Skip to main content

Microvascular Permeability in Experimental Sepsis: Mechanisms, Modulation and Management

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 2000

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2000))

  • 242 Accesses

Abstract

Alterations in microcirculatory permeability are characteristic of early tissue injury, and are thought to result from contraction of activated endothelial cells (Fig. 1). A defining hallmark of a number of inflammatory conditions including sepsis and the acute respiratory distress syndrome (ARDS), is the so-called high-permeability interstitial edema of the systemic and pulmonary circulations, respectively [1]. Moreover, tissue edema is an early indicator of tissue dysfunction, prior to organ failure [2]. The extent of edema formation has been associated with impaired gas exchange and arterial hypoxemia in ARDS. Edema may also impair tissue oxygen distribution due to increased intercapillary distances, such that speculation regarding its potential role in exacerbating tissue hypoxia persists despite evidence to suggest a lack of external compression of skeletal muscle microvessels to account for increased capillary density in a rodent model of sepsis [3]. As a result of increased microvascular permeability, the loss of plasma fluid to the interstitial space leads to hypovolemia, with increased sympathetic activation and an imbalance of fluid/electrolyte homeostasis. This exacerbates the persisting hemodynamic instability. Currently, no proven effective pharmacologic therapy is available to reduce increased permeability, although numerous agents are under investigation. Such a drug, with a capillary-permeability reducing effect, would clearly be of great value in the critically ill. The following chapter briefly reviews theories of permeability to macromolecules (i.e., protein), the mediators that bring about these changes, and the mechanisms by which these processes are postulated to occur, in the context of acute inflammation, particularly during sepsis. For a detailed review of theoretical aspects of microvascular permeability, the reader is directed to a recent authoritative text on the subject [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard GR, Artigas A, Brigham KL, et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 818–824

    Article  PubMed  CAS  Google Scholar 

  2. Nieuwenhuijzen GA, Knapen MF, Oyen WJ, Hendriks T, Corstens FH, Goris RJ (1997) Organ damage is preceded by changes in protein extravasation in an experimental model of multiple organ dysfunction syndrome. Shock 7: 98–104

    Article  PubMed  CAS  Google Scholar 

  3. Piper RD, Pitt-Hyde M, Li F, Sibbald WJ, Potter RF (1996) Microcirculatory changes in rat skeletal muscle in sepsis. Am J Respir Crit Care Med 154: 931–937

    Article  PubMed  CAS  Google Scholar 

  4. Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79: 703–761

    PubMed  CAS  Google Scholar 

  5. Singh S, Evans TW (1997) Nitric oxide, the biological mediator of the decade: fact or fiction? Eur Respir J 10: 699–707

    PubMed  CAS  Google Scholar 

  6. Starling E (1896) On the absorption of fluids from the connective tissue spaces. J Physiol London 19: 312–326

    PubMed  CAS  Google Scholar 

  7. Grotte G (1956) Passage of Dextran molecules across the blood lymph barrier. Acta Chur Scand Suppl 211: 1–84

    CAS  Google Scholar 

  8. Winlove CP, Parker KH (1993) Vascular biophysics: mechanics and permeability. Eur Respir Rev 3: 535–542

    Google Scholar 

  9. Baldwin GS, Kelly SM, Price NC, et al (1994) Ligand-induced conformational states of the cytosine-specific DNA methyltransferase M.HgaI-2. J Mol Biol 235: 545–553

    Article  PubMed  CAS  Google Scholar 

  10. Merkle CJ, Wilson LM, Baldwin AL (1998) Acute blood stasis reduces interstitial uptake of albumin from intestinal microcirculatory networks. Am J Physiol 274: H600 - H608

    PubMed  CAS  Google Scholar 

  11. Renkin EM, Tucker V, Rew K, O’Loughlin D, Wong M, Sibley L (1992) Plasma volume expansion with colloids increases blood-tissue albumin transport. Am J Physiol 262: H1054 - H1067

    PubMed  CAS  Google Scholar 

  12. Yuan Y, Granger HJ, Zawieja DC, Chilian WM (1992) Flow modulates coronary venular permeability by a nitric oxide-related mechanism. Am J Physiol 263: H641 - H646

    PubMed  CAS  Google Scholar 

  13. van Lambalgen AA, van den Bos GC, Thijs LG (1987) Changes in regional plasma extravasation in rats following endotoxin infusion. Microvasc Res 34: 116–132

    Article  PubMed  Google Scholar 

  14. Vehaskari VM, Chang CT, Stevens JK, Robson AM (1984) The effects of polycations on vascular permeability in the rat. A proposed role for charge sites. J Clin Invest 73: 1053–1061

    Article  PubMed  CAS  Google Scholar 

  15. Shostak A, Gotloib L (1998) Increased mesenteric, diaphragmatic, and pancreatic interstitial albumin content in rats with acute abdominal sepsis. Shock 9: 135–137

    Article  PubMed  CAS  Google Scholar 

  16. Haupt MT (1989) The use of crystalloidal and colloidal solutions for volume replacement in hypovolemic shock. Crit Rev Clin Lab Sci 27: 1–26

    Article  PubMed  CAS  Google Scholar 

  17. Gamble J, Gartside IB, Christ F (1993) A reassessment of mercury in silastic strain gauge plethysmography for microvascular permeability assessment in man. J Physiol (Lond) 464: 407–422

    CAS  Google Scholar 

  18. Mayhan WG (1992) Role of nitric oxide in modulating permeability of hamster cheek pouch in response to adenosine 5’ -diphosphate and bradykinin. Inflammation 16: 295–305

    Article  PubMed  CAS  Google Scholar 

  19. Hunter DN, Lawrence R, Morgan CJ, Evans TW (1990) The use of caesium iodide mini scintillation counters for dual isotope pulmonary capillary permeability studies. Nucl Med Commun 11: 879–888

    Article  PubMed  CAS  Google Scholar 

  20. Smith G, Weidel SE, Fleck A (1994) Albumin catabolic rate and protein-energy depletion. Nutrition 10: 335–341

    PubMed  CAS  Google Scholar 

  21. Deng X, Wang X, Andersson R (1995) Endothelial barrier resistance in multiple organs after septic and nonseptic challenges in the rat. J Appl Physiol 78: 2052–2061

    PubMed  CAS  Google Scholar 

  22. Grega GJ, Adamski SW, Dobbins DE (1986) Physiological and pharmacological evidence for the regulation of permeability. Fed Proc 45: 96–100

    PubMed  CAS  Google Scholar 

  23. Majno G, Shea SM, Leventhal M (1969) Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol 42: 647–672

    Article  PubMed  CAS  Google Scholar 

  24. Singh S, Anning PB, Winlove CP, Evans TW (1999) Permeability of aortic endothelium to albumin is altered by sepsis and L-NAME. Am J Respir Crit Care Med 159 (Suppl 3 ): A613 (abst)

    Google Scholar 

  25. Arfors KE, Rutili G, Svensjo E (1979) Microvascular transport of macromolecules in normal and inflammatory conditions. Acta Physiol Scand Suppl 463: 93–103

    PubMed  CAS  Google Scholar 

  26. Bent-Shansen L (1991) Whole capillary body exchange of albumin Acta Physiol Scand 143: 5–10

    Google Scholar 

  27. Lonigro AJ, McMurdo L, Stephenson AH, Sprague RS, Weintraub NL (1996) Hypotheses regarding the role of pericytes in regulating movement of fluid, nutrients, and hormones across the microcirculatory endothelial barrier. Diabetes 45 (Suppl 1): S38 - S43

    PubMed  Google Scholar 

  28. Braverman IM, Keh-Yen A (1986) Three-dimensional reconstruction of endothelial cell gaps in psoriatic vessels and their morphologic identity with gaps produced by the intradermal injection of histamine. J Invest Dermatol 86: 577–581

    Article  PubMed  CAS  Google Scholar 

  29. Mayerson H, Wolfram CG, Shirley HH, Wasserman K (1960) Regional differences in capillary permeability. Am J Physiol 198: 155–160

    Google Scholar 

  30. Palade G (1960) Transport in quanta across the endothelium of blood capillaries. Anat Rec 136: 254–271

    Google Scholar 

  31. Wagner RC, Chen SC (1991) Transcapillary transport of solute by the endothelial vesicular system: evidence from thin serial section analysis. Microvasc Res 42: 139–150

    Article  PubMed  CAS  Google Scholar 

  32. Feng D, Nagy JA, Hipp J, Pyne K, Dvorak HF, Dvorak AM (1997) Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. J Physiol (Lond) 504: 747–761

    Article  CAS  Google Scholar 

  33. Schnitzer JE, Allard J, Oh P (1995) NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Am J Physiol 268: H48 - H55

    PubMed  CAS  Google Scholar 

  34. Michel CC (1996) Transport of macromolecules through microvascular walls. Cardiovasc Res 32: 644–653

    PubMed  CAS  Google Scholar 

  35. Granger DN, Kubes P (1994) The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 55: 662–675

    PubMed  CAS  Google Scholar 

  36. Kurose I, Kubes P, Wolf R, et al (1993) Inhibition of nitric oxide production. Mechanisms of vascular albumin leakage. Circ Res 73: 164–171

    Article  PubMed  CAS  Google Scholar 

  37. Panes J, Perry MA, Anderson DC, et al (1995) Regional differences in constitutive and induced ICAM-1 expression in vivo. Am J Physiol 269: H1955 - H1964

    PubMed  CAS  Google Scholar 

  38. Chen K, Inoue M, Okada A (1996) Expression of inducible nitric oxide synthase mRNA in rat digestive tissues after endotoxin and its role in intestinal mucosal injury. Biochem Biophys Res Commun 224: 703–708

    Article  PubMed  CAS  Google Scholar 

  39. Kurose I, Suematsu M, Miura S, et al (1993) Oxyradical generation from leukocytes during endotoxin-induced microcirculatory disturbance in rat mesentery–attenuating effect of cetraxate. Toxicol Appl Pharmacol 120: 37–44

    Article  PubMed  CAS  Google Scholar 

  40. Seiffge D, Bissinger T, Kremer E, Laux V, Schleyerbach R (1995) Inhibitory effects of pentoxifylline on LPS-induced leukocyte adhesion and macromolecular extravasation in the microcirculation. Inflamm Res 44: 281–286

    Article  PubMed  CAS  Google Scholar 

  41. Schmidt W, Schmidt H, Bauer H, Gebhard MM, Martin E (1997) Influence of lidocaine on endotoxin-induced leukocyte-endothelial cell adhesion and macromolecular leakage in vivo. Anesthesiology 87: 617–624

    Article  PubMed  CAS  Google Scholar 

  42. Schmidt H, Schmidt W, Muller T, Bohrer H, Gebhard MM, Martin E (1997) N-acetylcysteine attenuates endotoxin-induced leukocyte-endothelial cell adhesion and macromolecular leakage in vivo. Crit Care Med 25: 858–863

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt H, Ebeling D, Bauer H, Bohrer H, Gebhard MM, Martin E (1996) Influence of the platelet-activating factor receptor antagonist BN52021 on endotoxin-induced leukocyte adherence in rat mesenteric venules. J Surg Res 60: 29–35

    Article  PubMed  CAS  Google Scholar 

  44. Kubes P, Granger DN (1992) Nitric oxide modulates microvascular permeability. Am J Physiol 262: H611 - H615

    PubMed  CAS  Google Scholar 

  45. Mayhan WG (1994) Nitric oxide accounts for histamine-induced increases in macromolecular extravasation. Am J Physiol 266: H2369 - H2373

    PubMed  CAS  Google Scholar 

  46. Hutcheson IR, Whittle BJ, Boughton-Smith NK (1990) Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat. Br J Pharmacol 101: 815–820

    Article  PubMed  CAS  Google Scholar 

  47. Laszlo F, Whittle BJ, Moncada S (1995) Attenuation by nitrosothiol NO donors of acute intestinal microvascular dysfunction in the rat. Br J Pharmacol 115: 498–502

    Article  PubMed  CAS  Google Scholar 

  48. Felipe J, Delalandre A, Beauchamp M (1997) A dual role for nitric oxide in the regulation of plasma volume and albumin escape during endotoxin shock in conscious rats. Circ Res 81: 840–847

    Article  Google Scholar 

  49. Arkovitz MS, Wispe JR, Garcia VF, Szabo C (1996) Selective inhibition of the inducible isoform of nitric oxide synthase prevents pulmonary transvascular flux during acute endotoxemia. J Pediatr Surg 31: 1009–1015

    Article  PubMed  CAS  Google Scholar 

  50. Mikawa K, Nishina K, Tamada M, Takao Y, Maekawa N, Obara H (1998) Aminoguanidine attenuates endotoxin-induced acute lung injury in rabbits. Crit Care Med 26: 905–911

    Article  PubMed  CAS  Google Scholar 

  51. Laszlo F, Whittle BJ (1997) Actions of isoform-selective and non-selective nitric oxide synthase inhibitors on endotoxin-induced vascular leakage in rat colon. Eur J Pharmacol 334: 99–102

    Article  PubMed  CAS  Google Scholar 

  52. Garvey EP, Oplinger JA, Furfine ES, et al (1997) 1400 W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 272: 4959–4963

    Google Scholar 

  53. Hickey MJ, Sharkey KA, Sihota EG, et al (1997) Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. Faseb J 11: 955–964

    PubMed  CAS  Google Scholar 

  54. Boughton-Smith NK, Evans SM, Whittle BJ, Moncada S (1993) Induction of nitric oxide synthase in rat intestine and its association with tissue injury. Agents Actions 38: C125 - C126

    Article  PubMed  CAS  Google Scholar 

  55. Singh S, Anning PB, Winlove CP, Evans TW (1998) N-nitro-L-arginine methylester (L-NAME) reduces pulmonary macromolecular transport in endotoxaemia. Am J Respir Crit Care Med 157: A677 (abst)

    Google Scholar 

  56. Suematsu M, DeLano FA, Poole D, et al (1994) Spatial and temporal correlation between leukocyte behavior and cell injury in postischemic rat skeletal muscle microcirculation. Lab Invest 70: 684–695

    PubMed  CAS  Google Scholar 

  57. Duffey ME, Hainau B, Ho S, Bentzel CJ (1981) Regulation of epithelial tight junction permeability by cyclic AMP. Nature 294: 451–453

    Article  PubMed  CAS  Google Scholar 

  58. Adamson RH, Liu B, Fry GN, Rubin LL, Curry FE (1998) Microvascular permeability and number of tight junctions are modulated by cAMP. Am J Physiol 274: H1885 - H1894

    PubMed  CAS  Google Scholar 

  59. Xiong Z, Sperelakis N (1995) Regulation of L-type calcium channels of vascular smooth muscle cells. J Mol Cell Cardiol 27: 75–91

    Article  PubMed  CAS  Google Scholar 

  60. He P, Zeng M, Curry FE (1998) cGMP modulates basal and activated microvessel permeability independently of [Ca2 + l i. Am J Physiol 274: H1865 - H1874

    Google Scholar 

  61. Shepro D, Morel NM (1993) Pericyte physiology. Faseb J 7: 1031–1038

    PubMed  CAS  Google Scholar 

  62. Groeneveld AB, den Hollander W, Straub J, Nauta JJ, Thijs LG (1990) Effects of N-acetylcysteine and terbutaline treatment on hemodynamics and regional albumin extravasation in porcine septic shock. Circ Shock 30: 185–205

    PubMed  CAS  Google Scholar 

  63. Moller AD, Grande PO (1999) Low-dose prostacyclin is superior to terbutaline and aminophylline in reducing capillary permeability in cat skeletal muscle in vivo. Crit Care Med 27: 130–136

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singh, S., Winlove, C.P., Evans, T.W. (2000). Microvascular Permeability in Experimental Sepsis: Mechanisms, Modulation and Management. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2000. Yearbook of Intensive Care and Emergency Medicine, vol 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13455-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13455-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66830-5

  • Online ISBN: 978-3-662-13455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics