Transesophageal Echocardiographic Evaluation of Left Ventricular Function

  • G. Poortmans
  • J. Poelaert
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1999)


Left ventricular function is a main cause of circulatory failure peri-operatively and in critically ill patients in general. Of patients presenting for non-cardiac surgery, 15% are at risk for, or have, cardiac disease and this number increases with age, and in patients presenting for surgery in the later stages of chronic diseases such as diabetes or arterial hypertension [1]. Peri-operative morbidity and mortality in this patient population can be decreased only by using intensive monitoring and by early recognition and correction of abnormalities [2]. Cardiovascular function is a primary determinant of prognosis in critically ill patients and cardiovascular indices have proven to be valuable parameters of illness severity and prognosis [3].


Aortic Valve Left Ventricular Outflow Tract Left Ventricular Pressure Pulmonary Artery Occlusion Pressure Leave Ventricular Wall Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mangano DT (1990) Perioperative cardiac morbidity. Anesthesiology 72:153–184.PubMedCrossRefGoogle Scholar
  2. 2.
    Rao TK, Jacobs KH, El-Etr AA (1983) Reinfarction following anesthesia in patients with myocardial infarction. Anesthesiology 59:499–505.PubMedCrossRefGoogle Scholar
  3. 3.
    Tuchschmidt JA, Mecher CE (1994) Predictors of outcome from critical illness. Crit Care Clin 10:179–195.PubMedGoogle Scholar
  4. 4.
    Daniel WG, Erbel R, Kasper W, Visser CA, Engberding R, Mügge A (1991) Safety of transesophageal echocardiography: A multicenter survey of 10,419 examinations. Circulation 83:817–821.PubMedCrossRefGoogle Scholar
  5. 5.
    Steckelberg JM, Khanderia BK, Anhalt JP, et al (1991) Prospective evaluation of the risk of bacteremia associated with transesophageal echocardiography. Circulation 84:177–180.PubMedCrossRefGoogle Scholar
  6. 6.
    Suriani RJ, Neustein S, Shore-Lesserson L, Konstadt S (1998) Intraoperative transesophageal echocardiography during noncardiac surgery. J Cardiothorac Vasc Anesth 12:274–280.PubMedCrossRefGoogle Scholar
  7. 7.
    Poelaert J, Schmidt C, Colardyn F (1998) Transesophageal echocardiography in the critically ill. Anaesthesia 53:55–68.PubMedCrossRefGoogle Scholar
  8. 8.
    Foster E, Schiller NB (1993) Transesophageal echocardiography in the critical care patient. Cardiol Clin 11:489–503.PubMedGoogle Scholar
  9. 9.
    Poelaert J, Trouerbach S, De Buyzere M, Everaert J, Colardyn FA (1995) Evaluation of transesophageal echocardiography as a diagnostic and therapeutic aid in a critical care setting. Chest 107:774–779.PubMedCrossRefGoogle Scholar
  10. 10.
    Mock MB, Ringqvist I, Fisher LD, Davis KB, Chaitman BR, Kouchoukos NT (1982) Survival of medically treated patients in the coronary artery surgery study (CASS) registry. Circulation 66:562–568.PubMedCrossRefGoogle Scholar
  11. 11.
    Enriquez-Sarano M, Tajik J, Schaff HV, et al (1994) Echocardiographic prediction of left ventricular function after correction of mitral regurgitation: results and clinical implications. J Am Coll Cardiol 24:1536–1543.PubMedCrossRefGoogle Scholar
  12. 12.
    Greim CA, Roewer N, Laux G, Schulte A, Esch J (1996) On-line estimation of left ventricular stroke volume using transesophageal echocardiography and acoustic quantification. Br J An-aesth 77:365–369.CrossRefGoogle Scholar
  13. 13.
    Feinberg MS, Hopkins WE, Davila-Roman VG, Barzilai B (1995) Multiplane transesophageal echocardiographic Doppler imaging accurately determines cardiac output in critically ill patients. Chest 107:769–773.PubMedCrossRefGoogle Scholar
  14. 14.
    Savino JS, Troianos CA, Aukburg S, Weiss R, Reichek N (1991) Measurement of pulmonary blood flow with transesophageal two-dimensional and Doppler echocardiography. Anesthesiology 75:445–451.PubMedCrossRefGoogle Scholar
  15. 15.
    Katz WE, Gasior TA, Quinlan JJ, Gorcsan J III (1993) Transgastric continous-wave Doppler to determine cardiac output. Am J Cardiol 71:853–857.PubMedCrossRefGoogle Scholar
  16. 16.
    Darmon PL, Hillel Z, Mogtader A, Mindich B, Thys D (1994) Cardiac output by transesophageal echocardiography using continous-wave Doppler across the aortic valve. Anesthesiology 80:796–805.PubMedCrossRefGoogle Scholar
  17. 17.
    Van Aken H, Vandermeersch E (1988) Reliability of PCWP as an index for left ventricular preload. Br J Anaesth 60:85S–89S.PubMedCrossRefGoogle Scholar
  18. 18.
    Van Daele MERM, Sutherland GR, Mitchell MM, et al (1990) Do changes in pulmonary capillary wedge pressure adequately reflect myocardial ischemia during anesthesia? Circulation 81:865–871.PubMedCrossRefGoogle Scholar
  19. 19.
    Harpole DH, Clements FM, Quill T, Wolfe WG, Jones RH, McCann RL (1989) Right and left ventricular performance during and after abdominal aortic aneurysm repair. Ann Surg 209:356–362.PubMedCrossRefGoogle Scholar
  20. 20.
    Gorcsan J III, Morita S, Mandarino WA, Deneault LG, Kawai A, Pinsky MR (1993) Two-dimensional echocardiographic automated border detection accurately reflects changes in left ventricular volume. J Am Soc Echocardiogr 6:482–489.PubMedGoogle Scholar
  21. 21.
    Cahalan MK, Ionescu P, Melton HJ (1993) Automated real-time analysis of intraoperative transesophageal echocardiograms. Anesthesiology 78:477–485.PubMedCrossRefGoogle Scholar
  22. 22.
    Kuecherer HF, Muhiudeen IA, Kusumoto FM, et al (1990) Estimation of mean left atrial pressure from transoesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation 82:1127–1139.PubMedCrossRefGoogle Scholar
  23. 23.
    Gorcsan J III, Snow FR, Paulsen W, Nixon JV (1991) Noninvasive estimation of left atrial pressure in patients with congestive heart failure and mitral regurgitation by Doppler echocardiography. Am Heart J 121:858–863.PubMedCrossRefGoogle Scholar
  24. 24.
    Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276:889–897.PubMedCrossRefGoogle Scholar
  25. 25.
    Sabbah HN, Khaja F, Brymer JF, Mcfarland TF, Albert DE, Stein PD (1986) Noninvasive evaluation of left ventricular performance based on peak aortic blood acceleration measured with a continous-wave Doppler velocity meter. Circulation 74:323–329.PubMedCrossRefGoogle Scholar
  26. 26.
    Dubourg O, Jondeau G, Bauchet A, Hardy A, Bourarias JP (1993) Doppler-derived aortic maximal acceleration. Chest 103:1064–1067.PubMedCrossRefGoogle Scholar
  27. 27.
    Harrison MR, Clifton GD, Berk MR, DeMaria AN (1989) Effect of blood pressure and afterload on Doppler echocardiographic measurements of left ventricular systolic function in normal subjects. Am J Cardiol 64:905–908.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen C, Rodriguez L, Guerrero JL, et al (1991) Noninvasive estimation of the instantaneous first derivative of left ventricular pressure using continous-wave Doppler echocardiography. Circulation 83:210–211.Google Scholar
  29. 29.
    Pai RG, Bansal RC, Shah PM (1990) Doppler-derived rate of left ventricular pressure rise. Circulation 82:514–520.PubMedCrossRefGoogle Scholar
  30. 30.
    Pai RG, Stoletny LN (1998) Rates of left ventricular isovolumic pressure rise and fall from the aortic regurgitation velocity signal: description of the method and validation in human beings. J Am Soc Echocardiogr 11:631–637.PubMedCrossRefGoogle Scholar
  31. 31.
    Yamamoto K, Masuyama T, Doi Y, Naito J, Mano T, Kondo H (1995) Noninvasive assessment of left ventricular relaxation using continous-wave Doppler aortic regurgitant velocity curve. Circulation 91:192–200.PubMedCrossRefGoogle Scholar
  32. 32.
    Colan SD, Borow KM, Neumann A (1984) Left ventricular end-systolic wall stress-velocity of fiber shortening relation: A load-independent index of myocardial contractility. J Am Coll Cardiol 4:715–724.PubMedCrossRefGoogle Scholar
  33. 33.
    Caravaglia GE, Messerli FM, Nunez BD, Schneider RE, Grossman E (1988) Myocardial contractility and left ventricular function in obese patients with essential hypertension. Am J Cardiol 62:594–597.CrossRefGoogle Scholar
  34. 34.
    Greim CA, Roewer N, Laux G, Apfel C, Shulteam Esch J (1997) The relation between left ventricular wall stress shortening and preload changes in ventilated patients. Eur J Anaesthesiol 14:558–565.PubMedCrossRefGoogle Scholar
  35. 35.
    Sagawa K, Suga H, Shoukas AA, Bakalar KM (1977) End-systolic pressure-volume ratio: a new index of ventricular contractility. Am J Cardiol 40:748–753.PubMedCrossRefGoogle Scholar
  36. 36.
    Denault AY, Gorcsan J III, Mandarino WA, Kansel MJ, Pinsky MR (1997) Left ventricular performance assessed by automated border detection and arterial pressure. Am J Physiol 272: H138–H147.PubMedGoogle Scholar
  37. 37.
    Gorcsan J III, Gasior TA, Mandarino WA, Deneault LG, Hattler BG, Pinsky MR (1994) Assessment of the immediate effects of cardiopulmonary bypass on left ventricular performance by on-line pressure area relations. Circulation 89:180–190.PubMedCrossRefGoogle Scholar
  38. 38.
    Goertz AW, Seeling W, Heinrich H, Lindner KH, Schirmer U (1993) Influence of high thoracic epidural anesthesia on left ventricular contractility assessed using the end-systolic pressurelength relationship. Acta Anaesthesiol Scand 37:38–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Gorcsan J III, Romand JA, Mandarino WA, Deneault LG, Pinsky MR (1994) Assessment of left ventricular performance by on-line pressure area relations using echocardiographic automated border detection. J Am Coll Cardiol 23:242–252.PubMedCrossRefGoogle Scholar
  40. 40.
    Shih H, Hillel Z, Dederck C, Anagnostopoulos C, Kuroda M, Thys D (1997) An algorithm for real-time, continous evaluation of left ventricular mechanics by single-beat estimation of arterial and ventricular elastance. J Clin Monit 13:157–170.PubMedCrossRefGoogle Scholar
  41. 41.
    Takeuchi M, Igarashi Y, Tomimoto S, et al (1991) Single-beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 83:202–212.PubMedCrossRefGoogle Scholar
  42. 42.
    Kass DA, Maughan WL (1988) From ‘Emax’ to pressure-volume relations: a broader view. Circulation 77:1203–1212.PubMedCrossRefGoogle Scholar
  43. 43.
    Iwase T, Tomita T, Miki S, Nagai K, Murakami T (1992) Slope of the end-systolic pressure-volume relation derived from single beat analysis is not always sensitive to positive inotropic stimuli in humans. Am J Cardiol 69:1345–1353.PubMedCrossRefGoogle Scholar
  44. 44.
    Stein PD, Sabbah HN (1976) Rate of change of ventricular power: An indicator of ventricular performance during ejection. Am Heart J 91:219–227.PubMedCrossRefGoogle Scholar
  45. 45.
    Unterberg RH, Körfer R, Pölitz B, Schmiel FK, Spiller P (1984) Assessment of left ventricular function by a power index: an intraoperative study. Basic Res Cardiol 79:423–431.PubMedCrossRefGoogle Scholar
  46. 46.
    Pagel PS, Nijhawan N, Warltier DC (1993) Quantitation of volatile anesthetic induced depression of myocardial contractility using a single beat index derived from maximal ventricular power. J Cardiothorac Vasc Anaesth 7:688–695.CrossRefGoogle Scholar
  47. 47.
    Marmor AT, Cohen LS, Nevo E, Wackers FJT, Zaret BL (1993) Left ventricular peak power during exercise: A noninvasive approach for assessment of contractile reserve. J Nucl Med 34:1877–1885.PubMedGoogle Scholar
  48. 48.
    Mandarino WA, Pinsky MR, Gorcsan J III (1998) Assessment of left ventricular contractile state by preload-adjusted maximal power using echocardiographic automated border detection. J Am Coll Cardiol 31:861–868.PubMedCrossRefGoogle Scholar
  49. 49.
    Deryck YLJM, Brimioulle S, Maggiorini M, de Canniere D, Naeije R (1996) Systemic vascular effects of isoflurane versus propofol anesthesia in dogs. Anesth Analg 83:958–964.PubMedGoogle Scholar
  50. 50.
    Reichek N, Wilson J, St John Sutton M, Plappert TA, Goldberg S, Hirshfeld JW (1982) Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation 65:99–108.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith JS, Roizen MF, Cahalan MK, et al (1988) Does anesthetic technique make a difference? Augmentation of systolic blood pressure during carotid endarterectomy: Effects of phenylephrine versus light anesthesia and of isoflurane versus halothane on the incidence of myocardial ischemia. Anesthesiology 69:846–853.PubMedCrossRefGoogle Scholar
  52. 52.
    Greim CA, Roewer N, Schulte Am Esch J (1995) Assessment of changes in left ventricular wall stress from the end-systolic pressure area product. Br J Anaesth 75:583–587.PubMedCrossRefGoogle Scholar
  53. 53.
    Franke A, Mühler EG, Klues HG, et al (1996) Detection of abnormal aortic elastic properties in asymptomatic patients with Marfan syndrome by combined transesophageal echocardiography and acoustic quantification. Heart 75:307–311.PubMedCrossRefGoogle Scholar
  54. 54.
    Pasierski TJ, Binkley PF, Pearson AC (1992) Evaluation of aortic distensibility with transesophageal echocardiography. Am Heart J 123:1288–1292.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • G. Poortmans
  • J. Poelaert

There are no affiliations available

Personalised recommendations