Intestinal Microcirculation: Changes in Sepsis and Effect of Vasoactive Manipulation

  • L. C. H. Tham
  • C. M. Martin
  • W. J. Sibbald
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 2000)


Multiple organ dysfunction syndrome (MODS) continues to be a source of excessive morbidity and mortality in the critically ill population [1]. While the pathogenesis of MODS remains to be fully elucidated, a popular approach to explain its development is the ‘gut origin’ theory. This proposes that a variety of local and/or systemic insults result in depression of the intestine’s physiological function, specifically the loss of its protective barrier function [2]. This leads to increased translocation, the passage of viable bacteria and/or endotoxin across the intestinal epithelium to mesenteric lymph nodes and portal blood [3]. Such gut-derived bacteria or endotoxin could then trigger, exaggerate, and perpetuate the systemic inflammatory response that occurs in MODS. It is this concept that has prompted some to refer to the gut as the ‘motor’ of MODS [4].


Intestinal Permeability Multiple Organ Dysfunction Syndrome Mucosal Blood Flow Intestinal Villus Arteriolar Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baue AE, Durham R, Faist E (1998) Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock 10: 79–89PubMedCrossRefGoogle Scholar
  2. 2.
    Livingstone DH, Mosenthal AC, Deitch EA (1995) Sepsis and multiple organ dysfunction syndrome: A clinical-mechanistic overview. New Horiz 3: 257–266Google Scholar
  3. 3.
    Deitch EA (1990) The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 125: 403–408PubMedCrossRefGoogle Scholar
  4. 4.
    Meakins JL, Marshall JC (1986) The gastro-intestinal tract: the `motor’ of multiple organ failure. Arch Surg 121: 197–201Google Scholar
  5. 5.
    Donald D (1983) Splanchnic circulation. In: Shepherd JT, Abboud FM (eds) Handbook of physiology: The cardiovascular system, peripheral circulation and organ blood flow. Raven Press, Philadelphia, pp 219–240Google Scholar
  6. 6.
    Vallet B, Lund N, Curtis SE, Kelly D, Cain SM (1994) Gut and muscle tissue P02 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76: 793–800PubMedGoogle Scholar
  7. 7.
    Shepherd AP, Kiel JW (1992) A model of countercurrent shunting of oxygen in the intestinal vil-lus. Am J Physiol 262: H1136 - H1142PubMedGoogle Scholar
  8. 8.
    Schmidt H, Secchi A, Wellmann R, et al (1996) Effect of endotoxemia on intestinal villus microcirculation in rats. J Surg Res 61: 521–526PubMedCrossRefGoogle Scholar
  9. 9.
    Whitworth PW, Crywer HM, Garrison RN, Baumgarten TE, Harris PD (1989) Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats. Circ Shock 27: 111–122PubMedGoogle Scholar
  10. 10.
    Hersch M, Madorin WS, Sibbald WJ, Martin CM (1998) Selective gut microcirculatory control (SGMC) in septic rats: a novel approach with a locally applied vasoactive drug. Shock 10: 292–297PubMedCrossRefGoogle Scholar
  11. 11.
    Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ (1994) Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61: 190–196CrossRefGoogle Scholar
  12. 12.
    Drazenovic R, Samsel RW, Wylam ME, Doerschuk CM, Schumacker PT (1992) Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appl Physiol 72: 259–265PubMedCrossRefGoogle Scholar
  13. 13.
    Gianotti L, Alexander JW, Fukushima R, Childress CP (1993) Translocation of Candida albicans is related to the blood flow of individual intestinal villi. Circ Shock 40: 250–257PubMedGoogle Scholar
  14. 14.
    Tokyay R, Zeigler ST, Traber DL, et al (1993) Postburn gastrointestinal vasoconstriction increases bacterial and endotoxin translocation. J Appl Physiol 74: 1521–1527PubMedCrossRefGoogle Scholar
  15. 15.
    Ohri SK, Somasundaram S, Koak Y, et al (1994) The effect of intestinal hypoperfusion on intestinal absorption and permeability during cardiopulmonary bypass. Gastroenterology 106: 318–323PubMedGoogle Scholar
  16. 16.
    LeVoyer T, Cioffi WG Jr, Pratt L (1992) Alterations in intestinal permeability after thermal injury. Arch Surg 127: 26–30PubMedCrossRefGoogle Scholar
  17. 17.
    Reed LL, Martin M, Mangiano R, Newson B, Kocka F, Barrett 1 (1994) Bacterial translocation following abdominal trauma in humans. Circ Shock 42: 1–6Google Scholar
  18. 18.
    Pape HC, Dwenger A, Regel G (1994) Increased gut permeability after multiple trauma. Br J Surg 81: 850–852PubMedCrossRefGoogle Scholar
  19. 19.
    Doig CJ, Sutherland LR, Sandham DJ, Fick GH, Verhoef M, Meddings JB (1998) Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill patients. Am J Respir Crit Care Med 158: 444–451PubMedCrossRefGoogle Scholar
  20. 20.
    Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ (1995) Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med 23: 1638–1652PubMedCrossRefGoogle Scholar
  21. 21.
    Brown RA, Dixon J, Farmer JB (1985) Dopexamine: a novel agonist at peripheral dopamine receptors and beta 2-adrenoceptors. Br J Pharmacol 85: 599–608PubMedCrossRefGoogle Scholar
  22. 22.
    Schmidt H, Secchi A, Wellmann R, Bach A, Bhrer H, Martin E (1996) Dopexamine maintains intestinal villus blood flow during endotoxemia in rats. Crit Care Med 24: 1233–1237PubMedCrossRefGoogle Scholar
  23. 23.
    Madorin WS, Martin CM, Sibbald WJ (1999) Dopexamine attenuates flow motion in ileal muco-sal arterioles in normotensive sepsis. Crit Care Med 27: 394–400PubMedCrossRefGoogle Scholar
  24. 24.
    Humer MF, Phang PT, Friesen BP, et al (1996) Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs. J Appl Physiol 81: 895–904PubMedGoogle Scholar
  25. 25.
    Sinclair DG, Houldsworth PE, Keogh B, Pepper J, Evans TW (1997) Gastrointestinal permeability following cardiopulmonary bypass: a randomised study comparing the effects of dopamine and dopexamine. Intensive Care Med 23: 510–516PubMedCrossRefGoogle Scholar
  26. 26.
    Byers RJ, Eddleston JM, Pearson RC, Bigley G, McMahon RF (1999) Dopexamine reduces the incidence of acute inflammation in the gut mucosa after abdominal surgery in high-risk patients. Crit Care Med 27: 1787–1793PubMedCrossRefGoogle Scholar
  27. 27.
    Secchi A, Wellman R, Martin E, Schmidt H (1997) Dobutamine maintains intestinal villus blood flow during normotensive endotoxemia: an intravital microscopic study in the rat. J Crit Care 12: 137–141PubMedCrossRefGoogle Scholar
  28. 28.
    Neviere R, Chagnon JL, Vallet B, et al (1997) Dobutamine improves gastrointestinal mucosal blood flow in a porcine model of endotoxic shock. Crit Care Med 25: 1371–1377PubMedCrossRefGoogle Scholar
  29. 29.
    Neviere R, Mathieu D, Chagnon JL, Lebleu N, Wattel F (1996) The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med 154: 1684–1688PubMedCrossRefGoogle Scholar
  30. 30.
    Creteur J, De Backer D, Vincent JL (1999) A dobutamine test can disclose hepatosplanchnic hypoperfusion in septic patients. Am J Respir Crit Care Med 160: 839–845PubMedCrossRefGoogle Scholar
  31. 31.
    Schmidt H, Secchi A, Wellmann, Bohrer H, Bach A, Martin E (1996) Effect of low-dose dopamine on intestinal villus microcirculation during normotensive endotoxemia in rats. Br J Anaesth 76: 707–712PubMedCrossRefGoogle Scholar
  32. 32.
    Marik PE, Mohedin M (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 272: 1354–1357PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • L. C. H. Tham
  • C. M. Martin
  • W. J. Sibbald

There are no affiliations available

Personalised recommendations