Scattering and Phase Contrast for Amorphous Specimens

  • Ludwig Reimer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 36)


Elastic scattering through angles larger than the objective aperture causes absorption of the electrons at the objective diaphragm and a decrease of transmitted intensity. This scattering contrast can be explained by particle optics. The exponential decrease of transmission with increasing specimen thickness can be used for quantitative determination of mass-thickness or of the total mass of an amorphous particle, for example.


Spatial Frequency Phase Contrast Single Atom Spherical Aberration Objective Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    L. Reimer: Deutung der Kontrastunterschiede von amorphen und kristallinen Objekten in der Elektronenmikroskopie. Z. Angew. Phys. 22, 287 (1967).Google Scholar
  2. 6.2
    F. Lenz: Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z. Naturforsch. A9, 185 (1954).ADSGoogle Scholar
  3. 6.3
    C.E. Hall: Scattering phenomena in electron microscope image formation. J. Appl. Phys. 22, 655 (1951).ADSGoogle Scholar
  4. 6.4
    W. Lippert. Experimentelle Studien über den Kontrast im Elektronenmikroskop. Optik 11, 412 (1954).Google Scholar
  5. 6.5
    W. Lippert: Über die “elektronenmikroskopische Durchlässigkeit” dünner Schichten. Optik 13, 506 (1956).Google Scholar
  6. 6.6
    L. Reimer: Zur Elektronenabsorption dünner Metall aufdampfschichten im Elektronenmikroskop. Z. Angew. Phys. 9, 34 (1957).Google Scholar
  7. 6.7
    L. Reimer: Messung der Abhängigkeit des elektronenmikroskopischen Bildkontrastes von Ordnungszahl, Strahlspannung und Aperturblende. Z. Angew. Phys. 13, 432 (1961).Google Scholar
  8. 6.8
    L. Reimer, K.H. Sommer: Messungen und Berechnungen zum elektronenmikroskopischen Streukontrast für 17-1200 keV Elektronen. Z. Naturforsch. A 23, 1569 (1968).Google Scholar
  9. 6.9
    E. Zeitler, G.F. Bahr: Contributions to the quantitative interpretation of electron microscope pictures. Exp. Cell Res. 12, 44 (1957).Google Scholar
  10. 6.10
    W. Lippert: Bemerkungen zur elektronenmikroskopischen Dickenmessung von Kohleschichten. Z. Naturforsch. B17, 335 (1962).Google Scholar
  11. 6.11
    W. Schwertfeger: Zur Kleinwinkelstreuung von mittelschnellen Elektronen beim Durchgang durch amorphe Festkörperschichten. Thesis, Tübingen (1974).Google Scholar
  12. 6.12
    W. Lippert: Zur Brauchbarkeit der Bornschen Näherung bei der Berechnung der Elektronenstreuung für den Bereich der Elektronenmikroskopie. Naturwissenschaften 49, 534 (1962).ADSGoogle Scholar
  13. 6.13
    W. Lippert, W. Friese: “Zur Darstellbarkeit des Kontrastes mit Hilfe der Lenzschen Theorie,” in Electron Microscopy 1962, 5th Intern. Congr. Electron Microscopy, ed. by S.S. Breese (Academic, New York 1962) p.AA–1.Google Scholar
  14. 6.14
    V.E. Cosslett: “High Voltage Electron Microscopy: Increase in Penetration with Voltage,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.59.Google Scholar
  15. 6.15
    G. Dupouy, F. Perrier, P. Verdier: Amélioration du contraste des images d’objets amorphes minces en microscopie électronique. J. Microscopie 5, 655 (1966).Google Scholar
  16. 6.16
    R.F. Whiting, F.P. Ottensmeyer: Heavy atoms in model compounds and nucleic acids imaged by dark field TEM. J. Mol. Biol. 67, 173 (1972).Google Scholar
  17. 6.17
    C.E. Hall: Dark-field electron microscopy. I. Studies of crystalline substances in dark-field. J. Appl. Phys. 19, 198 (1948).ADSGoogle Scholar
  18. 6.18
    J. Dubochet, M. Ducommun, M. Zollinger, E. Kellenberger: A new preparation method for dark-field electron microscopy of biomacromolecules. J. Ultrastruct. Res. 35, 147 (1971).Google Scholar
  19. 6.19
    G.J. Brakenhoff, N. Nanninga, J. Pieters: Relative mass determination from dark-field electron micrographs with an application to ribosomes. J. Ultrastruct. Res. 41, 238 (1972).Google Scholar
  20. 6.20
    W. Krakow, L.A. Howland: A method for producing hollow cone illumination electronically in the conventional transmission microscope. Ultramicroscopy 2, 53 (1976).Google Scholar
  21. 6.21
    E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy. Optik 31, 258 and 359 (1970).Google Scholar
  22. 6.22
    L. Reimer, P. Gentsch, P. Hagemann: Anwendung eines Rasterzusatzes zu einem TEM. I. Grundlagen und Abbildung amorpher Objekte. Optik 43, 431 (1975).Google Scholar
  23. 6.23
    C.E. Hall: Electron densitometry of stained virus particles. J. Biophys. Biochem. Cytol. 1, 1 (1955).Google Scholar
  24. 6.24
    E. Krüger-Thiemer: Ein Verfahren für elektronenmikroskopische Massendicke-messungen an nichtkristallinen Objekten. Z. Wiss. Mikr. 62, 444 (1955).Google Scholar
  25. 6.25
    N.R. Silvester, R.E. Burge: A quantitative estimation of the uptake of two new electron stains by the cytoplasmic membrane of ram sperm. J. Biophys. Biochem. Cytol. 6, 179 (1959).Google Scholar
  26. 6.26
    L. Reimer, P. Hagemann: Recording of mass thickness in STEM. Ultramicroscopy 2, 297 (1977).Google Scholar
  27. 6.27
    M.K. Lamvik: Electronmicroscopic mass determination using photographic iso-density techniques. Ultramicroscopy 1, 187 (1976).Google Scholar
  28. 6.28
    E. Zeitler, G.F. Bahr: A photometric procedure for weight determination of submicroscopic particles. J. Appl. Phys. 33, 847 (1962).ADSGoogle Scholar
  29. 6.29
    G.F. Bahr, E. Zeitler: The determination of the dry mass in populations of isolated particles. Lab. Invest. 14, 955 (1965).Google Scholar
  30. 6.30
    F.S. Sjöstrand: The importance of high resolution electron microscopy in tissue cell ultrastructure research. Sci. Tools 2, 25 (1955).Google Scholar
  31. 6.31
    B. von Borries, F. Lenz: “Über die Entstehung des Kontrastes im elektronenmikroskopischen Bild”, in Electron Microscopy, Proc. Stockholm Conference 1956, ed. by F.J. Sjöstrand, J. Rhodin (Almqvist and Wiksells, Stockholm 1957) p.60.Google Scholar
  32. 6.32
    F. Thon: Elektronenmikroskopische Untersuchungen an dünnen Kohlefolien. Z. Naturforsch. A 20, 154 (1965).ADSGoogle Scholar
  33. 6.33
    F. Thon: Zur Defokussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung. Z. Naturforsch. A 21, 476 (1966).ADSGoogle Scholar
  34. 6.34
    F. Lenz, W. Scheffels: Das Zusammenwirken von Phasen-und Amplitudenkontrast in der elektronenmikroskopischen Abbildung. Z. Naturforsch. A 13, 226 (1958).ADSGoogle Scholar
  35. 6.35
    A. Howie, O.L. Krivanek, M.L. Rudee: Interpretation of electron micrographs and diffraction patterns of amorphous materials. Philos. Mag. 27, 235 (1973).ADSGoogle Scholar
  36. 6.36
    G.J. Brakenhoff: On the sub-nanometre structure visible in high-resolution dark-field electron microscopy. J. Micr. 100, 283 (1974).Google Scholar
  37. 6.37
    A. Oberlin, M. Oberlin, M. Maubois: Study of thin amorphous and crystalline carbon films by electron microscopy. Philos. Mag. 32, 833 (1975).ADSGoogle Scholar
  38. 6.38
    L. Reimer, H. Gilde: “Scattering Theory and Image Formation in the Electron Microscope,” in Image Processing and Computer-Aided Design in Electron Optics, ed. by P.W. Hawkes (Academic, London 1973) p.138.Google Scholar
  39. 6.39
    L. Albert, R. Schneider, H. Fischer: Elektronenmikroskopische Sichtbarmachung von <10 Å großen Fremdstoffeinschlüssen in elektrolytisch abgeschiedenen Nickelschichten mittels Phasenkontrast durch Defokussierung. Z. Naturforsch. A 19, 1120 (1964).ADSGoogle Scholar
  40. 6.40
    M. Rühle, M. Wilkens: “Defocusing Contrast of Cavities,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.416.Google Scholar
  41. 6.41
    L. Reimer, H. Gilde: Electron optical phase contrast of small gold particles. Optik 41, 524 (1975).Google Scholar
  42. 6.42
    O. Scherzer: The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20 (1949).ADSzbMATHGoogle Scholar
  43. 6.43
    M.E. Haine: Contrast arising from elastic and inelastic scattering in the electron microscope. J. Sci. Instrum. 34, 9 (1957).ADSGoogle Scholar
  44. 6.44
    R.D. Heidenreich, R.W. Hamming: Numerical evaluation of electron microscopical image phase contrast. Bell Syst. Tech. J. 44, 207 (1965).Google Scholar
  45. 6.45
    C.B. Eisenhandler, B.M. Siegel: Imaging of single atoms with the electron microscope by phase contrast. J. Appl. Phys. 37, 1613 (1966).ADSGoogle Scholar
  46. 6.46
    R. Langer, W. Hoppe: Die Erhöhung von Auflösung und Kontrast im Elektronenmikroskop mit Zonenkorrekturplatten. Optik 24, 470 (1966); 25, 413 and 507 (1967).Google Scholar
  47. 6.47
    L. Reimer: Elektronenoptischer Phasenkontrast. Z. Naturforsch. A 24, 377 (1969).ADSGoogle Scholar
  48. 6.48
    H. Niehrs: Optimale Abbildungsbedingungen und Bildintensitätsverlauf bei einer Elektronenmikroskopie von Atomen. Optik 30, 273 (1969); 31, 51 (1970).Google Scholar
  49. 6.49
    D.L. Misell: Image formation in the electron microscope. J. Phys. A 4, 782 and 798 (1971).ADSGoogle Scholar
  50. 6.50
    D.L. Misell: Image resolution and image contrast in the electron microscope. J. Phys. A 6, 62, 205 and 218 (1973).ADSGoogle Scholar
  51. 6.51
    T. Kobayashi, L. Reimer: Computation of electron microscopical images of single organic molecules. Optik 43, 237 (1975).Google Scholar
  52. 6.52
    W. Chiu, R.M. Glaeser: Single atom image contrast: conventional dark-field and bright-field electron microscopy. J. Micr. 103, 33 (1975).Google Scholar
  53. 6.53
    A. Pitt: “Dark Field Image Calculation,” in Electron Microscopy and Analysis 1979, ed. by T. Mulvey (The Institute of Physics, London 1980) p.269.Google Scholar
  54. 6.54
    H. Hoch: Dunkelfeldabbildung von schwachen Phasenobjekten im Elektronenmikroskop. Optik 47, 65 (1977).Google Scholar
  55. 6.55
    W. Krakow: Computer experiments for tilted beam dark-field imaging. Ultramicroscopy 1, 203 (1976).Google Scholar
  56. 6.56
    H. Hashimoto, A. Kumao, K. Hino, H. Yotsumoto, A. Ono: Images of Th atoms in TEM. Jpn. J. Appl. Phys. 10, 1115 (1971).ADSGoogle Scholar
  57. 6.57
    R.M. Henkelman, F.P. Ottensmeyer: Visualization of single heavy atoms by dark field electron microscopy. Proc. Nat. Acad. Sci. USA 68, 3000 (1971).ADSGoogle Scholar
  58. 6.58
    F.P. Ottensmeyer, E.E. Schmidt, T. Jack, J. Powell: Molecular architecture: the optical treatment of dark field electron micrographs of atoms. J. Ultrastruct. Res. 40, 546 (1972).Google Scholar
  59. 6.59
    F. Thon, D. Willasch: Imaging of heavy atoms in dark field electron microscopy using hollow cone illumination. Optik 36, 55 (1972).Google Scholar
  60. 6.60
    K.J. Hanszen: Problems of image interpretation in electron microscopy with linear and nonlinear transfer. Z. Angew. Phys. 27, 125 (1969).Google Scholar
  61. 6.61
    K.J. Hanszen: “The Relevance of Dark Field Illumination in Conventional and Scanning TEM,” PTB-Bericht A Ph-7 (Physikalisch-Technische Bundesanstalt, Braunschweig 1974).Google Scholar
  62. 6.62
    D.L. Misell: Image resolution in high voltage electron microscopy. J. Phys. D 6, 1409 (1973).ADSGoogle Scholar
  63. 6.63
    H. Formanek, M. Müller, M.H. Hahn, T. Koller: Visualization of single heavy atoms with the electron microscope. Naturwissenschaften 58, 339 (1971).ADSGoogle Scholar
  64. 6.64
    J.R. Parsons, H.M. Johnson, C.W. Hoelke, R.R. Hosbons: Imaging of uranium atoms with the electron microscope by phase contrast. Philos. Mag. 27, 1359 (1973).ADSGoogle Scholar
  65. 6.65
    W. Baumeister, M.H. Hahn: Electron microscopy of monomolecular layers of thorium atoms. Nature 241, 445 (1973).ADSGoogle Scholar
  66. 6.66
    S. Iijima: Observation of single and clusters of atoms in bright field electron microscopy. Optik 48, 193 (1977).Google Scholar
  67. 6.67
    E.B. Prestridge, D.J.C. Yates: Imaging the rhodium atom with a conventional high resolution electron microscope. Nature 234, 345 (1971).ADSGoogle Scholar
  68. 6.68
    D. Dorignac, B. Jouffrey: “Atomic Resolution at 3 MV,” in Microscopie Electronique à Haute Tension, ed. by B. Jouffrey, P. Favard (Société Francaise de Microscopie Electronique, Paris 1976) p. 143.Google Scholar
  69. 6.69
    D. Dorignac, B. Jouffrey: “Iron Single Atom Images,” in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980) p.112.Google Scholar
  70. 6.70
    M. Retsky: Observed single atom elastic cross sections in a scanning electron microscope. Optik 41, 127 (1974).Google Scholar
  71. 6.71
    M. Isaacson, J.P. Langmore, H. Rose: Determination of the non-localization of the inelastic scattering of electrons by electron microscopy. Optik 41, 92 (1974).Google Scholar
  72. 6.72
    A.V. Crewe, J.P. Langmore, M.S. Isaacson: “Resolution and Contrast in the STEM,” in Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. by B. Siegel, D.R. Beaman (Wiley, New York 1975) p.47.Google Scholar
  73. 6.73
    M. Isaacson, M. Utlaut, D. Kopf: “Analog Computer Processing of STEM Images,” in Computer Processing of Electron Microscope Images, Topics Curr. Phys., Vol.13, ed. by P.W. Hawkes (Springer, Berlin, Heidelberg, New York 1980) p.257.Google Scholar
  74. 6.74
    A.V. Crewe, J. Langmore, M. Isaacson, M. Retsky: “Understanding Single Atoms in STEM,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.260.Google Scholar
  75. 6.75
    M.S. Isaacson, J. Langmore, N.W. Parker, D. Kopf, M. Utlaut: The study of the adsorption and diffusion of heavy atoms on light element substrates by means of the atomic resolution STEM. Ultramicroscopy 1, 359 (1976).Google Scholar
  76. 6.76
    J.S. Wall, J.F. Hainfeld, J.W. Bittner: Preliminary measurements of uranium atom motion on carbon films at low temperatures. Ultramicroscopy 3, 81 (1978).Google Scholar
  77. 6.77
    K.J. Hanszen, B. Morgenstern, K.J. Rosenbruch: Aussagen der optischen Übertragungstheorie über Auflösung und Kontrast im elektronenmikroskopischen Bild. Z. Angew. Phys. 16, 477 (1964).Google Scholar
  78. 6.78
    K.J. Hanszen, B. Morgenstern: Die Phasenkontrast-und Amplitudenkonstrast-Übertragung des elektronenmikroskopischen Objektivs. Z. Angew. Phys. 19, 215 (1965).Google Scholar
  79. 6.79
    K.J. Hanszen: Generalisierte Angaben über die Phasenkontrast-und Amplitudenkontrast-Übertragungsfunktionen für elektronenmikroskopische Objektive. Z. Angew. Phys. 20, 427 (1966).Google Scholar
  80. 6.80
    K.J. Hanszen: “The Optical Transfer Theory of the Electron Microscope: Fundamental Principles and Applications”, in Advances in Optical and Electron Microscopy, Vol.4, ed. by R. Barer, V.E. Cosslett (Academic, London 1971) p.1.Google Scholar
  81. 6.81
    K.J. Hanszen: “Contrast Transfer and Image Processing,” in Image Processing and Computer-Aided design in Electron Optics, ed. by P.W. Hawkes (Academic, London 1973) p. 16.Google Scholar
  82. 6.82
    P.W. Hawkes: “Coherence in Electron Optics,” in Advances in Optical and Electron Microscopy, Vol.7, ed. by R. Barer, V.E. Cosslett (Academic, London 1978) p.101.Google Scholar
  83. 6.83
    P.W. Hawkes: Electron image processing: a survey. Computer Graphics and Image Processing 8, 406 (1978); 18, 58 (1982).Google Scholar
  84. 6.84
    K.J. Hanszen, L. Trepte: Der Einfluß von Strom-und Spannungsschwankungen sowie der Energiebreite der Strahlelektronen auf Kontrastübertragung und Auflösung des Elektronenmikroskopes. Optik 32, 519 (1971).Google Scholar
  85. 6.85
    K.J. Hanszen, L. Trepte: Die Kontrastübertragung im Elektronenmikroskop bei partiell kohärenter Beleuchtung. Optik 33, 166 and 182 (1971).Google Scholar
  86. 6.86
    J. Frank: The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38, 519 (1973).Google Scholar
  87. 6.87
    R.H. Wade, J. Frank: Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49, 81 (1977).Google Scholar
  88. 6.88
    W.O. Saxton: Spatial coherence in axial high resolution conventional electron microscopy. Optik 49, 51 (1977).Google Scholar
  89. 6.89
    H. Yoshida, A. Ohshita, H. Tomita: Determination of spatial and temporal coherence functions from a single astigmatic image. Jpn. J. Appl. Phys. 20, 2427 (1981).ADSGoogle Scholar
  90. 6.90
    W. Hoppe, D. Köstler, D. Typke, N. Hunsmann: Kontrastübertragung für die Hellfeid-Bildrekonstruktion mit gekippter Beleuchtung in der Elektronenmikroskopie. Optik 42, 43 (1975).Google Scholar
  91. 6.91
    K.H. Downing: Note on transfer functions in electron microscopy with tilted illumination. Optik 43, 199 (1975).Google Scholar
  92. 6.92
    S.C. McFarlane: The imaging of amorphous specimens in a tilted-beam electron microscope. J. Phys. C 8, 2819 (1975).ADSGoogle Scholar
  93. 6.93
    R.H. Wade. Concerning tilted beam electron microscope transfer functions. Optik 45, 87 (1976).Google Scholar
  94. 6.94
    P.W. Hawkes: Electron microscope transfer functions in closed form with tilted illumination. Optik 55, 207 (1980).Google Scholar
  95. 6.95
    W. Krakow: “Calculation and Observation of Atomic Structure for Tilted Beam Dark-Field Microscopy,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.261.Google Scholar
  96. 6.96
    W. Hoppe: Towards three-dimensional electron microscopy at atomic resolution. Naturwissenschaften 61, 239 (1974).ADSGoogle Scholar
  97. 6.97
    W.K. Jenkins, R.H. Wade: “Contrast Transfer in the Electron Microscope for Tilted and Conical Bright Field Illumination,” in Developments in Electron Microscopy and Analysis 1977, ed. by D.L. Misell (The Institute of Physics, London 1977) p.115.Google Scholar
  98. 6.98
    W. Kunath: Signal-to-noise enhancement by superposition of bright-field images obtained under different illumination tilts. Ultramicroscopy 4, 3 (1979).Google Scholar
  99. 6.99
    W. Kunath, K. Weiss: “Hollow Cone Illumination in Bright Field Imaging of Ferritin,” in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980) p.114.Google Scholar
  100. 6.100
    O. Scherzer: Zur Theorie der Abbildung einzelner Atome in dicken Objekten. Optik 38, 387 (1973).Google Scholar
  101. 6.101
    W.O. Saxton, W.K. Jenkins, L.A. Freeman, D.J. Smith: TEM observations using bright field hollow cone illumination. Optik 49, 505 (1978).Google Scholar
  102. 6.102
    H. Rose: Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251 (1977).Google Scholar
  103. 6.103
    J. Fertig, H. Rose: On the theory of image formation in the electron microscope. Optik 54, 165 (1979).Google Scholar
  104. 6.104
    H. Rose: Phase contrast in STEM. Optik 39, 416 (1974).Google Scholar
  105. 6.105
    N.H. Dekkers, H. deLang: Differential phase contrast in a STEM. Optik 41, 452 (1974).Google Scholar
  106. 6.106
    W.C. Stewart: On differential phase contrast with an extended illumination source. J. Opt. Soc. Am. 66, 813 (1976).ADSGoogle Scholar
  107. 6.107
    H. Rose: Image formation by inelastically scattered electrons in electron microscopy. Optik 45, 139 (1976).Google Scholar
  108. 6.108
    P.W. Hawkes: Half-plane apertures in TEM, split detectors in STEM and ptychography. J. Opt. Paris 9, 235 (1978).Google Scholar
  109. 6.109
    G.R. Morrison, J.N. Chapman: “STEM Imaging with a Quadrant Detector,” in Electron Microscopy 1981, ed. by M.J. Goringe (The Institute of Physics, London 1981) p.329.Google Scholar
  110. 6.110
    W. Hoppe: Ein neuer Weg zur Erhöhung des Auflösungsvermögens des Elektronenmikroskops. Naturwissenschaften 48, 736 (1961).ADSGoogle Scholar
  111. 6.111
    F. Lenz: Zonenplatten zur Öffnungsfehlerkorrektur und zur Kontrasterhöhung. Z. Phys. 172, 498 (1963).ADSzbMATHGoogle Scholar
  112. 6.112
    F. Thon, B.M. Siegel: “Zonal Filtering in Optical Reconstruction of High Resolution Phase Contrast Images,” in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.13.Google Scholar
  113. 6.113
    H. Tochigi, H. Nakatsuka, A. Fukami, K. Kanaya: “The Improvement of the Image Contrast by Using the Phase Plate in the TEM,” in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.73.Google Scholar
  114. 6.114
    H.M. Johnson, D.F. Parsons: “In-Focus Phase Contrast Electron Microscopy,” in Microscopie Electronique 1970, Vol.1, ed by. P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.71.Google Scholar
  115. 6.115
    P.N.T. Unwin: An electrostatic phase plate for the electron microscope. Ber. Bunsenges. Phys. Chem. 74, 1137 (1970).Google Scholar
  116. 6.116
    W. Krakow, B.M. Siegel: Phase contrast in electron microscope images with an electrostatic phase plate. Optik 42, 245 (1975).Google Scholar
  117. 6.117
    G. Möllenstedt, R. Speidel, W. Hoppe, R. Langer, K.-H. Katerbau, F. Thon: “Electron Microscopical Imaging Using Zonal Correction Plates,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.125.Google Scholar
  118. 6.118
    F. Thon, D. Willasch: “Hochauflösungs-Elektronenmikroskopie mit Spezial-aperturblenden und Phasenplatten,” in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.3.Google Scholar
  119. 6.119
    K.-H. Müller: Phasenplatten für Elektronenmikroskope. Optik 45, 73 (1976).Google Scholar
  120. 6.120
    H.G. Badde, L. Reimer: Der Einfluß einer streuenden Phasenplatte auf das elektronenmikroskopische Bild. Z. Naturforsch. A25, 760 (1970).ADSGoogle Scholar
  121. 6.121
    D. Willasch: High resolution electron microscopy with profiled phase plates. Optik 44, 17 (1975).Google Scholar
  122. 6.122
    L. Reimer, H.G. Badde, E. Drewes, H. Gilde, H. Kappert, H.J. Höhling, D.B. von Bassewitz, A. Rössner: Laserbeugung an elektronenmikroskopischen Aufnahmen. Forschungsber. Landes Nordrhein Westfalen Nr.2314 (1973).Google Scholar
  123. 6.123
    J.E. Berger, D. Harker: Optical diffractometer for production of Fourier transforms of electron micrographs. Rev. Sci. Instrum. 38, 292 (1967).ADSGoogle Scholar
  124. 6.124
    O.L. Krivanek: A method for determining the coefficient of spherical aberration from a single electron micrograph. Optik 45, 97 (1976).Google Scholar
  125. 6.125
    W. Krakow, K.H. Downing, B.M. Siegel: The use of tilted specimens to obtain the contrast transfer characteristics of an electron microscope imaging system. Optik 40, 1 (1974).Google Scholar
  126. 6.126
    L. Reimer, H.G. Heine, R.A. Ajeian: Optimalbedingungen für den Beugungsnachweis von Defokussierungsstrukturen in elektronenmikroskopischen Aufnahmen. Z. Naturforsch. A24, 1846 (1969).ADSGoogle Scholar
  127. 6.127
    L. Reimer, H. Kappert: Bestimmung der Domänenwanddicke aus defokussierten elektronenoptischen Aufnahmen von ferromagnetischen Schichten. Z. Angew. Phys. 26, 58 (1969).Google Scholar
  128. 6.128
    J. Frank: Nachweis von Objektbewegungen im lichtoptischen Diffraktogramm von elektronenmikroskopischen Aufnahmen. Optik 30, 171 (1969).Google Scholar
  129. 6.129
    J. Frank: Observation of the relative phases of electron microscopic phase constrast zones with the aid of the optical diffractometer. Optik 35, 608 (1972).Google Scholar
  130. 6.130
    L. Reimer, B. Volbert, P. Bracker: Quality control of SEM micrographs by laser diffractometry. Scanning 1, 233 (1978).Google Scholar
  131. 6.131
    K.H. Herrmann, D. Krahl: ‘Real-time’-Elektronenbildwandlung mit Thermoplast-schichten. Optik 45, 231 (1976).Google Scholar
  132. 6.132
    P. Bonhomme, A. Beorchia, B. Meunier, F. Dumont, D. Rossier: Incoherent reading light tests of a Pockels-effect imaging device used in an ‘in-line’ optical processor of microscopical electron images. Optik 45, 159 (1976).Google Scholar
  133. 6.133
    A. Beorchia, P. Bonhomme, N. Bonnet: Modulation transfer function and detective quantum efficiency of Electrotitus. Optik 55, 11 (1980).Google Scholar
  134. 6.134
    D. Gabor: Microscopy by reconstructed wave-fronts. Proc. Roy. Soc. A197, 454 (1949); Proc. Phys. Soc. B64, 449 (1950).ADSGoogle Scholar
  135. 6.135
    A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda: Optical reconstruction of image from Fraunhofer electron-hologram. Jpn. J. Appl. Phys. 7, 295 (1968).ADSGoogle Scholar
  136. 6.136
    J. Munch: Experimental electron holography. Optik 43, 79 (1975).Google Scholar
  137. 6.137
    K.J. Hanszen, G. Ade, R. Lauer: Genauere Angaben über sphärische Längs-aberration, Verzeichnung in der Pupillenebene und über die Wellenaberration von Elektronenlinsen. Optik 35, 567 (1972).Google Scholar
  138. 6.138
    K.J. Hanszen: “Neuere theoretische Erkenntnisse und praktische Erfahrungen über die holographische Rekonstruktion elektronenmikroskopischer Aufnahmen,” PTB-Bericht A Ph-4 (Physikalisch-Technische Bundesanstalt, Braunschweig 1973).Google Scholar
  139. 6.139
    G. Ade: Erweiterung der Kontrastübertragungstheorie auf nicht-isoplanatische Abbildungen. Optik 50, 143 (1978).Google Scholar
  140. 6.140
    K.J. Hanszen: Holographische Rekonstruktionsverfahren in der Elektronenmikroskopie und ihre kontrastübertragungstheoretische Deutung. Optik 32, 74 (1970).Google Scholar
  141. 6.141
    A. Lohmann: Optische Einseitenbandübertragung angewandt auf das Gabor-Mikroskop. Opt. Acta 3, 97 (1956).ADSGoogle Scholar
  142. 6.142
    K.J. Hanszen: Einseitenband-Holographie. Z. Naturforsch. A24, 1849 (1969).ADSGoogle Scholar
  143. 6.143
    W. Hoppe, R. Langer, F. Thon: Verfahren zur Rekonstruktion komplexer Bild-funktionen in der Elektronenmikroskopie. Optik 30, 538 (1970).Google Scholar
  144. 6.144
    W. Hoppe: Zur ‘Abbildung’ komplexer Bildfunktionen in der Elektronenmikroskopie. Z. Naturforsch. A26, 1155 (1971).ADSGoogle Scholar
  145. 6.145
    F. Thon: “Hochauflösende elektronenmikroskopische Abbildung amorpher Objekte mittels Zwei strahlinterferenzen,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.127.Google Scholar
  146. 6.146
    K.H. Downing: “Compensation of Lens Aberrations by Single-Sideband Holography,” in Proc. 30th Ann. EMSA Meeting (Claitor’s Publ. Div., Baton Rouge LO 1972) p.562.Google Scholar
  147. 6.147
    P. Sieber: “High Resolution Electron Microscopy with Heated Apertures and Reconstruction of Single-Sideband Micrographs,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.274.Google Scholar
  148. 6.148
    K.H. Downing, B.M. Siegel: Discrimination of heavy and light components in electron microscopy using single-sideband holographic techniques. Optik 42, 155 (1975).Google Scholar
  149. 6.149
    E.N. Leith, J. Upatnieks: Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123 (1962).ADSGoogle Scholar
  150. 6.150
    G. Möllenstedt, H. Wahl: Elektronenholographie und Rekonstruktion mit Laserlicht. Naturwissenschaften 55, 340 (1968).ADSGoogle Scholar
  151. 6.151
    H. Tomita, T. Matsuda, T. Komoda: Electron microholography by two-beam method. Jpn. J. Appl. Phys. 9, 719 (1970).ADSGoogle Scholar
  152. 6.152
    H. Tomita, T. Matsuda, T. Komoda: Off-axis electron micro-holography. Jpn. J. Appl. Phys. 11, 143 (1972).ADSGoogle Scholar
  153. 6.153
    A. Tonomura, J. Endo, T. Matsuda: An application of electron holography to interference microscopy. Optik 53, 143 (1979).Google Scholar
  154. 6.154
    J. Endo, T. Matsuda, A. Tonomura: Interference electron microscopy by means of holography. Jpn. J. Appl. Phys. 18, 2291 (1979).ADSGoogle Scholar
  155. 6.155
    A. Tonomura, T. Matsuda, J. Endo, T. Arii, K. Mihama: Direct Observation of fine structure of magnetic domain walls by electron holography. Phys. Rev. Lett. 44, 1430 (1980).ADSGoogle Scholar
  156. 6.156
    K.J. Hanszen: “Experience and Results Obtained in Electron Microscopical Holography by Using a Reference Beam in the Light Optical Reconstruction Step,” in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980) p.136.Google Scholar
  157. 6.157
    K.J. Hanszen, R. Lauer, G. Ade: “Discussions of the Possibilities and Limitations of In-Line and Off-Axis Holography in Electron Microscopy,” PTB-Bericht A Ph-15 (Physikalisch-Technische Bundesanstalt, Braunschweig 1980).Google Scholar
  158. 6.158
    K.J. Hanszen, R. Lauer: “Holographic Phase Determination of Strong Objects,” in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980) p.140.Google Scholar
  159. 6.159
    K.J. Hanszen: Holography in electron microscopy. Adv. Electron. Electron Phys. 59, 1 (1982).Google Scholar
  160. 6.160
    K.J. Hanszen: “Lichtoptische Anordnungen mit Laser-Lichtquellen als Hilfsmittel für die Elektronenmikroskopie,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.153.Google Scholar
  161. 6.161
    J. Rogers: “The Design and Use of an Optical Model of the Electron Microscope,” in Proc. of the ICO-11 Conference (Madrid, 1978).Google Scholar
  162. 6.162
    A. Maréchal, P. Croce: Un filtre de fréquences spatiales pour l’amélioration du contraste des images optiques. C. R. Acad. Sci. Paris 237, 607 (1953).Google Scholar
  163. 6.163
    M.H. Hahn: Eine optische Ortsfrequenzfilter-und Korrelationsanlage für elektronenmikroskopische Aufnahmen. Optik 35, 326 (1972).Google Scholar
  164. 6.164
    G.W. Stroke, M. Halioua: Attainment of diffraction-limited imaging in high-resolution electron microscopy by ‘a posteriori’ holographic image sharpening. Optik 35, 50 (1972).Google Scholar
  165. 6.165
    G.W. Stroke, M. Halioua: Image deblurring by holographic deconvolution with partially-coherent low-contrast objects and application to electron microscopy. Optik 35, 489 (1972).Google Scholar
  166. 6.166
    G.W. Stroke, M. Halioua: Image improvement in high-resolution electron microscopy with coherent illumination (low-contrast objects) using holographic image-deblurring deconvolution. Optik 37, 192 and 249 (1973).Google Scholar
  167. 6.167
    G.W. Stroke, M. Halioua, F. Thon, D. Willasch: Image improvement in high-resolution electron microscopy using holographic image deconvolution. Optik 41, 319 (1974).Google Scholar
  168. 6.168
    A.W. Lohmann, D.P. Paris: Computer generated spatial filters for coherent optical data processing. Appl. Opt. 7, 651 (1968).ADSGoogle Scholar
  169. 6.169
    A.W. Lohmann, D.P. Paris: Binary Fraunhofer holograms, generated by computer. Appl. Opt. 6, 1739 (1967).ADSGoogle Scholar
  170. 6.170
    R.E. Burge, R.F. Scott: Binary filters for high resolution electron microscopy. Optik 43, 53 (1975); 44, 159 (1976).Google Scholar
  171. 6.171
    S. Boseck, H. Hager: Beseitigung des spatialen Rauschens in elektronenmikroskopischen Aufnahmen durch lichtoptische Filterung. Optik 28, 602 (1968).Google Scholar
  172. 6.172
    S. Boseck, R. Lange: Ausschöpfung des Informationsgehaltes von elektronenmikroskopischen Aufnahmen biologischer Objekte mit Hilfe des Abbeschen Beugungsapparates, gezeigt am Beispiel kristallartiger Strukturen. Z. Wiss. Mikr. 70, 66 (1970).Google Scholar
  173. 6.173
    J.B. Bancroft, G.J. Hills, R. Markham: A study of the self-assembly process in a small spherical virus. Virology 31, 354 (1967).Google Scholar
  174. 6.174
    A Klug, D.J. deRosier: Optical filtering of electron micrographs: reconstruction of one-sided images. Nature 212, 29 (1966).ADSGoogle Scholar
  175. 6.175
    C.A. Taylor, J.K. Ranniko: Problems in the use of selective optical spatial filtering to obtain enhanced information from electron micrographs. J. Micr. 100, 307 (1974).Google Scholar
  176. 6.176
    R. Markham, J.H. Hitchborn, G.J. Hills, S. Frey: The anatomy of tobacco mosaic virus. Virology 22, 342 (1964).Google Scholar
  177. 6.177
    R.C. Warren, R.M. Hicks: A simple method of linear integration for resolving structures in periodic lattices. J. Ultrastruct. Res. 36, 861 (1971).Google Scholar
  178. 6.178
    R. Markham, S. Frey, G.J. Hills: Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology 20, 88 (1963).Google Scholar
  179. 6.179
    D.L. Misell: “The Phase Problem in Electron Microscopy,” in Advances in Optical and Electron Microscopy, Vol.7, ed. by R. Barer, V.E. Cosslett (Academic, London 1978) p.185.Google Scholar
  180. 6.180
    W.O. Saxton: Computer techniques for image processing in electron microscopy. Adv. Electron. Electron Phys. Suppl. 10, 289 (1978).ADSGoogle Scholar
  181. 6.181
    W.O. Saxton: “Recovery of Specimen Information for Strongly Scattering Objects,” in Computer Processing of Electron Microscope Images, Topics Curr. Phys., Vol.13, ed. by P.W. Hawkes (Springer, Berlin, Heidelberg, New York 1980) p.35.Google Scholar
  182. 6.182
    R.W. Gerchberg, W.O. Saxton: Phase determination from image and diffraction plane pictures in the electron microscope. Optik 34, 275 (1971).Google Scholar
  183. 6.183
    R.W. Gerchberg, W.O. Saxton: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237 (1972).Google Scholar
  184. 6.184
    J. Frank: A remark on phase determination in electron microscopy. Optik 38, 582 (1973).Google Scholar
  185. 6.185
    R.W. Gerchberg: Holography without fringes in the electron microscope. Nature 240, 404 (1972).ADSGoogle Scholar
  186. 6.186
    J.N. Chapman: The application of iterative techniques to the investigation of strong phase objects in the electron microscope. Philos. Mag. 32, 527 and 541 (1975).ADSGoogle Scholar
  187. 6.187
    D.L. Misell: An examination of an iterative method for the solution of the phase problem in optics and electron optics. J. Phys. D6, 2200 and 2217 (1973).ADSGoogle Scholar
  188. 6.188
    P. Schiske: Phase determination from a focal series and the corresponding diffraction pattern in electron microscopy for strongly scattering objects. J. Phys. D8, 1372 (1975).ADSGoogle Scholar
  189. 6.189
    D.A. Ansley: Determining the phase of line objects by measuring their intensity in dark field and bright field illumination. Opt. Commun. 8, 140 (1973).ADSGoogle Scholar
  190. 6.190
    P. van Toorn, A.M.J. Huiser, H.A. Ferwerda: Proposals for solving the phase retrieval problem for semi-weak objects from noisy electron micrographs. Optik 51, 309 (1978).Google Scholar
  191. 6.191
    R. Langer, J. Frank, A. Feltynowski, W. Hoppe: Anwendung des Bilddifferenzverfahrens auf die Untersuchung von Strukturänderungen dünner Kohlefolien bei Elektronenbestrahlung. Ber. Bunsenges. Phys. Chem. 74, 1120 (1970).Google Scholar
  192. 6.192
    J. Frank: “Two-Dimensional Correlation Functions in Electron Microscope Image Analysis,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.622.Google Scholar
  193. 6.193
    L.S. Al-Ali: “Translational Alignment of Differently Defocused Micrographs Using Cross-Correlation,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.225.Google Scholar
  194. 6.194
    W. Hoppe, R. Langer, J. Frank, A. Feltynowski: Bilddifferenzverfahren in der Elektronenmikroskopie. Naturwissenschaften 56, 267 (1969).ADSGoogle Scholar
  195. 6.195
    R.A. Crowther, L.A. Amos: Harmonic analysis of electron microscope images with rotational symmetry. J. Mol. Biol. 60, 123 (1971).Google Scholar
  196. 6.196
    H.P. Erickson, A. Klug: Measurement and compensation of defocusing and aberrations by Fourier processing of electron micrographs. Philos. Trans. B261, 105 (1971).Google Scholar
  197. 6.197
    A.M. Kuo, R.M. Glaeser: Development of methodology for low exposure, high resolution electron microscopy of biological specimens. Ultramicroscopy 1, 53 (1975).Google Scholar
  198. 6.198
    P.N.T. Unwin, R. Henderson: Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425 (1975).Google Scholar
  199. 6.199
    J.L. Harris: Image evaluation and restoration. J. Opt. Soc. Am. 56, 569 (1966).ADSGoogle Scholar
  200. 6.200
    J. Frank, P. Bußler, R. Langer, W. Hoppe: Einige Erfahrungen mit der rechnerischen Analyse und Synthese von elektronenmikroskopischen Bildern hoher Auflösung. Ber. Bunsenges. Phys. Chem. 74, 1105 (1970).Google Scholar
  201. 6.201
    T.A. Welton: “Computational Correction of Aberrations in Electron Microscopy,” in Proc. 29th Annual Meeting of EMSA (Claitor’s Publ. Div., Baton Rouge, LO 1971) p.94.Google Scholar
  202. 6.202
    T.A. Welton: A computational critique of an algorithm for image enhancement in bright field electron microscope. Adv. Electron. Electron Phys. 48, 37 (1978).Google Scholar
  203. 6.203
    W.O. Saxton, J. Frank: Motif detection in quantum noise-limited electron micrographs by cross-correlation. Ultramicroscopy 2, 219 (1977).Google Scholar
  204. 6.204
    J. Frank: Averaging of low exposure electron micrographs of nonperiodic objects. Ultramicroscopy 1, 159 (1979).Google Scholar
  205. 6.205
    J. Frank: Optimal use of image information using signal detection and averaging techniques. Ann. NY Acad. Sci. 306, 112 (1978).ADSGoogle Scholar
  206. 6.206
    J. Frank: “Reconstruction of Non-Periodic Objects Using Correlation Methods,” in Electron Microscopy 1978, Vol.3, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.87.Google Scholar
  207. 6.207
    J. Frank: “The Role of Correlation Techniques in Computer Image Processing,” in Computer Processing of Electron Microscope Images, Topics Curr. Phys., Vol.13, ed. by P.W. Hawkes (Springer, Berlin, Heidelberg, New York 1980) p.187.Google Scholar
  208. 6.208
    J. Frank, W. Goldfarb, D. Eisenberg, T.S. Baker: Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3, 283 (1978).Google Scholar
  209. 6.209
    J. Frank, A. Verschoor, M. Boublik: Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214, 1353 (1981).ADSGoogle Scholar
  210. 6.210
    M. van Heel: Detection of objects in quantum-noise-limited images. Ultramicroscopy 7, 331 (1982).Google Scholar
  211. 6.211
    P.R. Smith: An integrated set of computer programs for processing electron micrographs of biological structures. Ultramicroscopy 3, 153 (1978).Google Scholar
  212. 6.212
    W.O. Saxton, T.J. Pitt, M. Horner: Digital image processing: the SEMPER system. Ultramicroscopy 4, 343 (1979).Google Scholar
  213. 6.213
    J. Frank, B. Shimkin, H. Dowse: SPIDER — a modular software system for electron image processing. Ultramicroscopy 6, 343 (1981).Google Scholar
  214. 6.214
    M. van Heel, W. Keegstra: IMAGIC: a fast, flexible and friendly image analysis software system. Ultramicroscopy 7, 113 (1981).Google Scholar
  215. 6.215
    J.G. Helmcke: Theorie und Praxis der elektronenmikroskopischen Stereoaufnahme. Optik 11, 201 (1954); 12, 253 (1955).Google Scholar
  216. 6.216
    J.G. Helmcke, H.J. Orthmann: Fehler bei der Tiefenbestimmung elektronenmikroskopischer Stereoaufnahmen. Optik 11, 562 (1954).Google Scholar
  217. 6.217
    R.I. Garrod, J.F. Nankivell: Sources of error in electron stereomicroscopy. Br. J. Appl. Phys. 9, 214 (1958).ADSGoogle Scholar
  218. 6.218
    R.I. Garrod, J.F. Nankivell: Some remarks on the accuracy obtainable in electron stereomicroscopy. Optik 16, 27 (1959).Google Scholar
  219. 6.219
    R.A. Crowther, D.J. deRosier, A. Klug: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. Roy. Soc. A317, 319 (1970).ADSGoogle Scholar
  220. 6.220
    G.N. Ramachandran, A.V. Lakshminarayanan: Three-dimensional reconstruction from radiograph and electron micrographs. Proc. Nat. Acad. Sci. USA 68, 2236 (1971).MathSciNetADSGoogle Scholar
  221. 6.221
    R.A. Crowther, A. Klug: ART and Science or conditions for three-dimensional structure from projections and its application to electron microscopy. J. Theor. Biol. 32, 199 (1971).Google Scholar
  222. 6.222
    R. Gordon, R. Bender, G.T. Herman: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29, 471 (1970).Google Scholar
  223. 6.223
    B.K. Vainshtein: Finding the structure of objects from projections. Sov. Phys. Cryst. 15, 781 (1971).Google Scholar
  224. 6.224
    P. Gilbert: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105 (1972).Google Scholar
  225. 6.225
    P.F.C. Gilbert: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II. Direct methods. Proc. Roy. Soc. B182, 89 (1972).ADSGoogle Scholar
  226. 6.226
    E. Zeitler: The reconstruction of objects from their projections. Optik 39, 396 (1974).Google Scholar
  227. 6.227
    W. Hoppe, H.J. Schramm, M. Sturm, N. Hunsmann, J. Gaßmann: Three-dimensional electron microscopy of individual biological objects. Z. Naturforsch. A31, 645, 1370 and 1380 (1976).ADSGoogle Scholar
  228. 6.228
    J.A. Lake: “Reconstruction of Three-Dimensional Structures from Electron Micrographs: The Equivalence of Two Methods,” in Proc. 29th Annual Meeting of EMSA (Claitor’s Publ. Div., Baton Rouge, LO 1971) p.90.Google Scholar
  229. 6.229
    M. Zwick, E. Zeitler: Image reconstruction from projections. Optik 38, 550 (1973).Google Scholar
  230. 6.230
    A. Klug, F.H.C. Crick, H.W. Wyckoff: Diffraction by helical structures. Acta Cryst. 11, 199 (1958).Google Scholar
  231. 6.231
    D.J. deRosier, A. Klug: Reconstruction of three-dimensional structures from electron micrographs. Nature 217, 130 (1968).ADSGoogle Scholar
  232. 6.232
    B.K. Vainshtein: “Electron Microscopical Analysis of the three-Dimensional Structure of Biological Macromolecules,” in Advances in Optical and Electron Microscopy, Vol.7, ed. by R. Barer, V.E. Cosslett (Academic, London 1978) p.281.Google Scholar
  233. 6.233
    N.A. Kiselev: “Reconstruction of the Structure of Encymes from Their Images,” in Electron Microscopy 1978, Vol.3, ed. by J.M. Sturgess (Microscopical Soc. of Canada, Toronto 1978) p.94.Google Scholar
  234. 6.234
    D.L. Misell: “Image Analysis, Enhancement and Interpretation,” Practical Methods in Electron Microscopy, Vol.7, ed. by A.M. Glauert (North-Holland, Amsterdam 1978).Google Scholar
  235. 6.235
    W.O. Saxton: “Digital Processing of Electron Images — a Survey of Motivations and Methods,” in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh Intern. Congr. on Electron Microscopy Foundation, Leiden 1980) p.486.Google Scholar
  236. 6.236
    J.E. Mellema: “Computer Reconstruction of Regular Biological Objects,” in Computer Processing of Electron Microscope Images, Topics Curr. Phys., Vol.13, ed. by P.W. Hawkes (Springer, Berlin, Heidelberg, New York 1980) p.89.Google Scholar
  237. 6.237
    W. Hoppe, R. Hegerl: “Three-Dimensional Structure Determination by Electron Microscopy (Nonperiodic Specimens)”, in Computer Processing of Electron Microscope Images, Topics Curr. Phys., Vol.13, ed. by P.W. Hawkes (Springer, Berlin, Heidelberg, New York 1980) p.127.Google Scholar
  238. 6.238
    E. Feldtkeller: Übersicht über das Magnetisierungsverhalten in dünnen Schichten. Z. Angew. Phys. 17, 121 (1964).Google Scholar
  239. 6.239
    P.J. Grundy, R.S. Tebble: Lorentz electron microscopy. Adv. Phys. 17, 153 (1968).ADSGoogle Scholar
  240. 6.240
    R.H. Wade: “Lorentz Microscopy or Electron Phase Microscopy of Magnetic Objects,” in Advances in Optical and Electron Microscopy, Vol.5, ed. by R. Barer, V.E. Cosslett (Academic, London 1973) p.239.Google Scholar
  241. 6.241
    J.P. Jacubovics: “Lorentz Microscopy and Application (TEM and SEM)”, in Electron Microscopy in Materials Science, Part IV, ed. by U. Valdrè, E. Ruedl (Commission of the European Communities, Brussels 1976) p.1303.Google Scholar
  242. 6.242
    H. Boersch, W. Raith, H. Weber: Die magnetische Ablenkung von Elektronenstrahlen in dünnen Fe-Schichten. Z. Phys. 161, 1 (1961).ADSGoogle Scholar
  243. 6.243
    K. Schaffernicht: Messung der Magnetisierungsverteilungen in dünnen Fe-Schichten durch die Ablenkung von Elektronen. Z. Angew. Phys. 15, 275 (1963).Google Scholar
  244. 6.244
    D.H. Warrington, J.M. Rodgers, R.S. Tebble: The use of ferromagnetic domain structure to determine the thickness of iron foils in TEM. Philos. Mag. 7, 1783 (1962).ADSGoogle Scholar
  245. 6.245
    R.H. Wade: Electron diffraction from a magnetic phase grating. Phys. Status Solidi 19, 847 (1967).Google Scholar
  246. 6.246
    M.J. Goringe, J.P. Jakubovics: Electron diffraction from periodic magnetic fields. Philos. Mag. 15, 393 (1967).ADSGoogle Scholar
  247. 6.247
    H. Boersch, H. Raith: Elektronenmikroskopische Abbildung Weißscher Bezirke in dünnen ferromagnetischen Schichten. Naturwissenschaften 46, 574 (1959).ADSGoogle Scholar
  248. 6.248
    H.W. Fuller, M.E. Hale: Domains in thin magnetic films observed by electron microscopy. J. Appl. Phys. 31, 1699 (1960).ADSGoogle Scholar
  249. 6.249
    J. Podbrdsky: High resolution in-focus Lorentz electron microscopy. J. Micr. 101, 231 (1974).Google Scholar
  250. 6.250
    M.J. Bowman, V.H. Meyer: Magnetic phase contrast from thin ferromagnetic films in the TEM. J. Phys. E 3, 927 (1970).ADSGoogle Scholar
  251. 6.251
    L. Marton: Electron optical observation of magnetic fields. J. Appl. Phys. 19, 863 (1948).ADSGoogle Scholar
  252. 6.252
    L. Marton, S.H. Lachenbruch: Electron optical mapping of electromagnetic fields. J. Appl. Phys. 20, 1171 (1949).ADSGoogle Scholar
  253. 6.253
    L. Marton, J.A. Simpson, S.H. Lachenbruch: Electron optical shadow method of magnetic field mapping. J. Res. NBS 52, 97 (1954).zbMATHGoogle Scholar
  254. 6.254
    M. von Ardenne: Zur Sichtbarmachung von Störungen oder Inhomogenitäten magnetischer und elektrischer Felder mit der elektronenoptischen Scheidenmethode. Phys. Z. 45, 312 (1945).Google Scholar
  255. 6.255
    W. Rollwagen, Ch. Schwink: Die Empfindlichkeit einfacher elektronenoptischer Schlierenanordnungen. Optik 10, 525 (1953).Google Scholar
  256. 6.256
    Ch. Schwink: Über neue quantitative Verfahren der elektronenoptischen Schattenmethode. Optik 12, 481 (1955).Google Scholar
  257. 6.257
    Ch. Schwink, O. Schärpf: Electron-optic investigation of the magnetic stray field above Bloch walls in cylindric Ni crystals. Phys. Status Solidi 30, 637 (1968).Google Scholar
  258. 6.258
    A.G. Cullis, D.M. Maher: High-resolution topographical imaging by direct transmission electron microscopy. Philos. Mag. 30, 447 (1974).ADSGoogle Scholar
  259. 6.259
    M.E. Hale, H.W. Fuller, H. Rubinstein: Magnetic domain observations by electron microscopy. J. Appl. Phys. 30, 789 (1959).ADSGoogle Scholar
  260. 6.260
    H.W. Fuller, M.E. Hale: Determination of magnetization distribution in thin films using electron microscopy. J. Appl. Phys. 31, 238 (1960).ADSGoogle Scholar
  261. 6.261
    H. Boersch, H. Harnisch, D. Wohlleben, K. Grohmann: Antiparallele Weißsche Bereiche als Biprisma für Elektroneninterferenzen. Z. Phys. 159, 397 (1960); 167, 72 (1962).ADSGoogle Scholar
  262. 6.262
    D. Wohlleben: Diffraction effects in Lorentz microscopy. J. Appl. Phys. 38, 3341 (1967).ADSGoogle Scholar
  263. 6.263
    L. Reimer, H. Kappert: Elektronen-Kleinwinkel Streuung und Bildkontrast in defokussierten Aufnahmen magnetischer Bereichsgrenzen. Z. Angew. Phys. 27, 165 (1969).Google Scholar
  264. 6.264
    J.P. Guigay, R.H. Wade: Mainly on the Fresnel mode in Lorentz microscopy. Phys. Status Solidi 29, 799 (1968).Google Scholar
  265. 6.265
    E. Fuchs: Magnetische Strukturen in dünnen ferromagnetischen Schichten, untersucht mit dem Elektronenmikroskop. Z. Angew. Phys. 14, 203 (1962).Google Scholar
  266. 6.266
    R.H. Wade: The determination of domain wall thickness in ferromagnetic films by electron microscopy. Proc. Phys. Soc. 79, 1237 (1962).ADSGoogle Scholar
  267. 6.267
    R.H. Wade: Investigation of the geometrical-optical theory of magnetic structure imaging in the electron microscope. J. Appl. Phys. 37, 366 (1966).ADSGoogle Scholar
  268. 6.268
    T. Suzuki, A. Hubert: Determination of ferromagnetic domain wall widths by means of high voltage Lorentz microscopy. Phys. Status Solidi 38, K5 (1970).ADSGoogle Scholar
  269. 6.269
    T. Suzuki, M. Wilkens: Lorentz-electron microscopy of ferromagnetic specimens at high voltages. Phys. Status Solidi A3, 43 (1970).ADSGoogle Scholar
  270. 6.270
    D.S. Hothersall: The investigation of domain walls in thin sections of iron by the electron interference method. Philos. Mag. 20, 89 (1969).ADSGoogle Scholar
  271. 6.271
    D.C. Hothersall: Electron images of domain walls in Co foils. Philos. Mag. 24, 241 (1971).ADSGoogle Scholar
  272. 6.272
    D.C. Hothersall: Electron images of two-dimensional domain walls. Phys. Status Solidi B51, 529 (1972).ADSGoogle Scholar
  273. 6.273
    P. Schwellinger: The analysis of magnetic domain wall structures in the transition region of Néel and Bloch walls by Lorentz microscopy. Phys. Status Solidi A36, 335 (1976).ADSGoogle Scholar
  274. 6.274
    J.N. Chapman, R.P. Ferrier, N. Toms: Strong stripe domains. Philos. Mag. 28, 561 and 581 (1973).ADSGoogle Scholar
  275. 6.275
    C.G. Harrison, K.D. Leaver: A second domain wall parameter measurable by Lorentz microscopy. Phys. Status Solidi A12, 413 (1972).ADSGoogle Scholar
  276. 6.276
    R. Ajeian, H. Kappert, L. Reimer: Fraunhofer-Beugung an Lorentz-mikro-skopischen Aufnahmen des Magnetisierungs-Ripple. Z. Angew. Phys. 30, 80 (1970).Google Scholar
  277. 6.277
    H.G. Badde, H. Kappert, L. Reimer: Wellenoptische Theorie des Ripple-Kontrastes in der Lorentzmikroskopie. Z. Angew. Phys. 30, 83 (1970).Google Scholar
  278. 6.278
    T. Suzuki: Investigations into ripple wavelength in evaporated thin films by Lorentz microscopy. Phys. Status Solidi 37, 101 (1970).Google Scholar
  279. 6.279
    M. Blackman, A.E. Curzon, A.T. Pawlowicz: Use of an electron beam for detecting superconducting domains of lead in its intermediate state. Nature 200, 157 (1963).ADSGoogle Scholar
  280. 6.280
    G. Pozzi, U. Valdrè: Study of electron shadow patterns of the intermediate state of superconducting lead. Philos. Mag. 23, 745 (1971).ADSGoogle Scholar
  281. 6.281
    E. Fuchs: Abbildung Weißscher Bezirke in dünnen ferromagnetisehen Schichten mit dem elektromagnetischen Elektronenmikroskop. Naturwissenschaften 47, 392 (1960).ADSGoogle Scholar
  282. 6.282
    L. Reimer: Die Struktur der magnetischen Bereichsgrenzen in grobkristallinen Eisenschichten. Z. Angew. Phys. 18, 373 (1965).Google Scholar
  283. 6.283
    W. Pitsch: Elektronenmikroskopische Beobachtung magnetischer Elementarbereiche in gealterten Eisen-Stickstoff-Legierungen. Arch. Eisenhüttenwes. 36, 737 (1965).Google Scholar
  284. 6.284
    W. Liesk: Magnetische Strukturen in dünnen Schichten, beobachtet im Elektronenmikroskop. Z. Angew. Phys. 14, 200 (1962).Google Scholar
  285. 6.285
    J.P. Jacubovics: The effect of magnetic domain structure on Bragg reflection in TEM. Philos. Mag. 10, 277 (1964).ADSGoogle Scholar
  286. 6.286
    J.N. Chapman, E.H. Darlington: The application of STEM to the study of thin ferromagnetic films. J. Phys. E7, 181 (1974).ADSGoogle Scholar
  287. 6.287
    J.N. Chapman, E.M. Waddell, P.E. Batson, R.P. Ferrier: The Fresnel-mode of Lorentz microscopy using a STEM. Ultramicroscopy 4, 283 (1979).Google Scholar
  288. 6.288
    J.N. Chapman, P.E. Batson, E.M. Waddell, R.P. Ferrier: The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3, 203 (1978).Google Scholar
  289. 6.289
    A. Olivei: Holography and interferometry in electron Lorentz microscopy. Optik 30, 27 (1969).Google Scholar
  290. 6.290
    A. Olivei: Magnetic inhomogeneties and holographic methods in electron Lorentz microscopy. Optik 33, 93 (1971).Google Scholar
  291. 6.291
    M.S. Cohen, K.J. Harte: Domain wall profiles in magnetic films. J. Appl. Phys. 40, 3597 (1969).ADSGoogle Scholar
  292. 6.292
    V.I. Petrov, G.V. Spivak, O.P. Pavluchenko: “Transmission Electron Microscope Observation of Domain Pattern of Speedily Remagnetized Thin Ferromagnetic Films,” in Electron Microscopy 1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.615.Google Scholar
  293. 6.293
    V.I. Petrov, G.V. Spivak: On a stroboscopic Lorentz microscope. Z. Angew. Phys. 27, 188 (1969).Google Scholar
  294. 6.294
    O. Bostanjoglo, Th. Rosin: Resonance oscillations of magnetic domain walls and Bloch lines observed by stroboscopic electron microscopy. Phys. Status Solidi A57, 561 (1980).ADSGoogle Scholar
  295. 6.295
    O. Bostanjoglo, Th. Rosin: Resonance oscillations of Bloch lines in permalloy films. Phys. Status Solidi A66, K5 (1981).ADSGoogle Scholar
  296. 6.296
    G.S. Plows, W.C. Nixon: Stroboscopic scanning electron microscopy. J. Phys. E1, 595 (1968).ADSGoogle Scholar
  297. 6.297
    E. Menzel, E. Kubalek: “Electron Beam Chopping System in the SEM,” in Scanning Electron Microscopy 1979/I, ed. by O. Johari (IIT Research Inst., Chicago 1979) p.305.Google Scholar
  298. 6.298
    G.V. Saparin, G.V. Spivak: “Application of Stroboscopic Cathodoluminescence Microscopy,” in Scanning Electron Microscopy 1979/I, ed. byed. by O. Johari (SEM Inc., AMF O’Hare 1979) p.305.Google Scholar
  299. 6.299
    G.V. Spivak, G.V. Saparin, L.F. Komolova: “The Physical Fundamentals of the Resolution Enhancement in the SEM for CL and EBIC Modes,” in Scanning Electron Microscopy 1977/I, ed. by O. Johari (IIT Research Inst., Chicago 1977) p.191.Google Scholar
  300. 6.300
    H. Mahl, W. Weitsch: Nachweis von fluktuierenden Ladungen in isolierenden Filmen bei Elektronenbestrahlung. Optik 17, 107 (1960).Google Scholar
  301. 6.301
    H. Mahl, W. Weitsch: Versuche zur Beseitigung von Aufladungen auf Durchstrahlungsobjekten durch zusätzliche Bestrahlung mit langsamen Elektronen. Z. Naturforsch. A17, 146 (1962).ADSGoogle Scholar
  302. 6.302
    G.H. Curtis, R.P. Ferrier: The electric charging of electron microscopical specimens. J. Phys. D2, 1035 (1969).ADSGoogle Scholar
  303. 6.303
    D.H. Warrington: A simple charge neutralizer for the electron microscope. J. Sci. Instrum. 43, 77 (1966).ADSGoogle Scholar
  304. 6.304
    L. Reimer: Aufladung kleiner Teilchen im Elektronenmikroskop. Z. Naturforsch. A20, 151 (1965).ADSGoogle Scholar
  305. 6.305
    V. Drahoš, J. Komrska, M. Lenc: “Shadow Images of Charged Spherical Particles,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.157.Google Scholar
  306. 6.306
    C. Jönsson, H. Hoffmann: Der Einfluß von Aufladungen auf die Stromdichteverteilung im Elektronenschattenbild dünner Folien. Optik 21, 432 (1964).Google Scholar
  307. 6.307
    H. Pfisterer, E. Fuchs, W. Liesk: Elektronenmikroskopische Abbildung ferro-elektrischer Domänen in dünnen BaTiO3-Einkristallschichten. Naturwissenschaften 49, 178 (1962).ADSGoogle Scholar
  308. 6.308
    H. Blank, S. Amelinckx: Direct observation of ferroelectric domains in BaTiO3 by means of the electron microscope. Appl. Phys. Lett. 2, 140 (1963).ADSGoogle Scholar
  309. 6.309
    E. Fuchs, W. Liesk: Elektronenmikroskopische Beobachtung von Domänenkon-figurationen und von Umpolarisationsvorgängen in dünnen BaTiO3-Einkristallen. J. Phys. Chem. Solidi 25, 845 (1964).ADSGoogle Scholar
  310. 6.310
    R. Ayroles, J. Torres, J. Aubree, C. Roucau, M. Tanaka: Electron-microscope observation of structure domains in the ferroelastic phase of lead phosphate. Pb3(P04)2. Appl. Phys. Lett. 34, 4 (1979).ADSGoogle Scholar
  311. 6.311
    C. Manolikas, S. Amelinckx: Phase transitions in ferroelastic lead ortho-vanadate as observed by means of electron microscopy and electron diffraction. Phys. Status Solidi A60, 607 (1980).ADSGoogle Scholar
  312. 6.312
    M. Tanaka, G. Honjo: Electron optical studies of BaTiO3 single crystal films. J. Phys. Soc. Jpn. 19, 954 (1964).ADSGoogle Scholar
  313. 6.313
    J.M. Titchmarsh, G.R. Booker: “The Imaging of Electric Field Regions Associated with p-n Junctions,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.540.Google Scholar
  314. 6.314
    P.G. Merli, G.F. Missiroli, G. Pozzi: TEM observations of p-n junctions. Phys. Status Solidi A30, 699 (1975).ADSGoogle Scholar
  315. 6.315
    C. Capiluppi, P.G. Merli, G. Pozzi, I. Vecchi: Out-of-focus observations of p-n junctions by high-voltage electron microscopy. Phys. Status Solidi A35, 165 (1976).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfälische Wilhelms-Universität MünsterMünsterFed. Rep. of Germany

Personalised recommendations