Diffraction Contrast and Crystal-Structure Imaging

  • Ludwig Reimer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 36)


A crystal can be imaged with the primary beam (bright field) or with a Bragg reflection (dark field). The local intensity depends on the thickness, resulting in thickness contours, and on the tilt of the lattice planes, resulting in bend contours, which can be described by the dynamical theory of electron diffraction. In certain cases, the intensity of a Bragg reflection depends so sensitively on specimen thickness that atomic surface steps can be observed.


Bragg Reflection Bloch Wave Diffraction Contrast Kikuchi Line Edge Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 8.1
    A.J.F. Metherell, M.J. Whelan: Measurement of absorption of fast electrons in single crystal films of Al. Philos. Mag. 15, 755 (1967).ADSGoogle Scholar
  2. 8.2
    A. Iijima: Intensity of fast electron transmitted through thick single crystals. J. Phys. Soc. Jpn. 35, 213 (1973).ADSGoogle Scholar
  3. 8.3
    L. Reimer: Contrast in amorphous and crystalline objects. Lab. Invest. 14, 939 (1965).Google Scholar
  4. 8.4
    L. Reimer: Deutung der Kontrastunterschiede von amorphen und kristallinen Objekten in der Elektronenmikroskopie. Z. Angew. Phys. 22, 287 (1967).Google Scholar
  5. 8.5
    G. Dupouy, F. Perrier, R. Uyeda, R. Ayroles, A. Mazel: Mesure du coefficient d’absorption des électrons accélérés sons des tensions comprises entre 100 et 1200 kV. J. Microscopie 4, 429 (1965).Google Scholar
  6. 8.6
    A. Mazel, R. Ayroles: “Etude dans des cristaux d’oxyde de magnesium des distances d’extinction correspondant a diverses reflexions systématiques,” in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.99.Google Scholar
  7. 8.7
    G. Möllenstedt: Elektronenmikroskopische Sichtbarmachung von Hohlstellen in Einkristall-Lamellen. Optik 10, 72 (1953).Google Scholar
  8. 8.8
    K. Shirota, T. Yamamoto, T. Yanaka, O. Vingsbo: On dark field techniques in transmission electron microscopy. Ultramicroscopy 1, 67 (1975).Google Scholar
  9. 8.9
    L. Reimer: Elektronenoptische Untersuchung zur Zwillingsbildung in Silber-Aufdampfschichten. Optik 16, 30 (1959).Google Scholar
  10. 8.10
    P. Rao: Separation and identification of phases with through-focus dark-field electron microscopy. Philos. Mag. 32, 755 (1975).ADSGoogle Scholar
  11. 8.11
    G.M. Michal, R. Sinclaire: A quantitative assessment of the capabilities of 2 1/2 D microscopy for analysing crystalline solids. Philos. Mag. A42, 691 (1980).ADSGoogle Scholar
  12. 8.12
    L. Reimer: “Contrast in the Different Modes of SEM,” in Scanning Electron Microscopy: Systems and Applications 1973 (The Institute of Physics, London 1973) p.120.Google Scholar
  13. 8.13
    G.R. Booker, D.C. Joy, J.P. Spencer, H. von Harrach: “Contrast Effects from Crystalline Material Using STEM,” in Scanning Electron Microscopy 1974, ed. by O. Johari (IIT Research Ins., Chicago 1974) p.225.Google Scholar
  14. 8.14
    D.M. Maher, D.C. Joy: The formation and interpretation of defect images from crystalline materials in a scanning transmission electron microscope. Ultramicroscopy 1, 239 (1976).Google Scholar
  15. 8.15
    L. Reimer, P. Hagemann: “Scanning Transmission Electron Microscopy of Crystalline Specimens,” in Scanning Electron Microscopy 1976/I, ed. by O. Johari (IIT Research Inst., Chicago 1976) p.321.Google Scholar
  16. 8.16
    L. Reimer, P. Hagemann: Anwendung eines Rasterzusatzes zu einem Transmissionselektronenmikroskop. II. Abbildung kristalliner Objekte. Optik 47, 325 (1977).Google Scholar
  17. 8.17
    T. Yamamoto, H. Nishizawa: Imaging of crystalline substances in STEM. Phys. Status Solidi A28, 237 (1975).ADSGoogle Scholar
  18. 8.18
    H. Hashimoto: “High Voltage TEM — Contrast Theory,” in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p. 9.Google Scholar
  19. 8.19
    C.J. Humphreys, L.E. Thomas, J.S. Laily, R.M. Fisher: Maximising the penetration in HVEM. Philos. Mag. 23, 87 (1971).ADSGoogle Scholar
  20. 8.20
    A. Rocher, R. Ayroles, A. Mazel, C. Mory, B. Jouffrey: “Electron Penetration in Al, Cu, and MgO at High Voltages up to 3 MV,” in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p.436.Google Scholar
  21. 8.21
    C.J. Humphreys, J.S. Laily: Aspects of Bloch-wave channelling in high-voltage electron microscopy. J. Appl. Phys. 41, 232 (1970).ADSGoogle Scholar
  22. 8.22
    J.W. Steeds: Many-beam diffraction effects in gold and measurement of absorption parameters by fitting computer-graphs. Phys. Status Solidi 38, 203 (1970).Google Scholar
  23. 8.23
    M.S. Spring: Electron channelling at high energies. Phys. Lett. A31, 421 (1970).ADSGoogle Scholar
  24. 8.24
    R. Uyeda, M. Nonoyama: The observation of thick specimens by high voltage electron microscopy. Jpn. J. Appl. Phys. 6, 557 (1967).ADSGoogle Scholar
  25. 8.25
    G. Thomas: Electron microscopy at high voltages. Philos. Mag. 17, 1097 (1968).ADSGoogle Scholar
  26. 8.26
    G. Thomas, J.C. Lacaze: Transmission electron microscopy at 2.5 MeV. J. Microscopie 97, 301 (1973).Google Scholar
  27. 8.27
    H. Fujita, T. Tabata: Voltage dependence of the maximum observable thickness by electron microscopy up to 3 MV. Jpn. J. Appl. Phys. 12, 471 (1973).ADSGoogle Scholar
  28. 8.28
    H. Fujita, T. Tabata, K. Yoshida, N. Sumida, S. Katagiri: Some applications of an ultra-high voltage electron microscope on materials science. Jpn. J. Appl. Phys. 11, 1522 (1972).ADSGoogle Scholar
  29. 8.29
    S. Mader: Elektronenmikroskopische Untersuchung der Gleitlinienbildung auf Cu-Einkristallen. Z. Phys. 149, 73 (1957).ADSGoogle Scholar
  30. 8.30
    L. Reimer, C. Schulte: Elektronenmikroskopische Oberflächenabdrücke und ihr Auflösungsvermögen. Naturwissenschaften 53, 489 (1966).ADSGoogle Scholar
  31. 8.31
    G.A. Bassett: A new technique for decoration of cleavage and slip steps on ionic crystal surfaces. Philos. Mag. 3, 1042 (1958).ADSGoogle Scholar
  32. 8.32
    H. Bethge, K.W. Keller: Über die Abbildung von Versetzungen durch Abdampfstrukturen auf NaCl-Kristallen. Z. Naturforsch, A15, 271 (1960).ADSGoogle Scholar
  33. 8.33
    H. Bethge, K.W. Keller, N. Stenzel: Zur elektronenmikroskopischen Sichtbarmachung unterschiedlicher Bindungsenergien und Adsorptionseigenschaften an Lamellenstufen auf NaCl-Kristallen. Naturwissenschaften 49, 152 (1962).ADSGoogle Scholar
  34. 8.34
    K. Kambe, G. Lehmpfuhl: Weak-beam technique for electron microscopic observation of atomic steps on thin single-crystal surfaces. Optik 42, 187 (1975).Google Scholar
  35. 8.35
    D. Cherns: Direct resolution of surface atomic steps by transmission electron microscopy. Philos. Mag. 30, 549 (1974).ADSGoogle Scholar
  36. 8.36
    Y. Uchida, G. Lehmpfuhl, F. Fujimoto: “Dark Field Technique for a Direct Electron Microscopic Observation of the Surface Structure on Single Crystals,” in Microscopie Electronique à Haute Tension, ed. by J. Jouffrey, P. Favard (Société Francaise de Microscopie Electronique, Paris 1976) p.113.Google Scholar
  37. 8.37
    S. Iijima: Observation of atomic steps of (111) surface of a silicon crystal using bright field electron microscopy. Ultramicroscopy 6, 41 (1981).Google Scholar
  38. 8.38
    G. Lehmpfuhl, K. Takayanagi: Electron microscopic contrast of atomic steps on fcc metal crystal surfaces. Ultramicroscopy 6, 195 (1981).Google Scholar
  39. 8.39
    J.W. Menter: The direct study by electron microscopy of crystal lattices and their imperfections. Proc. Roy. Soc. 236, 119 (1956).ADSGoogle Scholar
  40. 8.40
    R. Scholz, H. Bethge: “High Resolution Study of 20° [001] Tilt Boundaries in Gold,” in Electron Microscopy 1980, Vol.1, ed. by J. Brederoo, G. Boom (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.238.Google Scholar
  41. 8.41
    T. Komoda: On the resolution of the lattice imaging in the electron microscope. Optik 21, 93 (1964).Google Scholar
  42. 8.42
    H. Hashimoto, M. Mannani, T. Naiki: Dynamical theory of electron diffraction for the electron microscopical image of crystal lattices. Philos. Trans. Roy Soc. London A253, 459 (1961).ADSGoogle Scholar
  43. 8.43
    R. Sinclair: “Microanalysis by Lattice Imaging,” in Introduction to Analytical Electron Microscopy, ed. by J.J. Hren, J.I. Goldstein, D.C. Joy (Plenum, New York 1978) p.507.Google Scholar
  44. 8.44
    W.C.T. Dowell: Das elektronenmikroskopische Bild von Netzebenenscharen und sein Kontrast. Optik 20, 535 (1963).Google Scholar
  45. 8.45
    R. Sinclair, R. Gronsky, G. Thomas: Optical diffraction from lattice images of alloys. Acta Metall. 24, 789 (1976).Google Scholar
  46. 8.46
    C.K. Wu, R. Sinclair, G. Thomas: Lattice imaging and optical microanalysis of Cu-Ni-Cr spinoidal alloy. Metall. Trans. A9, 381 (1978).Google Scholar
  47. 8.47
    R. Sinclair, J. Dutkiewicz: Lattice imaging of the B19 ordering transformation and interfacial structure in Mg3Cd. Acta Metall. 25, 235 (1977).Google Scholar
  48. 8.48
    V.A. Phillips: Lattice resolution measurements of strain fields at Guinier-Preston zones in Al-3.0% Cu. Acta Metall. 21, 219 (1973).Google Scholar
  49. 8.49
    R.G. Gronsky, G. Thomas: “Lattice Imaging of Grain Boundary Precipitation Reactions,” in Proc. 35th Annual Meeting of EMSA (Claitor’s Publ. Div., Baton Rouge, LO 1977) p.116.Google Scholar
  50. 8.50
    D.R. Clarke: “Determination of Grain Boundary Segregation by Combined X-Ray Microanalysis and Lattice Fringe Imaging,” in Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1978) p.77.Google Scholar
  51. 8.51
    T. Komoda: Electron microscopic observation of crystal lattices on the level with atomic dimensions. Jpn. J. Appl. Phys. 5, 603 (1966).ADSGoogle Scholar
  52. 8.52
    J.G. Allpress, J.V. Sanders: The direct observation of the structure of real crystals by lattice imaging. J. Appl. Cryst. 6, 165 (1973).Google Scholar
  53. 8.53
    J.M. Cowley, S. Iijima: “The Direct Imaging of Crystal Structures,” in Electron Microscopy in Mineralogy, ed. by H.R. Wenk (Springer, Berlin, Heidelberg, New York 1976) p.123.Google Scholar
  54. 8.54
    J.L. Hutchison: “Lattice Images,” in Development in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.241.Google Scholar
  55. 8.55
    S. Iijima, S. Kimura, M. Goto: High-resolution microscopy of nonstochiometric Nb22O54 crystals: point defects and structural defects. Acta Cryst. A30, 251 (1974).Google Scholar
  56. 8.56
    L.A. Bursill, A.R. Wilson: Electron-optical imaging of the Hollandite structure at 3 Å resolution. Acta Cryst. A33, 672 (1977).Google Scholar
  57. 8.57
    M. Tanaka, B. Jouffrey: Many-beam lattice images calculated at 100 kV and 1000 kV. Acta Cryst. A36, 1033 (1980).Google Scholar
  58. 8.58
    P.L. Fejes, S. Iijima, J.M. Cowley: Periodicity in thickness of electron-microscope crystal-lattice images. Acta Cryst. A29, 710 (1973).Google Scholar
  59. 8.59
    D.F. Lynch, A.F. Moodie, M.A. O’Keefe: n-beam lattice images. V. The use of the charge-density approximation in the interpretation of lattice images Acta Cryst. A31, 300 (1975).Google Scholar
  60. 8.60
    M. A. O’Keefe, J.W. Sanders: n-beam lattice images. VI. Degradation of image resolution by a combination of incident-beam divergence and spherical aberration. Acta Cryst. A31, 307 (1975).Google Scholar
  61. 8.61
    T. Mitsuishi, H. Nagasaki, R. Uyeda: A new type of interference fringes observed in electron microscopy of crystalline substances. Proc. Imp. Acad. Jpn. 27, 86 (1951).Google Scholar
  62. 8.62
    G.A. Bassett, J.W. Menter, D.W. Pashley: Moiré patterns of electron micrographs and their application to the study of dislocations in metals. Proc. Roy. Soc. A246, 345 (1958).ADSGoogle Scholar
  63. 8.63
    O. Rang: Zur geometrischen Theorie der Moiré-Muster auf Elektronenbildern übereinander liegender Einkristalle. Z. Krist. 114, 98 (1960).Google Scholar
  64. 8.64
    R. Gevers: Dynamical theory of moiré fringe patterns. Philos. Mag. 7, 1681 (1962).ADSzbMATHGoogle Scholar
  65. 8.65
    J. Demny: Aussagen des Verdrehungsmoirés über Gitterfehler. Z. Naturforsch. A15, 194 (1960).ADSGoogle Scholar
  66. 8.66
    J.W. Matthews, W.M. Stobbs: Measurement of the lattice displacement across a coincidence grain boundary. Philos. Mag. 36, 373 (1977).ADSGoogle Scholar
  67. 8.67
    L.A. Bruce, H. Jaeger: Geometric factors in fcc and bcc metal-on-metal epitaxy. Philos. Mag. 36, 1331 (1977).ADSGoogle Scholar
  68. 8.68
    M.J. Whelan: An outline of the theory of diffraction contrast observed at dislocations and other defects in thin crystals examinated by TEM. J. Inst. Met. 87, 392 (1959).Google Scholar
  69. 8.69
    P.B. Hirsch, A. Howie, M.J. Whelan: A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other effects. Philos. Trans. Roy. Soc. London A252, 499 (1960).ADSGoogle Scholar
  70. 8.70
    R. Gevers: On the dynamical theory of electron transmission microscope images of dislocations and stacking faults. Phys. Status Solidi 3, 415 (1963).Google Scholar
  71. 8.71
    R. Gevers: On the dynamical theory of different types of electron microscopic transmission fringe patterns. Phys. Status Solidi 3, 1672 (1963).Google Scholar
  72. 8.72
    A. Howie, M.J. Whelan: Diffraction contrast of electron microscope images of crystal lattice defects. Proc. Roy. Soc. A263, 217 (1961); 267, 206 (1962).ADSGoogle Scholar
  73. 8.73
    C.J. Ball: A relation between dark field electron micrographs of lattice defects. Philos. Mag. 9, 541 (1964).ADSGoogle Scholar
  74. 8.74
    A. Howie: Inelastic scattering of electrons by crystals. Proc. Roy. Soc. A271, 268 (1963).ADSGoogle Scholar
  75. 8.75
    M. Wilkens: Zur Theorie des Kontrastes von elektronenmikroskopisch abgebildeten Gitterfehlern. Phys. Status Solidi 5, 175 (1964).Google Scholar
  76. 8.76
    M. Wilkens: Streuung von Blochwellen schneller Elektronen in Kristallen mit Gitterbaufehlern. Phys. Status Solidi 6, 939 (1964).Google Scholar
  77. 8.77
    M. Wilkens, M. Rühle: Black-white contrast figures from small dislocation loops. Phys. Status Solidi B49, 749 (1972).ADSGoogle Scholar
  78. 8.78
    J. van Landuyt, R. Gevers, S. Amelinckx: Fringe patterns at anti-phase boundaries with α = π observed in the electron microscope. Phys. Status Solidi 7, 519 (1964).Google Scholar
  79. 8.79
    C.M. Drum, M.J. Whelan: Diffraction contrast effects from stacking faults with phase-angle π. Philos. Mag. 11, 205 (1965).ADSGoogle Scholar
  80. 8.80
    M.J. Whelan, P.B. Hirsch: Electron diffraction from crystals containing stacking faults. Philos. Mag. 2, 1121 and 1303 (1957).ADSGoogle Scholar
  81. 8.81
    H. Hashimoto, A. Howie, M.J. Whelan: Anomalous electron absorption effects in metal foils. Philos. Mag. 5, 967 (1960); Proc. Roy. Soc. A269, 80 (1962).ADSGoogle Scholar
  82. 8.82
    A. Art, R. Gevers, S. Amelinckx: The determination of the type of stacking faults in face centered cubic alloys by means of contrast effects in the electron microscope. Phys. Status Solidi 3, 697 (1963).Google Scholar
  83. 8.83
    R. Gevers, A. Art, S. Amelinckx: Electron microscopic images of single and intersecting stacking-faults in thick foils. Phys. Status Solidi 3, 1563 (1963).Google Scholar
  84. 8.84
    M.J. Marcinkowski: “Theory and Direct Observation of Antiphase Boundaries and Dislocations in Superlattices,” in Electron Microscopy and Strength of Crystals, ed. by G. Thomas, J. Washburn (Interscience, New York 1963) p.333.Google Scholar
  85. 8.85
    S. Amelinckx: “The Study of Planar Interfaces by Means of Electron Microscopy,” in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx et al. (North-Holland, Amsterdam 1970) p.257.Google Scholar
  86. 8.86
    S. Amelinckx, J. Van Landuyt: “Contrast Effects at Planar Interfaces,” in Electron Microscopy in Mineralogy (Springer, Berlin, Heidelberg, New York 1976) p.68.Google Scholar
  87. 8.87
    R. Serneels, M. Snykers, P. Delavignette, R. Gevers, S. Amelinckx: Friedel’s law in electron diffraction as applied to the study of domain structures in non-centrosymmetrical crystals. Phys. Status Solidi B58, 277 (1973).ADSGoogle Scholar
  88. 8.88
    O. van der Biest, G. Thomas: Identification of enantiomorphism in crystals by electron microscopy. Acta Cryst. A31, 70 (1975).Google Scholar
  89. 8.89
    A.J. Morton: Inversion anti-phase domains in Cu-rich γ-brasses. Phys. Status Solidi A31, 661 (1975).ADSGoogle Scholar
  90. 8.90
    R. Portier, D. Gratias, M. Fayard: Electron microscopy study of enantio-morphic ordered structures. Philos. Mag. 36, 421 (1977).ADSGoogle Scholar
  91. 8.91
    R. Gevers, P. Delavignette, H. Blank, S. Amelinckx: Electron microscope transmission images of coherent domain boundaries. Phys. Status Solidi 4, 383 (1964).Google Scholar
  92. 8.92
    R. Gevers, P. Delavignette, H. Blank, J. van Landuyt, S. Amelinckx: Electron microscope transmission images of coherent domain boundaries. Phys. Status Solidi 5, 595 (1964).Google Scholar
  93. 8.93
    R. Gevers, J. van Landuyt, S. Amelinckx: Intensity profiles for fringe patterns due to planar interfaces as observed by electron microscopy. Phys. Status Solidi 11, 689 (1965).Google Scholar
  94. 8.94
    J. van Landuyt, R. Gevers, S. Amelinckx: Dynamical theory of the images of microtwins as observed in the electron microscope. Phys. Status Solidi 9, 135 (1965).Google Scholar
  95. 8.95
    H. Blank, S. Amelinckx: Direct observation of ferroelectric domains in barium titanate by means of electron microscopy. Appl. Phys. Lett. 2, 140 (1963).ADSGoogle Scholar
  96. 8.96
    P. Delavignette, S. Amelinckx: Electron microscopic observation of anti-ferromagnetic domain walls in NiO. Appl. Phys. Lett. 2, 236 (1963).ADSGoogle Scholar
  97. 8.97
    A.J. Ardell: Diffraction contrast at planar interfaces of large coherent precipitates. Philos. Mag. 16, 147 (1967).ADSGoogle Scholar
  98. 8.98
    S.S. Sheinin, J.M. Corbett: Application of the multi-beam dynamical theory to crystals containing twins. Phys. Status Solidi A38, 675 (1976).ADSGoogle Scholar
  99. 8.99
    J. van Landuyt, R. Gevers, S. Amelinckx: Diffraction contrast from small voids as observed by electron microscopy. Phys. Status Solidi 10, 319 (1965).Google Scholar
  100. 8.100
    H.R. Wenk (ed.): Electron Microscopy in Mineralogy (Berlin, Heidelberg, New York 1976).Google Scholar
  101. 8.101
    C.M. Wayman: “Martensitic Transformations,” in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx et al. (North-Holland, Amsterdam 1970) p.187.Google Scholar
  102. 8.102
    R. Gevers: On the kinematical theory of diffraction contrast of electron transmission microscope images of perfect dislocations of mixed type. Philos. Mag. 7, 651 (1962).ADSzbMATHGoogle Scholar
  103. 8.103
    W.J. Turnstall, P.B. Hirsch, J. Steeds: Effects of surface stress relaxations on the electron microscope images of dislocations normal to thin metal foils. Philos. Mag. 9, 99 (1964).ADSGoogle Scholar
  104. 8.104
    M. Wilkens, M. Rühle, F. Häussermann: On the nature of the long-range dislocation contrast in electron transmission micrographs. Phys. Status Solidi 22, 689 (1967).Google Scholar
  105. 8.105
    P. Delavignette, S. Amelinckx: Dislocation nets in bismuth and antimony tellurides. Philos. Mag. 5, 729 (1960).ADSGoogle Scholar
  106. 8.106
    A.K. Head: The computer generation of electron microscope pictures of dislocations. Aust. J. Phys. 20, 557 (1967).ADSGoogle Scholar
  107. 8.107
    P. Humble: Computed electron micrographs for tilted foils containing dislocations and stacking faults. Aust. J. Phys. 21, 325 (1968).ADSGoogle Scholar
  108. 8.108
    P. Humble: “Computed Electron Micrographs and Their Use in Defect Identifications,” in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx et al. (North-Holland, Amsterdam 1970) p.99.Google Scholar
  109. 8.109
    A.R. Thölén: A rapid method for obtaining electron microscope contrast maps of various lattice defects. Philos. Mag. 22, 175 (1970).ADSGoogle Scholar
  110. 8.110
    D.J.H. Cockayne, I.L.F. Ray, M.J. Whelan: Investigations of dislocation strain fields using weak beams. Philos. Mag. 20, 1265 (1969).ADSGoogle Scholar
  111. 8.111
    D.J.H. Cockayne: A theoretical analysis of the weak-beam method of electron microscopy. Z. Naturforsch. A27, 452 (1972).ADSGoogle Scholar
  112. 8.112
    D.J.H. Cockayne: The principles and practice of the weak-beam method of electron microscopy. J. Micr. 98, 116 (1973).Google Scholar
  113. 8.113
    I.L.F. Ray, D.J.H. Cockayne: The dissociation of dislocations in silicon. Proc. Roy. Soc. A325, 543 (1971).ADSGoogle Scholar
  114. 8.114
    A. Howie, Z.S. Basinski: Approximation of the dynamical theory of diffraction contrast. Philos. Mag. 17, 1039 (1968).ADSGoogle Scholar
  115. 8.115
    C.J. Humphreys, R.A. Drummond: “The Column Approximation and High-Resolution Imaging of Defects,” in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.142.Google Scholar
  116. 8.116
    D.J.H. Cockayne, M.L. Jenkins, I.L.F. Ray: The measurement of stacking-fault energies of pure face-centred cubic metals. Philos. Mag. 24, 1383 (1971).ADSGoogle Scholar
  117. 8.117
    M.L. Jenkins: Measurement of the stacking-fault energy of gold using the weak-beam technique of electron microscopy. Philos. Mag. 26, 747 (1972).ADSGoogle Scholar
  118. 8.118
    C.B. Carter, S.M. Holmes: The stacking-fault energy of nickel. Philos. Mag. 35, 1161 (1977).ADSGoogle Scholar
  119. 8.119
    C.G. Rhodes, A.W. Thomson: The composition dependence of stacking fault energy in austenitic stainless steel. Metall. Trans. A8, 1901 (1977).Google Scholar
  120. 8.120
    A. Gomez, D.J.H. Cockayne, P.B. Hirsch, V. Vitek: Dissociation of near-screw dislocations in Ge and Si. Philos. Mag. 31, 105 (1975).ADSGoogle Scholar
  121. 8.121
    G.W. Groves, M.J. Whelan: The determination of the sense of the Burgers vector of a dislocation from its electron microscope images. Philos. Mag. 7, 1603 (1962).ADSGoogle Scholar
  122. 8.122
    R. Siems, P. Delavignette, S. Amelinckx: Die direkte Messung von Stapelfehlerenergien. Z. Phys. 165, 502 (1961).ADSzbMATHGoogle Scholar
  123. 8.123
    M.H. Loretto, L.K. France: The influence of the degree of the deviation from the Bragg condition on the visibility of dislocations in copper. Philos. Mag. 19, 141 (1969).ADSGoogle Scholar
  124. 8.124
    K. Marukawa: A new method of Burgers vector identification from electron microscope images. Philos. Mag. A40, 303 (1979).ADSGoogle Scholar
  125. 8.125
    M.F. Ashby, L.M. Brown: On diffraction contrast from inclusions. Philos. Mag. 8, 1649 (1963).ADSGoogle Scholar
  126. 8.126
    M.F. Ashby, L.M. Brown: Diffraction contrast from spherically symmetrical coherency strains. Philos. Mag. 8, 1083 (1963).ADSGoogle Scholar
  127. 8.127
    M.J. Makin, A.D. Whapham, F.J. Minter: The formation of dislocation loops in copper during neutron irradiation. Philos. Mag. 7, 285 (1962).ADSGoogle Scholar
  128. 8.128
    U. Essmann, M. Wilkens: Elektronenmikroskopische Kontrastexperimente an Fehlstellenagglomeraten in neutronen-bestrahltem Kupfer. Phys. Status Solidi 4, K53 (1964).ADSGoogle Scholar
  129. 8.129
    M. Wilkens: “Identification of Small Defect Clusters in Particle-Irradiated Crystals by Means of TEM,” in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx et al. (North-Holland, Amsterdam 1970) p.233.Google Scholar
  130. 8.130
    M. Rühle, M. Wilkens, U. Essmann: Zur Deutung der elektronenmikroskopischen Kontrasterscheinungen an Fehl stellenagglomeraten in neutronenbestrahltem Kupfer. Phys. Status Solidi 11, 819 (1965).Google Scholar
  131. 8.131
    M. Rühle: Elektronenmikroskopie kleiner Fehlstellenagglomerate in bestrahlten Metallen. Phys. Status Solidi 19, 263 and 279 (1967).Google Scholar
  132. 8.132
    M. Rühle, M. Wilkens: Small vacancy dislocation loops in neutron-irradiated copper. Philos. Mag. 15, 1075 (1967).ADSGoogle Scholar
  133. 8.133
    K.H. Katerbau: The contrast of dynamical images of small lattice defects in the electron microscope. Phys. Status Solidi A38, 463 (1976).ADSGoogle Scholar
  134. 8.134
    B.L. Eyre, D.M. Maher, R.C. Perrin: Electron microscope image contrast from small dislocation loops. J. Phys. F7, 1359 and 1371 (1978).ADSGoogle Scholar
  135. 8.135
    M.L. Jenkins, K.H. Katerbau, M. Wilkens: TEM studies of displacement cascades in Cu3Au. Philos. Mag. 34, 1141 (1976).ADSGoogle Scholar
  136. 8.136
    M. Wilkens, M.L. Jenkin, K.H. Katerbau: TEM diffraction contrast of lattice defects causing strain contrast and structure factor contrast simultaneously. Phys. Status Solidi A39, 103 (1977).ADSGoogle Scholar
  137. 8.137
    M. Rühle, M. Wilkens: Defocusing contrast of cavities. Cryst. Lattice Defects 6, 129 (1975).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfälische Wilhelms-Universität MünsterMünsterFed. Rep. of Germany

Personalised recommendations