Kinematical and Dynamical Theory of Electron Diffraction

  • Ludwig Reimer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 36)


The theoretical treatment of electron diffraction at crystals needs the concepts of lattice planes and the reciprocal lattice, as in x-ray diffraction. Kinematical theory leads to the Bragg condition and to a description of the influence of the structure of a unit cell and of the external size of a crystal on the diffracted amplitude in terms of structure and lattice amplitudes, respectively. The observed diffraction pattern is equivalent to the points of intersection of the Ewald sphere of radius 1/λ with the reciprocal-lattice nodes.


Lattice Plane Dynamical Theory Reciprocal Lattice Bragg Reflection Bloch Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    B.K. Vainshtein: Modern Crystallography I, Springer Ser. Solid-State Sci., Vol.15 (Springer, Berlin, Heidelberg, New York 1981).Google Scholar
  2. 7.2
    C.G. Darwin: The theory of x-ray reflexion. Philos. Mag. 27, 315 and 675 (1914).Google Scholar
  3. 7.3
    A. Howie, M.J. Whelan: Diffraction contrast of electron microscopic images of crystal lattice defects. Proc. Roy. Soc. A263, 217 (1961); A267, 206 (1962).ADSGoogle Scholar
  4. 7.4
    Z.G. Pinsker: Dynamical Scattering of X-Rays in Crystals, Springer Ser. Solid-State Sci., Vol.3 (Springer, Berlin, Heidelberg, New York 1978).Google Scholar
  5. 7.5
    A.W.S. Johnson: The analog computation of dynamic electron diffraction intensities. Acta Cryst. A24, 534 (1968).Google Scholar
  6. 7.6
    J.M. Cowley, A.F. Moodie: The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 10, 609 (1957).MathSciNetCrossRefGoogle Scholar
  7. D.F. Lynch: Out-of-zone effects in dynamical electron diffraction intensities from Au. Acta Cryst. A27, 399 (1971).Google Scholar
  8. P. Goodman, A.F. Moodie: Numerical evaluation of n-beam wave functions in electron scattering by the multi-slice method. Acta Cryst. A30, 280 (1974).Google Scholar
  9. 7.7
    H. Bethe: Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. 87, 55 (1928).CrossRefGoogle Scholar
  10. 7.8
    G. Thomas, E. Levine: Increase of extinction distance with temperature in Si. Phys. Status Solidi 11, 81 (1965).CrossRefGoogle Scholar
  11. 7.9
    A. Howie, U. Valdrè: Temperature dependence of the extinction distance in electron diffraction. Philos. Mag. 15, 777 (1967).ADSCrossRefGoogle Scholar
  12. 7.10
    L. Sturkey: The use of electron-diffraction intensities in structure determination. Acta Cryst. 10, 858 (1957).Google Scholar
  13. 7.1.1
    H. Niehrs: Die Formulierung der Elektronenbeugung mittels einer Streumatrix und ihre praktische Verwendbarkeit. Z. Naturforsch. A14, 504 (1959).ADSGoogle Scholar
  14. 7.12
    F. Fujimoto: Dynamical theory of electron diffraction in Laue-case. J. Phys. Soc. Jpn. 14, 1558 (1959); 15, 859 and 1022 (1960).ADSCrossRefGoogle Scholar
  15. 7.13
    C.J. Humphreys, R.M. Fisher: Bloch wave notation in many-beam electron diffraction theory. Acta Cryst. A27, 42 (1971).Google Scholar
  16. 7.14
    J.P. Spencer, C.J. Humphreys: “Electron Diffraction from Tilted Specimens and Its Application to SEM,” in Electron Microscopy and Analysis, ed. by W.C. Nixon (The Institute of Physics, London 1971) p.310.Google Scholar
  17. 7.15
    L.E. Thomas, C.G. Shirley, J.S. Lally, R.M. Fisher: “The Critical Voltage Effect and Its Applications,” in High Voltage Electron Microscopy (Academic, London 1974) p.38.Google Scholar
  18. 7.16
    P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals (Butterworths, London 1965).Google Scholar
  19. 7.17
    G. Radi: Complex lattice potentials in electron diffraction calculated for a number of crystals. Acta Cryst. A26, 41 (1970).Google Scholar
  20. 7.18
    P.A. Doyle: Absorption coefficients for Al 111 systematics: theory and comparison with experiment. Acta Cryst. A26, 133 (1970).Google Scholar
  21. 7.19
    H. Hashimoto: Energy dependence of extinction distance and transmission power for electron waves in crystals. J. Appl. Phys. 35, 277 (1964).ADSCrossRefGoogle Scholar
  22. 7.20
    L. Reimer, M. Wächter: “Complex Fourier Coefficients of the Crystal Lattice Potential,” in Electron Microscopy 1980, Vol.3, ed. by P. Brederoo, G. Boom (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.192.Google Scholar
  23. 7.21
    G. Meyer-Ehmsen: Untersuchungen zur normalen und anomalen Absorption von Elektronen in Si-und Ge-Einkristallen bei verschiedenen Temperaturen. Z. Phys. 218, 352 (1969).ADSCrossRefGoogle Scholar
  24. 7.22
    M.J. Goringe: Temperature dependence of the absorption of fast electrons in Cu. Philos. Mag. 14, 93 (1966).ADSCrossRefGoogle Scholar
  25. 7.23
    M.J. Goringe, M.J. Whelan: “The Absorption of Fast Electrons in Crystals,” in Electron Microscopy 1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.49.Google Scholar
  26. 7.24
    D. Renard, P. Croce, M. Gandais, M. Sauvin: Etude expérimentale de l’absorption des électrons dans l’or. Phys. Status Solidi B47, 411 (1971).ADSCrossRefGoogle Scholar
  27. 7.25
    H.G. Badde, L. Reimer: “Measurement of Complex Structure Potentials in Au and PbTe by Convergent Electron Diffraction,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.440.Google Scholar
  28. 7.26
    P. Goodman, G. Lehmpfuhl: Electron diffraction study of Mg0 h00-systematic interactions. Acta Cryst. 22, 14 (1967).CrossRefGoogle Scholar
  29. 7.27
    K.G. Gaukler, K. Graff: Struktur-und Absorptionspotentiale von KCl und NaCl aus Beugungsaufnahmen in konvergentem Elektronenbündel. Z. Phys. 232, 190 (1970).ADSCrossRefGoogle Scholar
  30. 7.28
    A. Howie: Inelastic scattering of electrons by crystals. Proc. Roy. Soc. A271, 268 (1973).ADSGoogle Scholar
  31. 7.29
    H. Yoshioka: Effect of inelastic waves on electron diffraction. J. Phys. Soc. Jpn. 12, 618 (1957).MathSciNetADSCrossRefGoogle Scholar
  32. 7.30
    E.N. Economou: Green’s Functions in Quantum Physics, 2nd ed., Springer Ser. Solid-State Sci., Vol.7 (Springer, Berlin, Heidelberg, New York, Tokyo 1983).CrossRefGoogle Scholar
  33. 7.31
    G. Radi: Unelastische Streuung in der dynamischen Theorie der Elektronenbeugung. Z. Phys. 212, 146 (1968).ADSCrossRefGoogle Scholar
  34. R. Serneels, D. Haentjens, R. Gevers: Extension of the Yoshioka theory of inelastic electron scattering in crystals. Philos. Mag. A42, 1 (1980).ADSGoogle Scholar
  35. 7.32
    C.J. Humphreys, M.J. Whelan: Inelastic scattering of fast electrons by crystals. Philos. Mag. 20, 165 (1969).ADSCrossRefGoogle Scholar
  36. 7.33
    C.R. Hall, P.B. Hirsch: Effect of thermal diffuse scattering on propagation of high energy electrons through crystals. Proc. Roy. Soc. A286, 158 (1965).ADSGoogle Scholar
  37. 7.34
    P. Rez, C.J. Humphreys, M.J. Whelan: The distribution of intensity in electron diffraction patterns due to phonon scattering. Philos. Mag. 35, 81 (1977).ADSCrossRefGoogle Scholar
  38. 7.35
    Y. Kainuma: The theory of Kikuchi patterns. Acta Cryst. 8, 247 (1955).CrossRefGoogle Scholar
  39. 7.36
    R.G. Blake, A. Jostsons, P.M. Kelly, J.G. Napier: The determination of extinction distances and anomalous absorption coefficients by STEM. Philos. Mag. A37, 1 (1978).ADSGoogle Scholar
  40. 7.37
    J.W. Steeds: Many-beam diffraction effects in gold and measurement of absorption parameters by fitting computer graphs. Phys. Status Solidi 38, 203 (1970).CrossRefGoogle Scholar
  41. 7.38
    A. Mazel, R. Ayroles: Étude de la distance d’ extinction et du coefficient d’absorption des electrons dans des échantillons d’aluminium pour des tensions comprises 50 et 1200 kilovolts. J. Microscopie 7, 793 (1968).Google Scholar
  42. 7.39
    G. Dupouy, F. Perrier, R. Uyeda, R. Ayroles, A. Mazel: Mesure du coefficient d’absorption des électrons accélérés sons des tensions comprises entre 100 et 1200 kV. J. Microscopie 4, 429 (1965).Google Scholar
  43. 7.40
    H. Hashimoto, A. Howie, M.J. Whelan: Anomalous electron absorption effects in metal foils. Proc. Roy. Soc. A269, 80 (1962).ADSGoogle Scholar
  44. 7.41
    P. Hagemann, L. Reimer: An experimental proof of the dependent Bloch wave model by large angle electron scattering from thin crystals. Philos. Mag. 40, 367 (1979).ADSCrossRefGoogle Scholar
  45. 7.42
    M.V. Berry: Diffraction in crystals at high energies. J. Phys. C4, 697 (1971).ADSGoogle Scholar
  46. 7.43
    M.V. Berry, K.E. Mount: Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 35, 315 (1972).ADSCrossRefGoogle Scholar
  47. 7.44
    K. Kambe, G. Lehmpfuhl, F. Fujimoto: Interpretation of electron channelling by the dynamical theory of electron diffraction. Z. Naturforsch. A29, 1034 (1974).ADSGoogle Scholar
  48. 7.45
    F. Nagata, A. Fukuhara: 222 electron reflection from Al and systematic interaction. Jpn. J. Appl. Phys. 6, 1233 (1967).ADSCrossRefGoogle Scholar
  49. 7.46
    R. Uyeda: Dynamical effects in high voltage electron diffraction. Acta Cryst. A24, 175 (1968).Google Scholar
  50. 7.47
    J.S. Lally, C.J. Humphreys, A.J.F. Metherell, R.M. Fisher: The critical voltage effect in high voltage electron microscopy. Philos. Mag. 25, 321 (1972).ADSCrossRefGoogle Scholar
  51. 7.48
    L.E. Thomas: Kikuchi patterns in HVEM. Philos. Mag. A26, 1447 (1972).ADSCrossRefGoogle Scholar
  52. 7.49
    A.F. Moodie, J.R. Sellar, D. Imeson, C.J. Humphreys: “Convergent Beam Diffraction in the High Voltage Electron Microscope,” in High Voltage Electron Microscopy 1977, ed. by T. Imura, H. Hashimoto (Japanese Soc. Electron Microscopy, Kyoto 1977) p.191.Google Scholar
  53. 7.50
    J.R. Sellar, D. Imeson, C.J. Humphreys: “Experimental and Theoretical Study of the Convergent-Beam Critical Voltage Effect in High Voltage Electron Diffraction,” in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.120.Google Scholar
  54. 7.51
    T. Arii, R. Uyeda: Vanishing voltages of the second order reflections in electron diffraction. Jpn. J. Appl. Phys. 8, 621 (1969).ADSCrossRefGoogle Scholar
  55. 7.52
    T. Arii, R. Uyeda, O. Terasaki, D. Watanabe: Accurate determination of atomic scattering factors of fcc and hcp metals by high voltage electron diffraction. Acta Cryst. A29, 295 (1973).Google Scholar
  56. 7.53
    A. Fukuhara, A. Yanagisawa: Vanishing of 222 Kikuchi line from Ag crystal. Jpn. J. Appl. Phys. 8, 1166 (1969).ADSCrossRefGoogle Scholar
  57. 7.54
    M. Fujimoto, O. Terasaki, D. Watanabe: Determination of atomic scattering factors of V and Cr by means of vanishing Kikuchi line method. Phys. Lett. A41, 159 (1972).ADSGoogle Scholar
  58. 7.55
    A. Rocher, B. Jouffrey: Contribution à l’étude des tensions critiques dans le Cu et Al. C. R. Acad. Sci. Paris B275, 133 (1972).Google Scholar
  59. 7.56
    D. Watanabe, R. Uyeda, A. Fukuhara: Determination of the atom form factor by high voltage electron diffraction. Acta Cryst. A25, 138 (1969).Google Scholar
  60. 7.57
    E.A. Hewat, C.J. Humphreys: “Si(111) and Ge(111) and (220) Scattering Factors Determined from Critical Voltage Measurements,” in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p.52.Google Scholar
  61. 7.58
    E.P. Butler: Application of the critical voltage effect to the study of compositional changes in Ni-Au alloys. Philos. Mag. 26, 33 (1972).ADSCrossRefGoogle Scholar
  62. 7.59
    I.P. Jones, E.G. Tapetado: “The Dependence of Electron Distribution and Atom Vibration in hcp Metals on the c/a Ratio: An Investigation Using the Critical Voltage Technique,” in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, London 1974) p.48.Google Scholar
  63. 7.60
    K. Kuroda, Y. Tomokiyo, T. Eguchi: “Temperature Dependence of Critical Voltages in Cu-Based Alloys,” in Electron Microscopy 1980, Vol.4, ed. by P. Brederoo, J. Van Landuyt (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.112.Google Scholar
  64. 7.61
    C.G. Shirley, R.M. Fisher: “Application of the Critical Voltage Effect to Alloy Studies,” in Electron Microscopy 1980, Vol.4, ed. by P. Brederoo, J. Van Landuyt (Seventh European Congr. Electron Microscopy Foundation, Leiden 1980) p.88.Google Scholar
  65. 7.62
    R. Leonhardt, H. Richter, W. Rossteutscher: Elektronenbeugungsuntersuchungen zur Struktur dünner nichtkristalliner Schichten. Z. Phys. 165, 121 (1961).ADSCrossRefGoogle Scholar
  66. 7.63
    M. von Laue: Materiewellen und ihre Interferenzen (Akademische Verlagsgesellschaft, Leipzig 1944).Google Scholar
  67. 7.64
    M. Horstmann, G. Meyer: Messung der elastischen Elektronenbeugungsintensitäten polykristalliner Al-Schichten. Acta Cryst. 15, 271 (1962).CrossRefGoogle Scholar
  68. 7.65
    M. Blackman: On the intensities of electron diffraction rings. Proc. Roy. Soc. A173, 68 (1939).ADSGoogle Scholar
  69. 7.66
    C.J. Humphreys, P.B. Hirsch: Absorption parameters in electron diffraction theory. Philos. Mag. 18, 115 (1968).ADSCrossRefGoogle Scholar
  70. 7.67
    C.R. Hall: The scattering of high energy electrons by the thermal vibrations of crystals. Philos. Mag. 12, 815 (1965).ADSCrossRefGoogle Scholar
  71. 7.68
    K. Komatsu, K. Teramoto: Diffuse streak patterns from various crystals in x-ray and electron diffraction. J. Phys. Soc. Jpn. 21, 1152 (1966).ADSCrossRefGoogle Scholar
  72. 7.69
    N. Kitamura: Temperature dependence of diffuse streaks in single crystal Si electron diffraction patterns. J. Appl. Phys. 37, 2187 (1966).ADSCrossRefGoogle Scholar
  73. 7.70
    H.P. Herbst, G. Jeschke: “Diffuse Streak-Patterns from PbJ2-and Bi-Single Crystals and Their Temperature Dependence,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.293.Google Scholar
  74. 7.71
    E.M. Hörl: Thermisch-diffuse Elektronenstreuung in As-, Sb-und Bi-Kristallen. Optik 27, 99 (1968).Google Scholar
  75. 7.72
    M. Horstmann: Einfluß der Kristalltemperatur auf die Intensitäten dynamischer Elektroneninterferenzen. Z. Phys. 183, 375 (1965).ADSCrossRefGoogle Scholar
  76. 7.73
    M. Horstmann, G. Meyer: Messung der Elektronenbeugungs-Intensitäten polykristalliner Al-Schichten bei tiefer Temperatur und Vergleich mit der dynamischen Theorie. Z. Phys. 182, 380 (1965).ADSCrossRefGoogle Scholar
  77. 7.74
    M. Horstmann: Messung der thermisch diffusen Elektronenstreuung in polykristallinen Al-Schichten. Z. Phys. 188, 412 (1965).ADSCrossRefGoogle Scholar
  78. 7.75
    W. Zechnall: Temperaturabhängigkeit des Streuuntergrundes im Elektronen-interferenzdiagramm polykristalliner Ag-Schichten. Z. Phys. 229, 62 (1969).ADSCrossRefGoogle Scholar
  79. 7.76
    J. Hansen-Schmidt, M. Horstmann: Temperaturabhängigkeit der Streuabsorption schneller Elektronen in polykristallinen Au-Schichten. Z. Naturforsch. A20, 1239 (1965).ADSGoogle Scholar
  80. 7.77
    H. Boersch, O. Bostanjoglo, H. Niedrig: Temperaturabhängigkeit der Transparenz dünner Schichten für schnelle Elektronen. Z. Phys. 180, 407 (1964).ADSCrossRefGoogle Scholar
  81. 7.78
    W. Glaeser, H. Niedrig: Temperature dependence of dynamical electron diffraction intensities of polycrystalline foils. J. Appl. Phys. 37, 4303 (1966).ADSCrossRefGoogle Scholar
  82. 7.79
    W.W. Albrecht, H. Niedrig: Temperature dependence of dynamical electron diffraction intensities of polycrystalline foils. J. Appl. Phys. 39, 3166 (1968).ADSCrossRefGoogle Scholar
  83. 7.80
    G. Jeschke, D. Willasch: Temperaturabhängigkeit der anomalen Elektronenabsorption von Bi-Einkristallen. Z. Phys. 238, 421 (1970).ADSCrossRefGoogle Scholar
  84. 7.81
    C.R. Hall: On the thickness dependence of Kikuchi band contrast. Philos. Mag. 22, 63 (1970).ADSCrossRefGoogle Scholar
  85. 7.82
    H. Boersch: Über Bänder bei Elektronenbeugung. Phys. Z. 38, 1000 (1937).Google Scholar
  86. 7.83
    H. Pfister: Elektroneninterferenzen an Bleijodid bei Durchstrahlung im konvergenten Bündel. Ann. Phys. 11, 239 (1953).CrossRefGoogle Scholar
  87. 7.84
    M. Komura, S. Kojima, T. Ichinokawa: Contrast reversal of Kikuchi bands in transmission electron diffraction. J. Phys. Soc. Jpn. 33, 1415 (1972).ADSCrossRefGoogle Scholar
  88. 7.85
    S. Takagi: On the temperature diffuse scattering of electrons. J. Phys. Soc. Jpn. 13, 287 (1958).ADSCrossRefGoogle Scholar
  89. 7.86
    J. Gjønnes: The influence of Bragg scattering on inelastic and other forms of diffuse scattering of electrons. Acta Cryst. 20, 240 (1966).CrossRefGoogle Scholar
  90. 7.87
    K. Ishida: Inelastic scattering of fast electrons by crystals. J. Phys. Soc. Jpn. 28, 450 (1970); 30, 1439 (1971).ADSCrossRefGoogle Scholar
  91. 7.88
    K. Okamato, T. Ichinokawa, Y.H. Ohtsuki: Kikuchi patterns and inelastic scattering. J. Phys. Soc. Jpn. 30, 1690 (1971).ADSCrossRefGoogle Scholar
  92. 7.89
    R. Høier: Multiple scattering and dynamical effects in diffuse electron scattering. Acta Cryst. A29, 663 (1973).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfälische Wilhelms-Universität MünsterMünsterFed. Rep. of Germany

Personalised recommendations