Skip to main content

Respiratory Physiology as a Basis for the Management of Acute Lung Injury

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 2000

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2000))

  • 239 Accesses

Abstract

Despite significant improvement in management and outcome, the mortality rate of the acute respiratory distress syndrome (ARDS) remains very high, ranging from 35 to 65% [1]. Mechanical ventilation is a mainstay of therapy and is used to maintain adequate systemic oxygenation and to rest the respiratory muscles [2]. However, over the last two decades, research in a number of species has shown that mechanical ventilation itself can produce acute lung injury (ALI) that is functionally and histologically indistinguishable from ARDS [3]. The postulated mechanisms responsible for ventilator-induced lung injury (VILI) relate to the mechanical stress placed on the pulmonary and non-pulmonary structures by mechanical ventilation [3]. If these animal studies can be directly extrapolated to humans they suggest that mechanical ventilation may be a very important determinant of the high mortality in ARDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273: 306–309

    Article  PubMed  CAS  Google Scholar 

  2. Tobin MJ (1994) Mechanical ventilation. N Engl J Med 330: 1056–1061

    Article  PubMed  CAS  Google Scholar 

  3. Slutsky AS, Tremblay LN (1998) Multiple system organ failure: Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157: 1721–1725

    Article  PubMed  CAS  Google Scholar 

  4. Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. N Engl J Med 338: 355–361

    Article  PubMed  CAS  Google Scholar 

  5. Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 158: 1831–1838

    Article  PubMed  CAS  Google Scholar 

  6. Amato MBP, Barbas CSV, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354

    Article  PubMed  CAS  Google Scholar 

  7. Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282: 54–61

    Article  PubMed  CAS  Google Scholar 

  8. National Institute of Health (1999) ARDS clinical network. Available at htpp:/hedwig.mgh. harvard.edu./ardsnet/nih.html. Posted March 15, 1999

    Google Scholar 

  9. Hudson L (1999) Progress in understanding ventilator induced lung injury JAMA 282: 77–78

    CAS  Google Scholar 

  10. Gattinoni L, Pesenti A, Bombino M, et al (1988) Relationship between lung computed torno-graphic density gas-exchange and PEEP in acute respiratory failure. Anesthesiology 69: 824–832

    Article  PubMed  CAS  Google Scholar 

  11. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28: 596–608

    PubMed  CAS  Google Scholar 

  12. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136: 730–736

    Google Scholar 

  13. Ranieri VM, Mascia L, Fiore T, Bruno F, Brienza A, Giuliani R (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 83: 710–720

    Article  PubMed  CAS  Google Scholar 

  14. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    Article  PubMed  CAS  Google Scholar 

  15. Rouby JJ, Lherme T, de Lassale EM, et al (1993) Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 19: 383–389

    Article  PubMed  CAS  Google Scholar 

  16. Ito Y, Veldhuizen RAW, Yao L, et al (1997) Ventilation strategies affect surfactant aggregate conversion in acute lung injury. Am J Respir Crit Care Med 155: 493–499

    Article  PubMed  CAS  Google Scholar 

  17. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952

    Article  PubMed  CAS  Google Scholar 

  18. Ranieri VM, Puntillo F, Grasso S, et al (1998) Limitation of mechanical lung stress decreases BAL cytokines in patients with ARDS. Intensive Care Med 24: S130 (Abst)

    Google Scholar 

  19. von Bethmann AN, Brasch F, Nusing R, et al (1998) Hyperventilation induces release of cytokines from perfused mouse lung. Am J Respir Crit Care Med 157: 263–272

    Article  Google Scholar 

  20. Chiumello D, Pristine G, Baba A, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of ARDS. Am J Respir Crit Care Med 160: 109–115

    Article  PubMed  CAS  Google Scholar 

  21. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124–1127

    Article  PubMed  CAS  Google Scholar 

  22. Brochard L (1998) Respiratory pressure-volume curves. In: Tobin MJ (ed) Principle and practice of intensive care monitoring. McGraw-Hill, New York, pp 597–616

    Google Scholar 

  23. Slutsky AS (1993) Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest 104: 1833–1859

    Article  PubMed  CAS  Google Scholar 

  24. Albert RK (1985) Least PEEP: primum non nocere. Chest 87: 2–4

    Article  PubMed  CAS  Google Scholar 

  25. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    Article  PubMed  CAS  Google Scholar 

  26. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952

    Article  PubMed  CAS  Google Scholar 

  27. Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment: A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158: 194–202

    Article  PubMed  CAS  Google Scholar 

  28. Pelosi P, Cereda P, Foti G, et al (1995) Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152: 531–537

    Article  PubMed  CAS  Google Scholar 

  29. Mergoni M, Martelli A, Volpi A, et al (1997) Impact of positive end-expiratory pressure on chest wall and lung pressure-volume curve in acute respiratory failure. Am J Respir Crit Care Med 156: 846–854

    Article  PubMed  CAS  Google Scholar 

  30. Ranieri VM, Brienza N, Santostasi S, et al (1997) Impairment of lung and chestwall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 156: 1082–1091

    Article  PubMed  CAS  Google Scholar 

  31. Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158: 3–11

    Article  PubMed  CAS  Google Scholar 

  32. Ranieri VM, Slutsky AS (1999) Respiratory physiology and acute lung injury: the miracle of Lazarus. Intensive Care Med 25: 1040–1043

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grasso, S., Giunta, F., Ranieri, V.M. (2000). Respiratory Physiology as a Basis for the Management of Acute Lung Injury. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2000. Yearbook of Intensive Care and Emergency Medicine, vol 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13455-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13455-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66830-5

  • Online ISBN: 978-3-662-13455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics