Skip to main content

Elements of a Transmission Electron Microscope

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

  • 718 Accesses

Abstract

The gun of an electron microscope does not only emit electrons into the vacuum and accelerate them between cathode and anode, but is also required to produce an electron beam of high brightness and high temporal and spatial coherence. The conventional thermionic emission from a tungsten wire is limited in temporal coherence by an energy broadening of the emitted electrons of the order of a few electronvolts and in spatial coherence by the gun brightness. Lanthanum hexaboride and field-emission cathodes are alternatives, for which the energy broadening is less and the gun brightness higher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Haine, P.A. Einstein, P.H. Borcherds: Resistance bias characteristics of the electron microscope gun. Br. J. Appl. Phys. 9, 482 (1958).

    Article  ADS  Google Scholar 

  2. L.W. Swanson, L.C. Crouser: Total-energy distribution of field-emitted electrons and single-plane work functions for tungsten. Phys. Rev. 163, 622 (1967).

    Article  ADS  Google Scholar 

  3. H. Boersch: Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Phys. 139, 115 (1954).

    Article  ADS  Google Scholar 

  4. K.H. Loeffler: Energy-spread generation in electron-optical instruments. Z. Angew. Phys. 27, 145 (1969).

    Google Scholar 

  5. R.W. Ditchfield, M.J. Whelan: Energy broadening of the electron beam in the electron microscope. Optik 48, 163 (1977).

    Google Scholar 

  6. H. Rose, R. Spehr: On the theory of the Boersch effect. Optik 57, 339 (1980).

    Google Scholar 

  7. K.H. Gaukler, R. Speidel, F. Vorster: Energieverteilungen von Elektronen aus einer Feldemissionskathode. Optik 42, 391 (1975).

    Google Scholar 

  8. D.B. Langmuir: Theoretical limitations of cathode-ray tubes. Proc. IRE 25, 977 (1937).

    Article  Google Scholar 

  9. J. Dosse: Theoretische und experimentelle Untersuchungen über Elektronenstrahler. Z. Phys. 115, 530 (1940).

    Article  ADS  Google Scholar 

  10. W. Glaser: Grundlagen der Elektronenoptik (Springer, Wien 1952).

    MATH  Google Scholar 

  11. J.A. Swift, A.C. Brown: SEM electron source: pointed tungsten filaments with long life and high brightness. Scanning 2, 42 (1979).

    Article  Google Scholar 

  12. A.N. Broers: Electron gun using long-life LaB6 cathode. J. Appl. Phys. 38, 1991 (1967); Some experimental and estimated characteristics of the LaB6 rod cathode electron gun. J. Phys. E2, 273 (1969).

    Article  ADS  Google Scholar 

  13. H. Ahmed: “The Use of LaB6 and Composite Boride Cathodes in Electron Optical Instruments,” in Electron Micrsocopy and Analysis, ed. by W.C. Nixon (The Institute of Physics, London 1971) p.30.

    Google Scholar 

  14. R. Vogt: Richtstrahlwert und Energieverteilung der Elektronen aus einem Elektronenstrahlerzeuger mit LaB6-Kathode. Optik 36, 262 (1972).

    Google Scholar 

  15. S.D. Ferris, D.C. Joy, H.J. Leamy, C.K. Crawford: “A Directly Heated LaB6 Electron Source,” in Scanning Electron Microscopy 1975, ed. by O. Johari (IIT Research Institute, Chicago 1975) p.11.

    Google Scholar 

  16. S. Nakagawa, T. Yanaka: “A Highly Stable Electron Probe Obtained with LaB6 Cathode Electron Gun,” in Scanning Electron Microscopy 1975, ed. by O. Johari (IIT Research Institute, Chicago 1975) p.19.

    Google Scholar 

  17. C.K. Crawford: “Mounting Methods and Operating Characteristics for LaB6 CathodesMounting Methods and Operating Characteristics for LaB6 Cathodes,” in Scanning Electron Microscopy 1979/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1979) p.19.

    Google Scholar 

  18. P.H. Schmidt, D.C. Joy, L.D. Longinotti, H.J. Leamy, S.D. Ferris, Z. Fisk: Anisotropy of thermionic electron emission values of LaB6 single-crystal emitter cathodes. Appl. Phys. Lett. 29, 400 (1976).

    Article  ADS  Google Scholar 

  19. M.E. Haine, P.A. Einstein: Characteristics of the hot cathode electron microscope gun. Br. J. Appl. Phys. 3, 40 (1952).

    Article  ADS  Google Scholar 

  20. L.H. Veneklasen, B.M. Siegel: Oxygen-processed field emission source. J. Appl. Phys. 43, 1600 (1972).

    Article  ADS  Google Scholar 

  21. J.W. Butler: “Digital Computer Techniques in Electron Microscopy,” in Electron Microscopy 1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.191.

    Google Scholar 

  22. A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter: Electron gun using a field emission source. Rev. Sci. Instrum. 39, 576 (1968).

    Article  ADS  Google Scholar 

  23. E. Munro: “Design of Electrostatic Lenses for Field-Emission Electron Guns,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.22.

    Google Scholar 

  24. D. Kern, D. Kurz, R. Speidel: Elektronenoptische Eigenschaften eines Strahlerzeugungssystemes mit Feldemissionskathode. Optik 52, 61 (1978).

    Google Scholar 

  25. G.H.N. Riddle: Electrostatic einzel lenses with reduced spherical aberration for use in field-emission gun. J. Vac. Sci. Technol. 15, 857 (1978).

    Article  ADS  Google Scholar 

  26. J. Orloff, L.W. Swanson: An asymmetric electrostatic lens for field-emission microprobe applications. J. Appl. Phys. 50, 2494 (1979).

    Article  ADS  Google Scholar 

  27. F.H. Plomp, L. Veneklasen, B.M. Siegel: “Development of a Field Emission Electron Source for an Electron Microscope,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.141.

    Google Scholar 

  28. L.H. Veneklasen, B.M. Siegel: “A Field Emission Illuminating System for Transmission,” in Electron Microscopy 1970, Vol.2, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.87.

    Google Scholar 

  29. T. Someya, T. Goto, Y. Marada, M. Watanabe: “Development of Field Emission Electron Gun for High Resolution 100 kV Electron Microscope,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.20.

    Google Scholar 

  30. W. Engel, W. Kunath, S. Krause: “Properties of Three Electrode Accelerating Lenses for Field Emission Electron Guns,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.118.

    Google Scholar 

  31. J.R.A. Cleaver: Field emission electron gun system incorporating single-pole magnetic lenses. Optik 52, 293 (1979).

    Google Scholar 

  32. M. Troyon: “A Magnetic Field Emission Electron Probe Forming System,” in Electron Microscopy 1980, Vol.1, ed. by P. Brederoo, G. Boom (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980) p.56.

    Google Scholar 

  33. M.E. Haine: The electron optical system of the electron microscope. J. Sci. Instrum. 24, 61 (1947).

    Article  ADS  Google Scholar 

  34. W.D. Riecke: Zur Zentrierung des magnetischen Elektronenmikroskops. Optik 24, 397 (1966).

    Google Scholar 

  35. W.D. Riecke: “Instrument Operation for Microscopy and Microdiffraction,” in Electron Microscopy in Materials Science, Part 1, ed. by U. Valdrè, E. Ruedl (Commission European Communities, Brussels 1976) p.19.

    Google Scholar 

  36. V.E. Cosslett: Probe size and probe current in the STEM. Optik 36, 85 (1972).

    Google Scholar 

  37. V.E. Cosslett, M.E. Haine: “The Tungsten Point Cathode as an Electron Source,” in Proc. 3rd Intern. Conf. Electron Microscopy, ed. by R. Ross (Royal Microscopical Soc, London 1956) p.639.

    Google Scholar 

  38. L.H. Veneklasen: Some general considerations concerning the optics of the field emission illumination system. Optik 36, 410 (1972).

    Google Scholar 

  39. J.R.A. Cleaver, K.C.A. Smith: “Two-Lens Probe Forming Systems Employing Field Emission Guns,” in Scanning Electron Microscopy 1973, ed. by O. Johari (IIT Research Inst., Chicago 1973) p.49.

    Google Scholar 

  40. M. Müller, Th. Koller: Preparation of aluminium oxide films for high resolution electron microscopy. Optik 35, 287 (1972).

    Google Scholar 

  41. D. Dorignac, M.E.C. MacLachlan, B. Jouffrey: Low-noise boron supports for high resolution electron microscopy. Ultramicroscopy 4, 85 (1979).

    Article  Google Scholar 

  42. S. Iijima: Thin graphite supporting films for high resolution electron microscopy. Micron 8, 41 (1977).

    Google Scholar 

  43. W. Baumeister, M.H. Hahn: Suppression of lattice periods in vermiculite single crystal specimen supports for high resolution electron microscopy. J. Micr. 101, 111 (1974).

    Article  Google Scholar 

  44. U. Valdrè, M.J. Goringe: Electron Microscopy in Material Science (Academic, New York 1971) p. 207.

    Google Scholar 

  45. U. Valdrè: “General Considerations on Specimen Stages”, in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.317.

    Google Scholar 

  46. J.A. Venables: “In-Situ Experiments in Electron Microscopes,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.344.

    Google Scholar 

  47. P.R. Swann (ed.): Proceedings Symposium on High Voltage Electron Microscope 1972, published in J. Micr. 97, Parts 1 and 2 (1973).

    Google Scholar 

  48. P.R. Swann, C.J. Humphreys, M.J. Goringe (eds.): High Voltage Electron Microscopy (Academic, London 1974).

    Google Scholar 

  49. B. Jouffrey, P. Favard (eds.): Microscopie Electronique à Haute Tension (Société Francaise de Microscopie Electronique, Paris 1976).

    Google Scholar 

  50. T. Imura, H. Hashimoto (eds.): High Voltage Electron Microscopy (Japanese Society of Electron Microscopy, Kyoto 1977).

    Google Scholar 

  51. P. Brederoo, J. van Landuyt (eds.): Electron Microscopy 1980, Vol.4: High Voltage (Seventh European Congr. on Electron Microscopy Foundation, Leiden 1980).

    Google Scholar 

  52. H.G. Heide: Principle of a TEM specimen device to meet highest requirements: specimen temperature 5-300 K, cryo transfer, condensation protection, specimen tilt, stage stability for highest resolution. Ultramicroscopy 6, 115 (1981).

    Google Scholar 

  53. J.E. Eades: A helium-cooled specimen stage for electron microscopy. J. Phys. E15, 184 (1982).

    ADS  Google Scholar 

  54. D.F. Parsons, V.R. Matricardi, J. Subjeck, I. Uydess, G. Wray: High-voltage electron microscopy of whet whole cancer and normal cells: Visualization of cytoplasmic structure and surface projections. Biochim. Biophys. Acta 290, 110 (1972).

    Article  Google Scholar 

  55. J. Stabenow: Herstellung dünnwandiger Objektivaperturblenden für die Elektronenmikroskopie. Naturwissenschaften 54, 163 (1967).

    Article  ADS  Google Scholar 

  56. J. Kala, J. Podbrdský: Thin foil apertures with very small openings for electron microscopy. J. Phys. E4, 609 (1971).

    ADS  Google Scholar 

  57. E. Schabtach: A method for the fabrication of thin foil apertures for electron microscopy. J. Micr. 101, 121 (1974).

    Article  Google Scholar 

  58. C.F. Oster, D.C. Skillman: “Determination and Control of Electron Microscopic Magnification,” in Electron Microscopy 1962, 5th Intern. Congr. Electron Microscopy, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p.EE–3.

    Google Scholar 

  59. G.F. Bahr, E. Zeitler: The determination of magnification in the electron microscope. Lab. Invest. 14, 880 (1965).

    Google Scholar 

  60. P.F. Elbers, J. Pieters: “Accurate Magnification Determination in the Siemens Elmiskop I,” in Electron Microscopy 1964, Proc. 3rd Europ. Reg. Conf., Vol.A, ed. by M. Titlbach (Czechoslovak Acad. Sci., Prague 1964) p.123.

    Google Scholar 

  61. W.C.T. Dowell; Die Bestimmung der Vergrößerung des Elektronenmikroskops mittels Elektroneninterferenz. Optik 21, 26 (1964).

    Google Scholar 

  62. R. Luftig: An accurate measurement of the catalase crystal period and its use as an internal marker for electron microscopy. J. Ultrastruct. Res. 20, 91 (1967).

    Article  Google Scholar 

  63. N.G. Wrigley: The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J. Ultrastruct. Res. 24, 454 (1968).

    Article  Google Scholar 

  64. J. Porstendörfer, J. Heyder: Elektronenmikroskopische Untersuchungen an Latex-Teilchen. Optik 35, 73 (1972).

    Google Scholar 

  65. J.B. LePoole, P. Stam: “An Objective Method for Focusing,” in Proc. 3rd Intern. Congr. Electron Microscopy London 1954, ed. by R. Ross (Royal Microscopical Soc, London 1956) p.666.

    Google Scholar 

  66. H. Koike, K. Ueno, M. Suzuki: “Scanning Device Combined with Conventional Electron Microscope,” in Proc. 29th Ann. Meeting of EMSA (Claytor’s Publ. Div., Baton Rouge LO 1971) p.28.

    Google Scholar 

  67. L. Reimer, P. Hagemann: “The Use of Transmitted and Backscattered Electrons in the Scanning Mode of a TEM,” in Developments in Electron Microscopy and Analysis, ed. by D.L. Misell (The Institute of Physics, London 1977) p.135.

    Google Scholar 

  68. A.V. Crewe, J. Wall, L.M. Welter: A high-resolution STEM. J. Appl. Phys. 39, 5861 (1968).

    Article  ADS  Google Scholar 

  69. A.V. Crewe, J. Wall: Contrast in a high-resolution STEM. Optik 30, 461 (1970).

    Google Scholar 

  70. A.V. Crewe, M. Isaacson, D. Johnson: A high-resolution electron spectrometer for use in transmission scanning electron microscopy. Rev. Sci. Instrum. 42, 411 (1971).

    Article  ADS  Google Scholar 

  71. A.V. Crewe: “Production of Electron Probes Using a Field Emission Source,” in Progress in Optics, Vol.11, ed. by E. Wolf (North-Holland, Amsterdam 1973) p.225.

    Google Scholar 

  72. J.M. Cowley: Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58 (1969).

    Article  ADS  Google Scholar 

  73. E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy. Optik 31, 258 and 359 (1970).

    Google Scholar 

  74. C. Colliex, A.J. Craven, C.J. Wilson: Fresnel fringes in STEM. Ultramicroscopy 2, 327 (1977).

    Article  Google Scholar 

  75. D.C. Joy, D.M. Mäher, A.G. Cullis: The nature of defocus fringes in STEM images. J. Micr. 108, 185 (1976).

    Article  Google Scholar 

  76. R. Broser-Warminsky, E. Ruska: “Hochauflösende Leuchtschirme für die Elektronenmikroskopie,” in Vierter International Kongreß für Elektronenmikroskopie, Vol.1, ed. by W. Bargmann et al. (Springer, Berlin, Göttingen, Heidelberg 1960) p.104.

    Google Scholar 

  77. V.E. Cosslett, G.L. Jones, R.A. Camps: “Image Viewing and Recording in High Voltage Electron Microscopy,” in [Ref.4.48] p.147.

    Google Scholar 

  78. H.G. Heide: Zur Vorevakuierung von Photomaterial für Elektronenmikroskopie. Z. Angew. Phys. 19, 348 (1965).

    Google Scholar 

  79. E. Guetter, M. Menzel: “An External Photographic System for Electron Microscopes,” in Electron Microscopy 1978, Vol.1, ed. by S.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.92.

    Google Scholar 

  80. H. Frieser, E. Klein: Die Eigenschaften photographischer Schichten bei Elektronenbestrahlung. Z. Angew. Phys. 10, 337 (1958).

    Google Scholar 

  81. H. Frieser, E. Klein, E. Zeitler: Das Verhalten photographischer Schichten bei Elektronenbestrahlung. Z. Angew. Phys. 11, 190 (1959).

    Google Scholar 

  82. R.C. Valentine: “The Response of Photographic Emulsions to Electrons,” in Advances in Optical and Electron Microscopy, Vol.1, ed. by R. Barer, V.E. Cosslett (Academic, London 1966) p.180.

    Google Scholar 

  83. R.E. Burge, D.F. Garrard: The resolution of photographic emulsions for electrons in the energy range 7-60 keV. J. Phys. E1, 715 (1968).

    ADS  Google Scholar 

  84. R.E. Burge, D.F. Garrard, M.T. Browne: The response of photographic emulsions to electrons in the energy range 7-60 keV. J. Phys. E1, 707 (1968).

    ADS  Google Scholar 

  85. G.C. Farnell, R.B. Flint: The response of photographic materials to electrons with particular reference to electron micrography. J. Micr. 97, 271 (1973).

    Article  Google Scholar 

  86. W. Lippert: Erfahrungen mit der photographischen Methode bei der Massendicken-bestimmung im Elektronenmikroskop. Optik 29, 372 (1969).

    Google Scholar 

  87. G.L. Jones, V.E. Cosslett: “Sensitivity and Resolution of Photographic Emulsions to Electrons (60-700 keV),” in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.349.

    Google Scholar 

  88. M. Fotino: “Improved Response of Photographic Emulsions for Electron Micrographs at Higher Voltages,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.104.

    Google Scholar 

  89. P.H. Broerse, P. Kramer, W. Kühl, H.F. Premsela: “Electron Microscopy at Extremely Low Current Densities in the Specimen with a New Light Intensifier,” in Electron Microscopy 1968, Vol.1, ed. by D.S. Bocciarelli (Tipografia Poliglotta Vaticana, Rome 1968) p.217.

    Google Scholar 

  90. K.H. Hermann, D. Krahl, V. Rindfleisch: Use of TV image intensifies in electron microscopy. Siemens Forsch. Entwicklungsber. 1, 67 (1972).

    Google Scholar 

  91. D.G. Brandon, D. Shechtman, D.N. Seidman: “Preliminary Results with a Channel Plate Image Intensifier in the Electron Microscope,” in Microscopie Electronique 1970, Vol.1, ed. by P. Favard (Société Francaise de Microscopie Electronique, Paris 1970) p.343.

    Google Scholar 

  92. C.A. English, J.A. Venables: “The Use of Channel Plates as Image Intensifies in Electron Microscopy,” in Electron Microscopy and Analysis (The Institute of Physics, London 1971) p.40.

    Google Scholar 

  93. E.L. Thomas, S. Danyluck: A channelplate image intensifier for the electron microscope. J. Phys. E4, 843 (1971).

    ADS  Google Scholar 

  94. D.A. Gedcke, J.B. Ayers, P.B. deNee: “A Solid State Backscattered Electron Detector Capable of Operating at T.V. Scan RatesA Solid State Backscattered Electron Detector Capable of Operating at T.V. Scan Rates,” in Scanning Electron Microscopy 1978/I, ed. by O. Johari (SEM Inc., AMF O’Hare 1978) p.581.

    Google Scholar 

  95. M. Kikuchi, S. Takashima: “Multi-Purpose Backscattered Electron Detector,” in Electron Microscopy 1978, Vol.1, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.82.

    Google Scholar 

  96. J. Pawley: “Performance of SEM Scintillation Materials,” in Scanning Electron Microscopy 1974, ed. by O. Johari (IIT Research Institute, Chicago 1974) p.28.

    Google Scholar 

  97. W. Baumann, A. Niemitz, L. Reimer, B. Volbert: Preparation of P-47 scintillators for STEM. J. Micr. 122, 181 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1984). Elements of a Transmission Electron Microscope. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13553-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13553-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13555-6

  • Online ISBN: 978-3-662-13553-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics