Skip to main content

High Frequency Oscillatory Ventilation: A Tool to Decrease Ventilator-Induced Lung Injury?

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 2000

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2000))

Abstract

Clinicians and researchers are becoming increasingly conscious of the potentially harmful effects of mechanical ventilation, and more attention is being focused on methods of ventilation that may reduce these complications. A consensus conference on mechanical ventilation has called for the use of ventilatory strategies that avoid lung overdistention while concurrently maintaining adequate inflation, thus avoiding atelectasis [1]. One such potential modality is high frequency oscillatory ventilation (HFOV) which is one of a collection of ventilatory modes termed high frequency ventilation (HFV). Examples of other techniques in this group include high frequency positive pressure ventilation (HFPPV) and high frequency jet ventilation (HFJV). HFOV, like these other modalities, employs respiratory frequencies that are significantly higher (60–2000 breaths/min) and tidal volumes that are significantly lower (1–5 ml/kg) than those used in conventional mechanical ventilation [2–4]. In HFOV, respiratory frequencies are usually between 3 and 15 Hz, with tidal volumes that are often less than the anatomical dead space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Slutsky AS (1993) Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest 104: 1833–1859

    Article  PubMed  CAS  Google Scholar 

  2. Villar J, Slutsky AS (1991) Alternative modalities for ventilatory support. In: Vincent JL (ed). Update in Intensive Care and Emergency Medicine. Springer-Verlag, Heidelberg, pp 345–354

    Google Scholar 

  3. Froese AB, Bryan AC (1987) High frequency ventilation. Am Rev Respir Dis 135: 1363–1374

    PubMed  CAS  Google Scholar 

  4. Drazen JM, Kamm RD, Slutsky AS (1984) High-frequency ventilation. Physiol Rev 64: 505–543

    PubMed  CAS  Google Scholar 

  5. Henderson Y, Chillingsworth F, Whitney J (1915) The respiratory dead space. Am J Physiol 38: 1–19

    CAS  Google Scholar 

  6. Lunkenheimer PP, Rafflenbeul W, Keller H, Frank I, Dickhut HH, Fuhrmann C (1972) Application of transtracheal pressure oscillations as a modification of `diffusion respiration’. Br J Anaesth 44: 627

    Article  PubMed  CAS  Google Scholar 

  7. Slutsky AS, Kamm RD, Rossing TH, et al (1981) Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2–30 Hz), low tidal volume ventilation. J Clin Invest 68: 1475–1484

    Article  PubMed  CAS  Google Scholar 

  8. Rouby JJ, Fusciardi J, Bourgain JL, Viars P (1983) High-frequency jet ventilation in postoperative respiratory failure: determinants of oxygenation. Anesthesiology 59: 281–287

    Article  PubMed  CAS  Google Scholar 

  9. Suzuki H, Papazoglou K, Bryan AC (1992) Relationship between Pa02 and lung volume during high frequency oscillatory ventilation. Acta Paediatr lap 34: 494–500

    Article  CAS  Google Scholar 

  10. Kolton M, Cattran CB, Kent G, Volgyesi G, Froese AB, Bryan AC (1982) Oxygenation during high-frequency ventilation compared with conventional mechanical ventilation in two models of lung injury. Anesth Analg 61: 323–332

    Article  PubMed  CAS  Google Scholar 

  11. Chang HK (1984) Mechanisms of gas transport during ventilation by high-frequency oscillation. J Appl Physiol 56: 553–563

    PubMed  CAS  Google Scholar 

  12. Ribeiro SP, Tremblay LN, Slutsky AS (1998) High-frequency ventilation. In: Marini JJ, Slutsky AS (eds) Physiological Basis of Ventilatory Support. Marcel Dekker, New York, pp 889–920

    Google Scholar 

  13. Schmid ER, Knopp TJ, Rehder K (1981) Intrapulmonary gas transport and perfusion during high-frequency oscillation. J Appl Physiol 51: 1507–1514

    PubMed  CAS  Google Scholar 

  14. Slutsky AS (1981) Gas mixing by cardiogenic oscillations: a theoretical quantitative analysis. J Appl Physiol 51: 1287–1293

    PubMed  CAS  Google Scholar 

  15. Slutsky AS, Brown R (1982) Cardiogenic oscillations: a potential mechanism enhancing oxygenation during apneic respiration. Med Hypotheses 8: 393–400

    Article  PubMed  CAS  Google Scholar 

  16. Cybulsky IJ, Abel JG, Menon AS, Salerno TA, Lichtenstein SV, Slutsky AS (1987) Contribution of cardiogenic oscillations to gas exchange in constant-flow ventilation. J Appl Physiol 63: 564–570

    PubMed  CAS  Google Scholar 

  17. Haake R, Schlichtig R, Ulstad DR, Henschen RR (1987) Barotrauma. Pathophysiology, risk factors, and prevention. Chest 91: 608–613

    Article  PubMed  CAS  Google Scholar 

  18. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: Lessons from experimental studies. Am J Respir Crit Care Med 157: 294–323

    Article  PubMed  CAS  Google Scholar 

  19. Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157: 1721–1725

    Article  PubMed  CAS  Google Scholar 

  20. Bryan CL, Jenkinson SG (1988) Oxygen toxicity. Clin Chest Med 9: 141–152

    PubMed  CAS  Google Scholar 

  21. Gattinoni L, Pelosi P, Vitale G, Pesenti A, D’Andrea L, Mascheroni D (1991) Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology 74: 15–23

    Article  PubMed  CAS  Google Scholar 

  22. Roupie E, Dambrosio M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121–128

    Article  PubMed  CAS  Google Scholar 

  23. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565

    PubMed  CAS  Google Scholar 

  24. Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884

    PubMed  CAS  Google Scholar 

  25. Kolobow T, Moretti MP, Fumagalli R, et al (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis 135: 312–315

    PubMed  CAS  Google Scholar 

  26. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164

    Article  PubMed  CAS  Google Scholar 

  27. Parker JC, Hernandez LA, Longenecker GL, Peevy K, Johnson W (1990) Lung edema caused by high peak inspiratory pressures in dogs. Role of increased microvascular filtration pressure and permeability. Am Rev Respir Dis 142: 321–328

    Article  PubMed  CAS  Google Scholar 

  28. Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143: 1115–1120

    Article  PubMed  CAS  Google Scholar 

  29. Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 66: 2364–2368

    PubMed  CAS  Google Scholar 

  30. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Am J Respir Crit Care Med 116 (suppl 1): S9 - S15

    Google Scholar 

  31. Hamilton PP, Onayemi A, Smyth JA, et al (1983) Comparison of conventional and high-frequency oscillatory ventilation. J Appl Physiol 55: 131–138

    PubMed  CAS  Google Scholar 

  32. McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137: 1185–1192

    Article  PubMed  CAS  Google Scholar 

  33. Argiras EP, Blakeley CR, Dunnill MS, Otremski S, Sykes MK (1987) High PEEP decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59: 1278–1285

    Article  PubMed  CAS  Google Scholar 

  34. Corbridge TC, Wood LD, Crawford GP, Chudoba MJ, Yanos J, Sznajder JI (1990) Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 142: 311–315

    Article  PubMed  CAS  Google Scholar 

  35. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    Article  PubMed  CAS  Google Scholar 

  36. Tremblay LN, Slutsky AS (1998) Ventilation-induced lung injury: from barotrauma to biotrauma. Proc Ass Am Physicians 110: 482–488

    CAS  Google Scholar 

  37. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952

    Article  PubMed  CAS  Google Scholar 

  38. Tremblay L, Govindarajan A, Veldhuizen R, Slutsky AS (1988) TNFct levels are both time and ventilation strategy dependent in ex vivo rat lungs. Am J Respir Crit Care Med 157: A213 (abstr)

    Google Scholar 

  39. Sugiura M, McCulloch PR, Wren S, Dawson RH, Froese AB (1994) Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung. J Appl Physiol 77: 1355–1365

    PubMed  CAS  Google Scholar 

  40. Takata M, Abe J, Tanaka H, et al (1997) Intraalveolar expression of tumor necrosis factoralpha gene during conventional and high-frequency ventilation. Am J Respir Crit Care Med 156: 272–279

    Article  PubMed  CAS  Google Scholar 

  41. Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome. JAMA 282: 54–61

    Article  PubMed  CAS  Google Scholar 

  42. West JB, Mathieu-Costello 0 (1992) Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet 340: 762–767

    CAS  Google Scholar 

  43. Stewart TE, Slutsky AS (1995) Mechanical Ventilation: A shifting philosophy. Curr Sci 1: 49–56

    Google Scholar 

  44. Stewart TE (1997) Lung protection during mechanical ventilation. Ontario Thoracic Rev 9: 1–4

    Google Scholar 

  45. Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure-and Volume-Limited Ventilation Strategy Group. N Engl J Med 338: 355–361

    Article  PubMed  CAS  Google Scholar 

  46. Brochard L, Roudot-Thoraval F, and the collaborative group on VT reduction (1998) Tidal volume reduction in acute respiratory distress syndrome (ARDS): a multicenter randomized study. Am J Respir Crit Care Med 158: 1831–1838

    Article  PubMed  CAS  Google Scholar 

  47. Brower R, Stanholtz C, Shade D, et al (1997) Randomized trial of small tidal volume ventilation (STV) in ARDS. Am J Respir Grit Care Med 155: A93 (abstr)

    Google Scholar 

  48. Froese AB (1997) High-frequency oscillatory ventilation for adult respiratory distress syndrome: let’s get it right this time. Crit Care Med 25: 906–908

    Article  PubMed  CAS  Google Scholar 

  49. Amato MB, Barbas CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354

    Article  PubMed  CAS  Google Scholar 

  50. Massachusetts General Hospital Biostatistics Web Server (15/3/99, posting date) Acute respiratory distress syndrome http: //hedwig. mgh.harvard.edu/ardsnet

  51. Herridge MS, Slutsky AS, Colditz GA (1998) Has high-frequency ventilation been inappropriately discarded in adult acute respiratory distress syndrome? Crit Care Med 26: 2073–2077

    Article  PubMed  CAS  Google Scholar 

  52. Maclntyre NR (1998) High-frequency ventilation. Crit Care Med 26: 1955–1956

    Article  Google Scholar 

  53. Froese AB (1989) Role of lung volume in lung injury: HFO in the atelectasis-prone lung. Acta Anaesthesiol Scand Suppl 90: 126–130

    Article  PubMed  CAS  Google Scholar 

  54. Bond DM, McAloon J, Froese AB (1994) Sustained inflations improve respiratory compliance during high-frequency oscillatory ventilation but not during large tidal volume positive-pressure ventilation in rabbits. Crit Care Med 22: 1269–1277

    Article  PubMed  CAS  Google Scholar 

  55. Kinsella JP, Gerstmann DR, Clark RH, et al (1991) High-frequency oscillatory ventilation versus intermittent mandatory ventilation: early hemodynamic effects in the premature baboon with hyaline membrane disease. Pediatr Res 29: 160–166

    Article  PubMed  CAS  Google Scholar 

  56. Froese AB, Butler P0, Fletcher WA, Byford LJ (1987) High frequency oscillatory ventilation in premature infants with respiratory failure: a preliminary report. Anesth Analg 66: 814–824

    Article  PubMed  CAS  Google Scholar 

  57. Rothen HU, Sporre B, Engberg G, et al (1993) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Br J Anaesth 71: 788–795

    Article  PubMed  CAS  Google Scholar 

  58. Lapinsky SE, Aubin M, Boiteau P, Slutsky AS (1997) Safety and efficacy of a sustained inflation maneuver for alveolar recruitment. Chest 112: 1265 (abstr)

    Google Scholar 

  59. Saari AF, Rossing TH, Solway J, Drazen JM (1984) Lung inflation during high-frequency ventilation. Am Rev Respir Dis 129: 333–336

    PubMed  CAS  Google Scholar 

  60. Simon BA, Weinmann GG, Mitzner W (1984) Mean airway pressure and alveolar pressure during high-frequency ventilation. J Appl Physiol 57: 1069–1078

    PubMed  CAS  Google Scholar 

  61. Bryan AC, Slutsky AS (1986) Lung volume during high frequency oscillation. Am Rev Respir Dis 133: 928–930

    PubMed  CAS  Google Scholar 

  62. Gerstmann DR, Minton SD, Stoddard RA, et al (1996) The Provo multicenter early highfrequency oscillatory ventilation trial: improved pulmonary and clinical outcome in respiratory distress syndrome. Pediatrics 98: 1044–1057

    PubMed  CAS  Google Scholar 

  63. Clark RH, Gerstmann DR, Null DMJ, deLemos RA (1992) Prospective randomized comparison of high-frequency oscillatory and conventional ventilation in respiratory distress syndrome. Pediatrics 89: 5–12

    PubMed  CAS  Google Scholar 

  64. Clark RH, Yoder BA, Sell MS (1994) Prospective, randomized comparison of highfrequency oscillation and conventional ventilation in candidates for extracorporeal membrane oxygenation. J Pediatr 124: 447–454

    Article  PubMed  CAS  Google Scholar 

  65. HiFO Study Group (1993) Randomized study of high-frequency oscillatory ventilation in infants with severe respiratory distress syndrome. J Pediatr 122: 609–619

    Article  Google Scholar 

  66. Fort P, Farmer C, Westerman J, et al (1997) High-frequency oscillatory ventilation for adult respiratory distress syndrome–a pilot study. Crit Care Med 25: 937–947

    Article  PubMed  CAS  Google Scholar 

  67. HIFI Study Group (1989) High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. N Engl J Med 320: 88–93

    Article  Google Scholar 

  68. Plavka R, Kopecky P, Sebron V, Svihovec P, Zlatohlavkova B, Janus V (1999) A prospective randomized comparison of conventional mechanical ventilation and very early high frequency oscillatory ventilation in extremely premature newborns with respiratory distress syndrome. Intensive Care Med 25: 68–75

    Article  PubMed  CAS  Google Scholar 

  69. Ogawa Y, Miyasaka K, Kawano T, et al (1993) A multicenter randomized trial of high frequency oscillatory ventilation as compared with conventional mechanical ventilation in preterm infants with respiratory failure. Early Human Dev 32: 1–10

    Article  CAS  Google Scholar 

  70. Rettwitz-Volk W, Veldman A, Roth B, et al (1998) A prospective, randomized, multicenter trial of high-frequency oscillatory ventilation compared with conventional ventilation in preterm infants with respiratory distress syndrome receiving surfactant. J Pediatr 132: 249–254

    Article  PubMed  CAS  Google Scholar 

  71. Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL (1994) Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 22: 1530–1539

    PubMed  CAS  Google Scholar 

  72. Bryan AC, Froese AB (1991) Reflections on the HIFI trial. Pediatrics 87: 565–567

    PubMed  CAS  Google Scholar 

  73. Arnold JH, Truog WE, Thompson JE, et al (1993) High-frequency oscillatory ventilation in pediatric respiratory failure. Crit Care Med 21: 272–278

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferguson, N.D., Stewart, T.E., Slutsky, A.S. (2000). High Frequency Oscillatory Ventilation: A Tool to Decrease Ventilator-Induced Lung Injury?. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2000. Yearbook of Intensive Care and Emergency Medicine, vol 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13455-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13455-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66830-5

  • Online ISBN: 978-3-662-13455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics