Skip to main content

Non-invasive Ventilation: Why Does It Fail?

  • Conference paper
  • 236 Accesses

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2000))

Abstract

Intense interest and investigation have surrounded non-invasive ventilation (NIV) over the past decade. For many patients, especially those suffering an exacerbation of chronic obstructive pulmonary disease (COPD), NIV, rather than intubation and invasive ventilation, is often considered the standard of care. This change in practice flows from studies demonstrating that, when compared to conventional intubation and ventilation, NIV effectively relieves symptoms, improves gas exchange, reduces the work of breathing (WOB), reduces complications, shortens the length of intensive care unit (ICU) stay, and improves survival [1–5]. Studies have shown consistently that intubation is unnecessary for the majority of COPD patients treated with NIV. For example, success rates in a large number of trials have been as follows: Vi-tacca et al. 82% [6]; Pennock et al. 75% [7]; Kramer et al. 69% [2]; Ambrosino et al. 78% [8]; Brochard et al. 74% [1]; Vitacca et al. 74% [9]; and Antonelli et al. 69% [3]. It is questionable, however, if these results can be generalized to wide populations in diverse care settings. Practical experience with NIV may not reach success rates as high as those reported in the literature. In fact, many physicians, nurses, and respiratory therapists have become discouraged with NIV because their patients so often come to intubation despite NIV; often following hours or days of intensive effort and frustration. In this chapter, we consider why many practitioners have not duplicated the success rates of published trials and we discuss measures to maximize the practical effectiveness of NIV.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brochard L, Mancebo J, Wysocki M, et al (1995) Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med 333: 817–822

    Article  PubMed  CAS  Google Scholar 

  2. Kramer N, Meyer TJ, Meharg J, et al (1995) Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med 151: 1799–1806

    Article  PubMed  CAS  Google Scholar 

  3. Antonelli M, Conti G, Rocco M, et al (1998) A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Eng1J Med 339: 429–435

    Article  CAS  Google Scholar 

  4. Bott J, Carroll MP, Conway JH, et al (1993) Randomized controlled trial of nasal ventilation in acute ventilatory failure due to chronic obstructive airways disease. Lancet 341: 1555–1557

    Article  PubMed  CAS  Google Scholar 

  5. Confalonieri M, Parigi P, Scartabellati A, et al (1996) Noninvasive mechanical ventilation improves the immediate and long-term outcome of COPD patients with acute respiratory failure. Eur Respir J 9: 422–430

    Article  PubMed  CAS  Google Scholar 

  6. Vitacca M, Rubini F, Foglio K, et al (1993) Non-invasive modalities of positive pressure ventilation improve the outcome of acute exacerbations in COLD patients. Intensive Care Med 19: 450–455

    Article  PubMed  CAS  Google Scholar 

  7. Pennock BE, Crawshaw L, Kaplan PD (1994) Noninvasive nasal mask ventilation for acute respiratory failure: Institution of a new therapeutic technology for routine use. Chest 105: 441–444

    Google Scholar 

  8. Ambrosino N, Foglio K, Clini E, et al (1995) Non-invasive mechanical ventilation in acute respiratory failure due to chronic obstructive pulmonary disease: correlates for success. Thorax 50: 755–757

    Article  PubMed  CAS  Google Scholar 

  9. Vitacca M, Clini E, Rubini F, et al (1996) Non-invasive mechanical ventilation in severe chronic obstructive lung disease and acute respiratory failure: short-and long-term prognosis. Intensive Care Med 22: 94–100

    Article  PubMed  CAS  Google Scholar 

  10. Soo Hoo GW, Santiago S, Williams AJ (1994) Nasal mechanical ventilation for hypercapnic respiratory failure in chronic obstructive pulmonary disease: determinants of success and failure. Crit Care Med 22: 1253–1261

    Article  PubMed  CAS  Google Scholar 

  11. Meduri GU, Conoscenti CC, Menashe P, et al (1989) Noninvasive face mask ventilation in patients with acute respiratory failure. Chest 95: 865–870

    Article  Google Scholar 

  12. Meduri GU, Abou-Shala N, Fox RC, et al (1991) Noninvasive face mask mechanical ventilation in patients with acute hypercapnic respiratory failure. Chest 100: 445–454

    Article  PubMed  CAS  Google Scholar 

  13. Meduri G, Turner RE, Abou-Shala N, et al (1996) Noninvasive positive pressure ventilation via face mask: First-line intervention in patients with acute hypercapnic and hypoxemic respiratory failure. Chest 109: 179–193

    Google Scholar 

  14. Sharma OP (1993) Pulmonary sarcoidosis and corticosteroids. Am Rev Respir Dis 147: 15981600

    Google Scholar 

  15. Pennock BE, Kaplan PD, Carlin BW, et al (1991) Pressure support ventilation with a simplified ventilatory support system administered with a nasal mask in patients with respiratory failure. Chest 100: 1371–1376

    Article  PubMed  CAS  Google Scholar 

  16. Benhamou D, Girault C, Faure C, et al (1992) Nasal mask ventilation in acute respiratory failure: experience in elderly patients. Chest 102: 912–917

    Article  PubMed  CAS  Google Scholar 

  17. Nava S, Ambrosino N, Clini E, et al (1998) Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. A randomized controlled trial. Ann Intern Med 128: 721–728

    Google Scholar 

  18. Brochard L, Isabey D, Piquet J, et al (1990) Reversal of acute exacerbations of chronic obstructive lung disease by inspiratory assistance with a face mask. N Engl J Med 323: 1523–1530

    Article  PubMed  CAS  Google Scholar 

  19. Foglio C, Vitacca M, Quadri A, et al (1992) Acute exacerbations in severe COLD patients: treatment using positive pressure ventilation by nasal mask. Chest 101: 1533–1538

    Article  PubMed  CAS  Google Scholar 

  20. Patrick W, Webster K, Ludwig L, et al (1996) Noninvasive positive-pressure ventilation in acute respiratory distress without prior chronic respiratory failure. Am J Respir Crit Care Med 153: 1005–1011

    Article  PubMed  CAS  Google Scholar 

  21. Hubmayr RD (1996) The importance of patient/ventilator interactions during non-invasive mechanical ventilation. Acta Anaesthesiol Scand 109: 46–47

    CAS  Google Scholar 

  22. Broseghini C, Brandolese R, Poggi R, et al (1988) Respiratory mechanics during the first day of mechanical ventilation in patients with pulmonary edema and chronic airway obstruction. Am Rev Respir Dis 138: 355–361

    Article  PubMed  CAS  Google Scholar 

  23. Murciano D, Aubier M, Bussi S, et al (1982) Comparison of esophageal, tracheal, and mouth occlusion pressure in patients with chronic obstructive pulmonary disease during acute respiratory failure. Am Rev Respir Dis 126: 837–841

    PubMed  CAS  Google Scholar 

  24. Smith TC, Marini JJ, Lamb VJ (1987) The inspiratory threshold load resulting from airtrapping during mechanical ventilation. Am Rev Respir Dis 135: A52 (Abst)

    Google Scholar 

  25. Maclntyre N, Kuo-Chen G, McConnell R (1997) Applied PEEP during pressure support reduces the inspiratory threshold load of intrinsic PEEP. Chest 111: 188–193

    Article  Google Scholar 

  26. Appendini L, Patessio A, Zanaboni S, et al (1994) Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 149: 1069–1076

    Article  PubMed  CAS  Google Scholar 

  27. Appendini L, Purro A, Patessio A, et al (1996) Partitioning of inspiratory muscle workload and pressure assistance in ventilator-dependent COPD patients. Am J Respir Crit Care Med 154: 1301–1309

    Article  PubMed  CAS  Google Scholar 

  28. Petrof BJ, Legaré M, Goldberg P, et al (1990) Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 141: 281–289

    Article  PubMed  CAS  Google Scholar 

  29. de Lucas P, Tarancón C, Puente L, et al (1993) Nasal continuous positive airway pressure in patients with COPD in acute respiratory failure: a study of the immediate effects. Chest 104: 1694–1697

    Article  PubMed  CAS  Google Scholar 

  30. Calderini E, Confalonieri M, Puccio PG, et al (1999) Patient-ventilator asynchrony during noninvasive ventilation: the role of expiratory trigger. Intensive Care Med 25: 662–667

    Article  PubMed  CAS  Google Scholar 

  31. Leung P, Jubran A, Tobin MJ (1997) Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 155: 1940–1948

    Article  PubMed  CAS  Google Scholar 

  32. Chevrolet J-C, Jolliet P, Abajo B, et al (1991) Nasal positive pressure ventilation in patients with acute respiratory failure: difficult and time-consuming procedure for nurses. Chest 100: 775–782

    Article  PubMed  CAS  Google Scholar 

  33. Nava S, Evangelisti I, Rampulla C, et al (1997) Human and financial costs of noninvasive mechanical ventilation in patients affected by COPD and acute respiratory failure. Chest 111: 1631–1638

    Article  PubMed  CAS  Google Scholar 

  34. Lofaso F, Brochard L, Hang T, et al (1996) Home versus intensive care pressure support devices. Am J Respir Crit Care Med 153: 1591–1599

    Article  PubMed  CAS  Google Scholar 

  35. Brunburaphong T, Imanaka H, Nishimura M, et al (1997) Performance characteristics of bilevel pressure ventilators: A lung model study. Chest 111: 1050–1060

    Google Scholar 

  36. Jubran A, Van de Graff W, Tobin MJ (1995) Variability of patient-ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Grit Care Med 1995; 152: 129–136

    Article  Google Scholar 

  37. Ferguson GT, Gilmartin M (1995) CO2 rebreathing during BiPAP ventilatory assistance. Am J Respir Grit Care Med 151: 1126–1135

    CAS  Google Scholar 

  38. Lofaso F, Brochard L, Touchard D, et al (1995) Evaluation of carbon dioxide rebreathing during pressure support ventilation with airway management system ( BiPAP) devices. Chest 108: 772–778

    Google Scholar 

  39. Elliott MW, Aquilina R, Green M, et al (1994) A comparison of different modes of noninvasive ventilatory support: effects on ventilation and inspiratory muscle effort. Anaesthesia 49: 279–283

    Article  PubMed  CAS  Google Scholar 

  40. Girault C, Richard JC, Chevron V, et al (1997) Comparative physiologic effects of noninvasive assist-control and pressure support ventilation in acute hypercapnic respiratory failure. Chest 111: 1639–1648

    Article  PubMed  CAS  Google Scholar 

  41. Macintyre NR, McConnell R, Cheng KCG, et al (1997) Patient-ventilator dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med 25: 1671–1677

    Article  PubMed  CAS  Google Scholar 

  42. Smith lE, Shneerson JM (1996) A laboratory comparison of four positive pressure ventilators used in the home. Eur Respir J 9: 2410–2415

    Article  PubMed  CAS  Google Scholar 

  43. Goulet R, Hess D, Kacmarek RM (1997) Pressure vs flow triggering during pressure support ventilation. Chest 111: 1649–1653

    Article  PubMed  CAS  Google Scholar 

  44. Sassoon CS, Gruer SE (1993) Characteristics of the ventilator pressure and flow trigger variables. Intensive Care Med 21: 159–168

    Article  Google Scholar 

  45. Nava S, Ambrosino N, Bruschi C, et al (1996) Physiological effects of flow and pressure triggering during non-invasive mechanical ventilation in patients with chronic obstructive pulmonary disease. Thorax 52: 249–254

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moore, M.J., Schmidt, G.A. (2000). Non-invasive Ventilation: Why Does It Fail?. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2000. Yearbook of Intensive Care and Emergency Medicine, vol 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13455-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13455-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66830-5

  • Online ISBN: 978-3-662-13455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics