Advertisement

Electron-Specimen Interactions

  • Ludwig Reimer
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 36)

Abstract

The elastic scattering of electrons by the Coulomb potential of a nucleus is the most important of the interactions that contribute to the image contrast. Cross-sections and mean-free-path lengths are used to describe quantitatively the scattering process. A knowledge of the screening of the Coulomb potential of the nuclei by the atomic electrons is important when calculating the cross-sections at small scattering angles.

Keywords

Energy Loss Inelastic Scattering Atomic Electron Chromatic Aberration Polystyrene Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    W.J. Byatt: Analytical representation of Hartree potentials and electron scattering. Phys. Rev. 104, 1298 (1956).ADSGoogle Scholar
  2. 5.2
    T. Tietz: Über den Mottschen Polarisationseffekt bei der Streuung mittelschneller Elektronen. Nuovo Cimento 36, 1365 (1965).Google Scholar
  3. 5.3
    H.L. Cox, R.A. Bonham: Elastic electron scattering amplitudes for neutral atoms calculated using the partial wave method at 10, 40, 70 and 100 kV for Z=1 to Z=54. J. Chem. Phys. 47, 2599 (1967).ADSGoogle Scholar
  4. 5.4
    H. Raith: Komplexe Atomstreuamplituden für die elastische Elektronenstreuung an Festkörperatomen. Acta Cryst. A24, 85 (1968).Google Scholar
  5. 5.5
    L. Reimer, K.H. Sommer: Messungen und Berechnungen zum elektronenmikroskopischen Streukontrast für 17 bis 1200 keV-Elektronen. Z. Naturforsch. A23, 1569 (1968).Google Scholar
  6. 5.6
    G. Molière: Theorie der Streuung schneller geladener Teilchen. Z. Naturforsch. A2, 133 (1947).ADSGoogle Scholar
  7. 5.7
    R.J. Glauber: In Lectures in Theoretical Physics, ed. by W.E. Brittin, G. Dunham (Interscience, New York 1959) p.315.Google Scholar
  8. 5.8
    E. Zeitler, H. Olsen: Screening effects in elastic electron scattering. Phys. Rev. A136, 1546 (1964); Complex scattering amplitudes in elastic electron scattering. Phys. Rev. A162, 1439 (1967).ADSGoogle Scholar
  9. 5.9
    J. Haase: Berechnung der komplexen Streufaktoren für schnelle Elektronen unter Verwendung von Hartree-Fock-Atompotentialen. Z. Naturforsch. A23, 1000 (1968).Google Scholar
  10. 5.10
    F. Lenz: Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z. Naturforsch. A9, 185 (1954).ADSGoogle Scholar
  11. 5.11
    F. Arnal, J.L. Balladore, G. Soum, P. Verdier: Calculations of the cross sections of electron interaction with matter. Ultramicroscopy 2, 305 (1977).Google Scholar
  12. 5.12
    R.E. Burge, G.H. Smith: A new calculation of electron scattering cross sections and a theoretical discussion of image contrast in the electron microscope. Proc. Phys. Soc. 79, 673 (1962).ADSzbMATHGoogle Scholar
  13. 5.13
    P.A. Doyle, P.S. Turner: Relativistic Hartree-Fock x-ray and electron scattering factors. Acta Cryst. A24, 390 (1968).Google Scholar
  14. 5.14
    J.A. Ibers, J.A. Hoerni: Atomic scattering amplitudes for electron diffraction. Acta Cryst. 7, 405 (1954).Google Scholar
  15. 5.15
    J.A. Ibers: Atomic scattering amplitudes for electrons. Acta Cryst. 11, 178 (1958).Google Scholar
  16. 5.16
    J.A. Ibers, B.K. Vainshtein: “Scattering Amplitudes for Electrons,” in International Tables for X-Ray Crystallography, Vol.3, ed. by K. Lonsdale (Kynoch, Birmingham 1962).Google Scholar
  17. 5.17
    J. Geiger: “Zur Streuung von Elektronen am Einzel atom,” in Electron Microscopy 1962, 5th Intern. Congr. Electron Microscopy, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p.AA–12.Google Scholar
  18. 5.18
    N.F. Mott: The polarisation of electrons by double scattering. Proc. Roy. Soc. A135, 429 (1932).ADSGoogle Scholar
  19. 5.19
    W.A. McKinley, H. Feshbach: The Coulomb scattering of relativistic electrons by nuclei. Phys. Rev. 74, 1759 (1948).ADSGoogle Scholar
  20. 5.20
    J.A. Doggett, L.V. Spencer: Elastic scattering of electrons and positrons by point nuclei. Phys. Rev. 103, 1597 (1956).ADSGoogle Scholar
  21. 5.21
    N. Sherman: Coulomb scattering of relativistic electrons by point nuclei. Phys. Rev. 103, 1601 (1956).ADSzbMATHGoogle Scholar
  22. 5.22
    M.E. Riley, J. Crawford, C.J. MacCallum, F. Biggs: Theoretical electron-atom elastic scattering cross sections. At. Data Nucl. Data Tables 15, 443 (1975).ADSGoogle Scholar
  23. 5.23
    S.R. Lin: Elastic electron scattering by screened nuclei. Phys. Rev. A133, 965 (1964).ADSGoogle Scholar
  24. 5.24
    W. Bühring: Computational improvements in phase shift calculations of elastic electron scattering. Z. Phys. 187, 180 (1965); Elastic scattering by mercury atoms. Z. Phys. 212, 61 (1968).ADSGoogle Scholar
  25. 5.25
    J. Kessler, N. Weichert: The influence of screening on Mott scattering by mercury atoms. Z. Phys. 212, 48 (1968).ADSGoogle Scholar
  26. 5.26
    L. Reimer, E.R. Krefting: “The Effect of Scattering Models on the Results of Monte Carlo Calculations,” in Use of Monte Carlo Calculations in Electron Probe Micro analysis and Scanning Electron Microscopy, ed. by K.F.J. Heinrich, D.E. Newbury, H. Jakowitz, NBS Special Publ. 460 (US Government Printing Office, Washington 1976) p.45.Google Scholar
  27. 5.27
    J. Kessler: Polarized Electrons (Springer, Berlin, Heidelberg, New York 1976).Google Scholar
  28. 5.28
    J.P. Langmore, J. Wall, M. Isaacson: The collection of scattered electrons in dark field electron microscopy. I. Elastic scattering. Optik 38, 335 (1973); II. Inelastic scattering. Optik 39, 359 (1974).Google Scholar
  29. 5.29
    J. Geiger, K. Wittmaack: Wirkungsquerschnitte für die Anregung von Molekülschwingungen durch schnelle Elektronen. Z. Phys. 187, 433 (1965).ADSGoogle Scholar
  30. 5.30
    H. Boersch, J. Geiger, A. Bohg: Wechselwirkung von Elektronen mit Gitterschwingungen in NH4Cl and NH4. Br. Z. Phys. 227, 141 (1969).ADSGoogle Scholar
  31. 5.31
    B. Schröder, J. Geiger: Electron-spectrometric study of amorphous Ge and Si in the two-phonon region. Phys. Rev. Lett. 28, 301 (1972).ADSGoogle Scholar
  32. 5.32
    H. Raether: Solid State Excitations by Electrons, Springer Tracts Mod. Phys., Vol.38 (Springer, Berlin, Heidelberg, New York 1965) p.84.Google Scholar
  33. 5.33
    R.D. Leapman, V.E. Cosslett: “Energy Loss Spectrometry of Inner Shell Excitations,” in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.431.Google Scholar
  34. 5.34
    D.B. Wittry, R.P. Ferrier, V.E. Cosslett: “Microanalysis in the TEM by Selected Area Electron Spectrometry,” in Fifth Intern. Congr. on X-Ray Optics and Microanalysis, ed. by G. Möllenstedt, K.H. Gaukler (Springer, Berlin, Heidelberg, New York 1969) p.293.Google Scholar
  35. 5.35
    R.P.T. Hills, R.P. Ferrier: “Selected Area Electron Spectrometry,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.206.Google Scholar
  36. 5.36
    C. Colliex, B. Jouffrey: Diffusion inélastique des electrons dans un solide par excitation de niveaux atomiques profonds. Philos. Mag. 25, 491 (1972).ADSGoogle Scholar
  37. 5.37
    M. Isaacson: Interaction of 25 keV electrons with the nucleic acid bases adenine, thymine and uracil. J. Chem. Phys. 56, 1803 and 1813 (1972).ADSGoogle Scholar
  38. 5.38
    H. Koppe: Der Streuquerschnitt von Atomen für unelastische Streuung schneller Elektronen. Z. Phys. 124, 658 (1948).ADSzbMATHGoogle Scholar
  39. 5.39
    W. Brlinger, W. Menz: Wirkungsquerschnitte für elastische und unelastische Elektronenstreuung an amorphen C-und Ge-Schichten. Z. Phys. 184, 271 (1965).ADSGoogle Scholar
  40. 5.40
    W. Lippert: Über das Verhältnis des unelastischen zum elastischen Gesamtstreuquerschnitt für Elektronen bei den Arbeitsbedingungen der Elektronenmikroskopie. Naturwissenschaften 50, 219 (1963).ADSGoogle Scholar
  41. 5.41
    H.G. Badde, H. Kappert, L. Reimer: Wellenoptische Theorie des Ripple-Kontrastes in der Lorentzmikroskopie. Z. Angew. Phys. 30, 83 (1970).Google Scholar
  42. 5.42
    R.E. Burge, D.L. Misell, J.W. Smart: The small-angle scattering of electrons in thin films of evaporated carbon. J. Phys. C3, 1661 (1970).ADSGoogle Scholar
  43. 5.43
    M. Isaacson, J. Langmore, J. Wall, A.V. Crewe: “Inelastic Scattering in Electron Microscopy,” in 31st Annual Meeting of EMSA (Claitor’s Publ. Div., Baton Rouge, LO 1973) p.254.Google Scholar
  44. 5.44
    R.F. Egerton: Measurement of inelastic/elastic scattering ratio for fast electrons and its use in the study of radiation damage. Phys. Status Solidi A37, 663 (1976).ADSGoogle Scholar
  45. 5.45
    R.F. Egerton, J.G. Philip, M.J. Whelan: “Applications of Energy Analysis in a Transmission Electron Microscope,” in Developments in Electron Microscopy and Analysis, ed. by J.A. Venables (Academic, London 1976) p.137.Google Scholar
  46. 5.46
    O. Klemperer, J.P.G. Shepherd: Characteristic energy losses of electrons in solids. Adv. Phys. 12, 355 (1963).ADSGoogle Scholar
  47. 5.47
    H. Raether: Excitation of Plasmons and Interband Transitions by Electrons, Springer Tracts Mod. Phys., Vol.88 (Springer, Berlin, Heidelberg, New York 1980).Google Scholar
  48. 5.48
    J. Geiger: Elektronen und Festkörper (Vieweg, Braunschweig 1968).Google Scholar
  49. 5.49
    J. Daniels, C. von Festenberg, H. Raether, K. Zeppenfeld: Optical Constants of Solids by Electron Spectroscopy, Springer Tracts Mod. Phys., Vol.54 (Springer, Berlin, Heidelberg, New York 1970).Google Scholar
  50. 5.50
    H. Boersch, J. Geiger, H. Hellwig, H. Michel: Energieverluste von Elektronen in Metallen in den verschiedenen Aggregatzuständen. Messungen an Al und Hg. Z. Phys. 169, 252 (1962).ADSGoogle Scholar
  51. 5.51
    E. Petri, A. Otte. Direct nonvertical interband and intraband transitions in Al. Phys. Rev. Lett. 34, 1283 (1975).ADSGoogle Scholar
  52. 5.52
    J.J. Ritsko, N.O. Lipari, P.C. Gibbons, S.E. Schnatterly, J.R. Fields, R. Devaty: Observation of electric monopole transitions in tetra-cyano-quinodimethane. Phys. Rev. Lett. 36, 210 (1976).ADSGoogle Scholar
  53. 5.53
    C.H. Chen, J. Silcox: Direct nonvertical interband transitions of large wave vectors in aluminum. Phys. Rev. B16, 4246 (1977).ADSGoogle Scholar
  54. 5.54
    D. Pines: Collective energy losses in solids. Rev. Mod. Phys. 28, 184 (1956); Elementary Excitations in Solids (Benjamin, New York 1962).ADSzbMATHGoogle Scholar
  55. 5.55
    D. Bohm, D. Pines: A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609 (1953).MathSciNetADSzbMATHGoogle Scholar
  56. 5.56
    G. Meyer: Über die Abhängigkeit der charakteristischen Energieverluste von Temperatur und Streuwinkel. Z. Phys. 148, 61 (1957).ADSGoogle Scholar
  57. 5.57
    L.B. Leder, L. Marton: Temperature dependence of the characteristic energy loss of electrons in Al. Phys. Rev. 112, 341 (1958).ADSGoogle Scholar
  58. 5.58
    H. Watanabe: Experimental evidence for the collective nature of the characteristic energy loss of electrons in solids. J. Phys. Soc. Jpn. 11, 112 (1956).ADSGoogle Scholar
  59. 5.59
    C. Kunz: Die Winkelverteilung der charakteristischen Energieverluste von Elektronen, gemessen am 15 eV-Al-Verlust und am 17 eV-Si-Verlust. Phys. Status Solidi 1, 441 (1961).Google Scholar
  60. 5.60
    C. Kunz: Über die Winkelabhängigkeit der charakteristischen Energieverluste an Al, Si, Ag. Z. Phys. 167, 53 (1962).ADSGoogle Scholar
  61. 5.61
    C. Kunz: Measurement of characteristic electron energy loss in alkali metals. Phys. Lett. 15, 312 (1965).ADSGoogle Scholar
  62. 5.62
    H. Boersch, H. Miessner, W. Raith: Untersuchungen zur Winkelabhängigkeit des 14,7 eV-Energieverlustes von Elektronen in Al. Z. Phys. 168, 404 (1962).ADSGoogle Scholar
  63. 5.63
    J. Geiger: Winkelverteilung der Energieverluste mittelschneller Elektronen in Antimon. Z. Naturforsch, A17, 696 (1962).ADSGoogle Scholar
  64. 5.64
    P. Schmüser: Anregung von Volumen-und Oberflächen-Plasmaschwingungen in Al und Mg durch mittelschnelle Elektronen. Z. Phys. 180, 105 (1964).ADSGoogle Scholar
  65. 5.65
    T. Kloos: Plasmaschwingungen in Al, Mg, Li, Na und K angeregt durch schnelle Elektronen. Z. Phys. 266, 225 (1973).ADSGoogle Scholar
  66. 5.66
    M. Creuzburg, H. Raether: On the behavior of nuclear energy losses of electrons in alkali halides. Solid State Commun. 2, 175 (1964).ADSGoogle Scholar
  67. 5.67
    K. Zeppenfeld: Anisotropie der Plasmaschwingungen in Graphit. Z. Phys. 211, 391 (1968).ADSGoogle Scholar
  68. 5.68
    C.H. Chen, J. Silcox: Detection of optical surface guided modes in thin graphite films by high-energy electron scattering. Phys. Rev. Lett. 35, 390 (1975).ADSGoogle Scholar
  69. 5.69
    M. Urner-Wille, H. Raether: Anisotropy of the 15 eV plasmon dispersion in Al. Phys. Lett. A58, 265 (1976).ADSGoogle Scholar
  70. 5.70
    J. Sevely, J.Ph. Perez. B. Jouffrey: “Energy Losses of Electrons Through Al and C Films from 300 keV up to 1200 keV,” in High Voltage Electron Microscopy, ed. by P.R. Swann, C.J. Humphreys, M.J. Goringe (Academic, New York 1974) p.32.Google Scholar
  71. 5.71
    R.A. Ferrell: Characteristic energy loss of electrons passing through metal foils. Phys. Rev. 107, 450 (1957).ADSzbMATHGoogle Scholar
  72. 5.72
    L. Marton, J.A. Simpson, H.A. Fowler, N. Swanson: Plural scattering of 20 keV electrons in Al. Phys. Rev. 126, 182 (1962).ADSGoogle Scholar
  73. 5.73
    M. Creuzburg, H. Dimigen: Energieanalyse im Elektroneninterfernzbild von Si-Einkristallen. Z. Phys. 174, 24 (1963).ADSGoogle Scholar
  74. 5.74
    R.E. Burge, D.L. Misell: Electron energy loss spectra of evaporated carbon films. Philos. Mag. 18, 251 (1968).Google Scholar
  75. 5.75
    R.E. Burge, D.L. Misell: Convolution effects in electron energy-loss spectra recorded by electron transmission. J. Phys. C 2, 1397 (1969).ADSGoogle Scholar
  76. 5.76
    R.H. Ritchie: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957).MathSciNetADSGoogle Scholar
  77. 5.77
    H. Boersch, J. Geiger, A. Imbusch, N. Niedrig: High resolution investigation of the energy losses of 30 keV electrons in Al foils of various thicknesses. Phys. Lett. 22, 146 (1966).ADSGoogle Scholar
  78. 5.78
    R.B. Pettit, J. Silcox, R. Vincent: Measurement of surface-plasmon dispersion in oxidized Al films. Phys. Rev. B 11, 3116 (1975).ADSGoogle Scholar
  79. 5.79
    T. Kloos: Zur Dispersion der Oberflächenplasmaverluste an reinen und oxydierten Al-Oberflächen. Z. Phys. 208, 77 (1968).ADSGoogle Scholar
  80. 5.80
    E.A. Stern, R.A. Ferrell: Surface plasma oscillations of a degenerate electron gas. Phys. Rev. 120, 130 (1960).MathSciNetADSGoogle Scholar
  81. 5.81
    M. Creuzburg: Unsymmetrie in der Intensitätsverteilung charakteristischer Energieverluste. Z. Naturforsch. A18, 101 (1963); Über die Winkelabhängigkeit und ihre Unsymmetrie von Energieverlusten an Si und Ge. Z. Phys. 174, 511 (1963).ADSGoogle Scholar
  82. 5.82
    C. von Festenberg, E. Kröger: Retardation effects for the electron energy loss probability in GaP and Si. Phys. Lett. A26, 339 (1968).ADSGoogle Scholar
  83. 5.83
    C.H. Chen, J. Silcox, R. Vincent: Electron energy losses in silicon: bulk and surface plasmons and Čerenkov radiation. Phys. Rev. B12, 64 (1975).ADSGoogle Scholar
  84. 5.84
    R.A. Ferrell: Predicted radiation of plasma oscillations in metal films. Phys. Rev. 111, 1214 (1958).MathSciNetADSGoogle Scholar
  85. 5.85
    R.W. Brown, P. Wessel, E.P. Trounson: Plasmon reradiation from Ag films. Phys. Rev. Lett. 5, 472 (1960).ADSGoogle Scholar
  86. 5.86
    U. Blirker, W. Steinmann: Strahlung von Oberflächenplasmonen in Al. Z. Phys. 224, 179 (1969).ADSGoogle Scholar
  87. 5.87
    A.J. Braundmeier, H.W. Williams, E.T. Arakawa, R.H. Ritchie: Radiative decay of surface plasmons from Al. Phys. Rev. B5, 2754 (1972).ADSGoogle Scholar
  88. 5.88
    G. Sauerbrey, E. Woeckel, P. Dobberstein: Radiation decay of electroninduced surface plasmons in rough surfaces. Phys. Status Solidi B 60, 665 (1973).ADSGoogle Scholar
  89. 5.89
    E.T. Arakawa, N.O. Davis, R.D. Birkhoff: Temperature and thickness dependence of transition radiation from thin Ag foils. Phys. Rev. A 135, 224 (1964).ADSGoogle Scholar
  90. 5.90
    H. Boersch, P. Dobberstein, D. Fritzsche, G. Sauerbrey: Transition radiation, Bremsstrahlung und Plasmastrahlung. Z. Phys. 187, 97 (1965).ADSGoogle Scholar
  91. 5.91
    C. Colliex, V.E. Cosslett, R.D. Leapman, P. Trebbia: Contribution of electron energy loss spectroscopy to the development of analytical electron microscopy. Ultramicroscopy 1, 301 (1976).Google Scholar
  92. 5.92
    U. Fano, J.W. Cooper: Spectral distribution of atomic oscillator strengths. Rev. Mod. Phys. 40, 441 (1968).ADSGoogle Scholar
  93. 5.93
    R.D. Leapman, V.E. Cosslett: Extended fine structure above the x-ray edge in electron energy loss spectra. J. Phys. D 9, L29 (1976).ADSGoogle Scholar
  94. 5.94
    B.M. Kincaid, A.E. Meixner, P.M. Platzman: Carbon K edge in graphite measured using electron-energy-loss-spectroscopy. Phys. Rev. Lett. 40, 1296 (1978).ADSGoogle Scholar
  95. 5.95
    D.E. Sayers, E.A. Stern, F.W. Lytle: New technique for investigating non-crystalline structures: Fourier analysis of the extended x-ray absorption fine structure. Phys. Rev. Lett. 27, 1204 (1971).ADSGoogle Scholar
  96. 5.96
    R.F. Egerton: Inelastic scattering of 80 keV electrons in amorphous carbon. Philos. Mag. 31, 199 (1975).ADSGoogle Scholar
  97. 5.97
    M. Gryzinski: Classical theory of atomic collisions. Phys. Rev. 138, A305, 322 and 336 (1965).MathSciNetADSGoogle Scholar
  98. 5.98
    M. Inokuti: Inelastic collisions of fast charged particles with atoms and molecules — the Bethe theory revised. Rev. Mod. Phys. 43, 297 (1971).ADSGoogle Scholar
  99. 5.99
    R.D. Leapman, V.E. Cosslett: Electron energy loss spectrometry: mean free paths for some characteristic x-ray excitations. Philos. Mag. 33, 1 (1976).ADSGoogle Scholar
  100. 5.100
    Y. Kihn, J. Sevely, B. Jouffrey: Excitation des niveaux atomiques K du carbone, du magnésium et de l’aluminium par des électrons de 60 keV. Philos. Mag. 33, 733 (1976).ADSGoogle Scholar
  101. 5.101
    D.L. Misell, R.E. Burge: Convolution, deconvolution and small-angle plural electron scattering. J. Phys. C 2, 61 (1969).ADSGoogle Scholar
  102. 5.102
    R.A. Crick, D.L. Misell: A theoretical consideration of some defects in electron optical images. A formulation of the problem for the incoherent case. J. Phys. D 4, 1 (1971).ADSGoogle Scholar
  103. 5.103
    K.T. Considine, K.C.A. Smith, V.E. Cosslett: “Measurement of Large Energy Losses at High Voltages,” in Microscopie Electronique 1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.131.Google Scholar
  104. 5.104
    L. Landau: On the energy loss of fast electrons by ionization. J. Phys. USSR 8, 201 (1944).Google Scholar
  105. 5.105
    O. Blunck, S. Leisegang: Zum Energieverlust schneller Elektronen in dünnen Schichten. Z. Phys. 128, 500 (1950).ADSGoogle Scholar
  106. 5.106
    H.D. Maccabee, D.G. Papworth: Correction to Landau’s energy loss formula. Phys. Lett. A 30, 241 (1969).ADSGoogle Scholar
  107. 5.107
    Y. Kamiya: “Contrast Effects of Inelastic Scatterings on Images at High Accelerating Voltages,” in Electron Microscopy 1966, Vol.1, ed. by R. Uyeda (Maruzen, Kyoto 1966) p.95.Google Scholar
  108. 5.108
    L. Reimer, K. Brockmann, U. Rhein: Energy losses of 20-40 keV electrons in 150-650 μg cm−2 metal films. J. Phys. D 11, 2151 (1978).ADSGoogle Scholar
  109. 5.109
    H. Bethe: Zur Theorie des Durchganges schneller Korpuskularstrahlen durch Materie. Ann. Phys. 5, 325 (1930).zbMATHGoogle Scholar
  110. 5.110
    V.E. Cosslett, R.N. Thomas: Multiple scattering of 5-30 keV electrons in evaporated metal films. II. Range-energy relations. Br. J. Appl. Phys. 15, 1283 (1964).ADSGoogle Scholar
  111. 5.111
    L. Reimer, P. Gentsch: Superposition of chromatic error and beam broadening in TEM of thick carbon and organic specimens. Ultramicroscopy 1, 1 (1975).Google Scholar
  112. 5.112
    P. Gentsch, H. Gilde, L. Reimer: Measurement of the top bottom effect in scanning transmission electron microscopy of thick amorphous specimens. J. Micr. 100, 81 (1974).Google Scholar
  113. 5.113
    H. Koike, K. Ueno, M. Suzuki: “Scanning Device Combined with Conventional Electron Microscope,” in Proc. 29th Ann. Meeting of EMSA (Claytor’s Publ. Div., Baton Rouge, LO 1971) p.28.Google Scholar
  114. 5.114
    M. Fotino: “Evaluation of Factors Affecting the Resolution in Thick Biological Specimens in High-Voltage TEM,” in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.277.Google Scholar
  115. 5.115
    K. Jost, J. Kessler: Die Ortsverteilung mittelschneller Elektronen bei Mehrfachstreuung. Z. Phys. 176, 126 (1963).ADSGoogle Scholar
  116. 5.116
    T. Groves: Thick specimens in the CEM and STEM. Resolution and image formation. Ultramicroscopy 1, 15 and 170 (1975).Google Scholar
  117. 5.117
    H. Rose: The influence of plural scattering on the limit of resolution in electron microscopy. Ultramicroscopy 1, 167 (1975).Google Scholar
  118. 5.118
    H. Rose: “The Influence of Plural Scattering on the Contrast and Resolution in Electron Microscopy,” in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.254.Google Scholar
  119. 5.119
    L. Reimer, H. Gilde, K.H. Sommer: Die Verbreiterung eines Elektronenstrahles (17-1200 keV) durch Mehrfachstreuung. Optik 30, 590 (1970).Google Scholar
  120. 5.120
    W. Bothe: Die Streuung von Elektronen in schrägen Folien. Sitzungsber. Heidelb. Akad. Wiss., 7. Abhandlung, 307 (1951).Google Scholar
  121. 5.121
    H.W. Thümmel: Durchgang von Elektronen-und Betastrahlung durch Materieschichten (Akademie, Berlin 1974).Google Scholar
  122. 5.122
    J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: “Quantitative X-Ray Analysis in the Electron Microscope,” in Scanning Electron Microscopy 1977, Vol.1, ed. by O. Johari (IIT Research Institute, Chicago 1977) p.315.Google Scholar
  123. 5.123
    T. Just, H. Niedrig, H. Yersin: Schichtdickenbestimmung mittels Elektronen-Rückstreuung. Z. Angew. Phys. 25, 89 (1968).Google Scholar
  124. 5.124
    H. Niedrig, P. Sieber: Rückstreuung mittelschneller Elektronen an dünnen Schichten. Z. Angew. Phys. 31, 27 (1971).Google Scholar
  125. 5.125
    F.J. Hohn, H. Niedrig: Elektronenrückstreuung an dünnen Metall-und Isolatorschichten. Optik 35, 290 (1972).Google Scholar
  126. 5.126
    H.G. Badde, H. Drescher, E.R. Krefting, L. Reimer, H. Seidel, W. Bühring: “Use of Matt Scattering Cross Sections for Calculating Backscattering of 10-100 keV Electrons,” in Electron Microscopy and Analysis, ed. by W.C. Nixon (The Institute of Physics, London 1971) p.74.Google Scholar
  127. 5.127
    H. Seiler: Einige aktuelle Probleme der Sekundärelektronenemission. Z. Angew. Phys. 22, 249 (1967).Google Scholar
  128. 5.128
    H. Drescher, L. Reimer, H. Seidel: Rückstreukoeffizient und Sekundärelektronen-Ausbeute von 10-100 keV-Elektronen und Beziehungen zur Raster-Elektronenmikroskopie. Z. Angew. Phys. 29, 331 (1970).Google Scholar
  129. 5.129
    L. Reimer, H. Drescher: Secondary electron emission of 10-100 keV electrons from transparent films of Al and Au. J. Phys. D 10, 805 (1977).ADSGoogle Scholar
  130. 5.130
    P. Kirkpatrick, L. Wiedmann: Theoretical continuous x-ray energy and polarization. Phys. Rev. 67, 321 (1945).ADSGoogle Scholar
  131. 5.131
    N.F. Mott, H.S.W. Massey: The Theory of Atomic Collisions, 3rd ed. (University Press, Oxford 1965).Google Scholar
  132. 5.132
    C.R. Worthington, S.G. Tomlin: The intensity of emission of characteristic x-radiation. Proc. Phys. Soc. A 69, 401 (1956).ADSGoogle Scholar
  133. 5.133
    J.W. Motz, R.C. Placious: K-ionization cross sections for relativistic electrons. Phys. Rev. A 136, 662 (1964).ADSGoogle Scholar
  134. 5.134
    C.J. Powell: Cross sections for ionization of inner-shell electrons by electrons. Rev. Mod. Phys. 48, 33 (1976).ADSGoogle Scholar
  135. 5.135
    C.J. Powell: “Evaluation of Formulas for Inner-Shell Ionization Cross Sections,” in Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, ed. by K.F.J. Heinrich, D.E. Newbury, H. Jakowitz, NBS Special Publ.460 (US Government Printing Office, Washington 1976) p. 97.Google Scholar
  136. 5.136
    J.A. Bearden: X-ray wavelengths. Rev. Mod. Phys. 39, 78 (1967);.ADSGoogle Scholar
  137. J.A. Bearden, A.F. Burr: Reevaluation of x-ray atomic energy levels. Rev. Mod. Phys. 39, 125 (1967).ADSGoogle Scholar
  138. 5.137
    N.A. Dyson: X-Rays in Atomic and Nuclear Physics (Longman, London 1973).Google Scholar
  139. 5.138
    R.W. Fink, R.C. Jopson, H. Mark, C.D. Swift: Atomic fluorescence yields. Rev. Mod. Phys. 38, 513 (1966).ADSGoogle Scholar
  140. 5.139
    W. Bambynek, B. Crasemann, R.W. Fink, H.U. Freund, H. Mark, C.D. Swift, R.E. Price, R.V. Rao: X-ray fluorescence yields, Auger and Coster-Kronig transition probabilities. Rev. Mod. Phys. 44, 716 (1972).ADSGoogle Scholar
  141. 5.140
    H.U. Freund: Recent experimental values for K-shell x-ray fluorescence yields. X-Ray Spectrom. 4, 90 (1975).Google Scholar
  142. 5.141
    T.K. Kelly: Mass absorption coefficients and their relevance in electron probe microanalysis. Trans. Inst. Min. Metall. B 75, 59 (1966).Google Scholar
  143. 5.142
    K.F.J. Heinrich: “X-Ray Absorption Uncertainty”, in The Electron Microprobe, ed. by T.D. McKinley, K.F.J. Heinrich, D.B. Wittry (Wiley, New York 1966) p. 296.Google Scholar
  144. 5.143
    A. Sommerfeld: Über die Beugung und Bremsung der Elektronen. Ann. Phys. 11, 257 (1931).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Physikalisches InstitutWestfälische Wilhelms-Universität MünsterMünsterFed. Rep. of Germany

Personalised recommendations