Laue zone effects in high energy electron diffraction. Proc. Roy. Soc. A350, 335 (1976).ADSGoogle Scholar
  260. 9.260
    J.W. Steeds: “Information About the Crystal Potential from Zone Axis Patterns,” in Electron Microscopy 1980, Vol.4, ed. by P. Brederoo, J. Van Landuyt (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.96.Google Scholar
  261. 9.261
    J.R. Baker, S. McKernan: “Structure Factor Information from HOLZ Beam Intensities in Convergent-Beam HEED,” in Electron Microscopy and Analysis 1981, ed. by M.J. Goringe (The Institute of Physics, London 1982) p.283.Google Scholar
  262. 9.262
    G.M. Rackham, P.M. Jones, J.W. Steeds: “Upper Layer Diffraction Effects in Zone Axis Patterns,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.336 and 355.Google Scholar
  263. 9.263
    J.E. Loveluck, J.W. Steeds: “Crystallography of Lithium Tantalate and Quartz,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.293.Google Scholar
  264. 9.264
    G.M. Rackham, J.W. Steeds: “Convergent Beam Observation near Boundaries and Interfaces,” in Development in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.457.Google Scholar
  265. 9.265
    P. Goodman: A practical method for three-dimensional space-group analysis using convergent beam electron diffraction. Acta Cryst. A31, 804 (1975).ADSGoogle Scholar
  266. 9.266
    B.F. Buxton, J.A. Eades, J.W. Steeds, G.M. Rackham: The symmetry of electron diffraction zone axis patterns. Philos. Trans. Roy. Soc. A281, 171 (1976).ADSGoogle Scholar
  267. 9.267
    S.J. Pennycook, L.M. Brown, A.J. Craven: Observation of cathodoluminescence at single dislocations by STEM. Philos. Mag. A41, 589 (1980).ADSGoogle Scholar
  268. 9.268
    P.M. Petroff, D.V. Lang, J.L. Strudel, R.A. Logan: “Scanning Transmission Electron Microscopy Techniques for Simultaneous Electronic Analysis and Observation of Defects in Semiconductors,” in Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1978) p.325.Google Scholar
  269. 9.269
    S.J. Pennycook, A. Howie: Study of single electron excitations by electron microscopy. Philos. Mag. A41, 809 (1980).ADSGoogle Scholar
  270. 9.270
    A. Ourmazd, G.R. Booker: The electrical recombination efficiency of individual edge dislocations and stacking fault defects in n-type silicon. Phys. Status Solidi A55, 771 (1979).ADSGoogle Scholar
  271. 9.271
    H. Blumtritt, R. Gleichmann, J. Heydenreich, J. Johansen: Combined scanning (EBIC) and transmission electron microscopic investigations of dislocations in semiconductors. Phys. Status Solidi A55, 611 (1979).ADSGoogle Scholar
  272. 9.272
    T.G. Sparrow, U. Valdrè: Application of scanning transmission electron microscopy to semiconductor devices. Philos. Mag. 36, 1517 (1977).ADSGoogle Scholar
  273. 9.273
    P.M. Petroff, D.V. Lang: A new spectroscopic technique for imaging the spatial distribution of nonradiative defects in a scanning transmission electron microscope. Appl. Phys. Lett. 31, 60 (1977).ADSGoogle Scholar
  274. 9.274
    M.J. Leamy: Charge collection scanning electron microscopy. J. Appl. Phys. Phys. 53, R51 (1982).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfälische Wilhelms-Universität MünsterMünsterFed. Rep. of Germany

Personalised recommendations