Skip to main content

Protective Role of Inhaled Nitric Oxide in Ischemia/Reperfusion and Endotoxin-Induced Inflammation

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 1999

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1999))

  • 213 Accesses

Abstract

Endogenous production of nitric oxide (NO) plays an important role in regulating vascular tone, platelet adhesion and aggregation, white cell adhesion to endothelial cells, and host defense against infection. Inhaled NO gas has been shown to be effective as a selective pulmonary vasodilator in animal models of pulmonary hypertension and in adult and infant patients with pulmonary hypertension. Inhaled NO decreases pulmonary arterial pressure and pulmonary vascular resistance and improves oxygenation. This principle has been used sucessfully to treat acute respiratory distress syndrome (ARDS), persistent pulmonary hypertension of the newborn, and pulmonary hypertension in patients undergoing cardiac surgery. These applications take advantage of the physiological effect of NO endogenously synthesized by the vascular endothelium from the amino acid L-arginine in response to stimuli such as the activation of muscarinic receptors by acetylcholine. NO diffuses from endothelium to vascular smooth muscle, where it acts as a signal-transducing factor which activates soluble guanylate cyclase in smooth muscle cells, leading to vascular relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Granger DN, McCord JM, Parks DA, Hollwarth ME (1986) Xanthine oxidase inhibitors attenuate ischemia-induced vascular permeability changes in the cat intestine. Gastroenterology 90:80–84.

    PubMed  CAS  Google Scholar 

  2. Barbotin-Larrieu F, Mazmanian M, Baudet B, et al (1996) Prevention of ischemia-reperfusion lung injury by inhaled nitric oxide in neonatal piglets. J Appl Physiol 80:782–788.

    PubMed  CAS  Google Scholar 

  3. Seibert AF, Haynes J, Taylor A (1993) Ischemia-reperfusion injury in the isolated rat lung. Role of flow and endogenous leukocytes. Am Rev Respir Dis 147:270–275.

    PubMed  CAS  Google Scholar 

  4. Reignier J, Mazmanian M, Detruit H, Chapelier A, et al (1994) Reduction of ischemia-reperfusion injury by pentoxifylline in the isolated rat lung. Am J Respir Crit Care Med 150:342–347.

    PubMed  CAS  Google Scholar 

  5. Eppinger MJ, Ward PA, Jones ML, Boiling SF, et al (1995) Disparate effects of nitric oxide on lung ischemia-reperfusion injury. Ann Thorac Surg 60:1169–1175.

    Article  PubMed  CAS  Google Scholar 

  6. Lu YT, Liu SF, Mitchell JA, Malik AB, et al (1998) The role of endogenous nitric oxide in modulating ischemia-reperfusion injury in the isolated, blood-perfused rat lung. Am J Respir Crit Care Med 157:273–279.

    PubMed  CAS  Google Scholar 

  7. Gaboury J, Woodman RC, Granger DN, Reinhardt P, Kubes P (1993) Nitric oxide prevents leukocyte adherence: role of superoxide. Am J Physiol 265:H862–H867.

    PubMed  CAS  Google Scholar 

  8. Belenky SN, Robbins RA, Rennard SI, Gossman GL, et al (1993) Inhibitors of nitric oxide synthase attenuate human neutrophil chemotaxis in vitro. J Lab Clin Med 122:388–394.

    PubMed  CAS  Google Scholar 

  9. Kooy NW, Royall JA, Ye YZ, Kelly DR, et al (1995) Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Respir Crit Care Med 151:1250–1254.

    PubMed  CAS  Google Scholar 

  10. Szabo C (1996) The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock 6:79–88.

    Article  PubMed  CAS  Google Scholar 

  11. Fukahara K, Murakami A, Watanabe G, et al (1997) Inhaled nitric oxide after lung ischemia reperfusion; effect on hemodynamics and oxygen free radical scavenger system. Eur J Cardiothorac Surg 11:343–349.

    Article  PubMed  CAS  Google Scholar 

  12. Bacha EA, Sellak H, Murakami S, et al (1997) Inhaled nitric oxide attenuates reperfusion injury in non-heartbeating-donor lung transplantation. Paris-Sud University Lung Transplantation Group. Transplantation 63:1380–1386.

    Article  PubMed  CAS  Google Scholar 

  13. Stamler JS, Simon DI, Osborne JA, et al (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89:444–448.

    Article  PubMed  CAS  Google Scholar 

  14. Stamler JS, Jia L, Eu JP, et al (1997) Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276:2034–2037.

    Article  PubMed  CAS  Google Scholar 

  15. Motterlini R, Foresti R, Intaglietta M, Winslow RM (1996) NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am J Physiol 270:H107–H114.

    PubMed  CAS  Google Scholar 

  16. Jia L, Bonaventura C, Bonaventura J, et al (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380:221–226.

    Article  PubMed  CAS  Google Scholar 

  17. Fox-Robichaud A, Payne D, Hassan SU, et al (1998) Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of the distal microvascular beds. J Clin Invest 101:2497–2505.

    Article  PubMed  CAS  Google Scholar 

  18. Rosenberg AA, Kinsella JP, Abman SH (1995) Cerebral hemodynamics and distribution of left ventricular output during inhalation of nitric oxide. Crit Care Med 23:1391–1397.

    Article  PubMed  CAS  Google Scholar 

  19. Adrie C, Bloch KD, Moreno PR, Hurford WE, et al (1996) Inhaled nitric oxide increases coronary artery patency after thrombolysis. Circulation 94:1919–1926.

    Article  PubMed  CAS  Google Scholar 

  20. Hayward CS, Kalnins WV, Rogers P, et al (1997) Effect of inhaled nitric oxide on normal human left ventricular function. J Am Coll Cardiol 30:49–56.

    Article  PubMed  CAS  Google Scholar 

  21. Kurose I, Wolf R, Grisham MB, et al (1994) Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res 74:376–382.

    Article  PubMed  CAS  Google Scholar 

  22. Liu SF, Adcock IM, Old RW, et al (1996) Differential regulation of the constitutive and inducible nitric oxide synthase mRNA by lipopolysacchraride treatment in vivo in the rat. Crit Care Med 24:1219–1225.

    Article  PubMed  CAS  Google Scholar 

  23. Lu J, Schmiege LM, Kuo L, et al (1996) Downregulation of endothelial constitutive nitric oxide synthase expression by lipopolysacchraride. Biochem Biophys Res Commun 225:1–5.

    Article  PubMed  CAS  Google Scholar 

  24. Thomas JR, Harlan JM, Rice CL, et al (1992) Role of leukocyte CDl 1/CD18 complex in endotox-ic and septic shock in rabbits. J Appl Physiol 73:1510–1516.

    PubMed  CAS  Google Scholar 

  25. Talbott GA, Sharar SR, Harlan JM, et al (1994) Leukocyte-endothelial interactions and organ injury: The role of adhesion molecules. New Horiz 2:545–554.

    PubMed  CAS  Google Scholar 

  26. Kubes P, Kurose I, Granger DN (1994) NO donors prevent integrin-induced leukocyte adhesion but not P-selectin-dependent rolling in post-ischemic venules. Am J Physiol 267:H931–H937.

    PubMed  CAS  Google Scholar 

  27. Ma XL, Weyrich AS, Lefer DJ, et al (1993) Diminished basal nitrix oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res 72:403–412.

    Article  PubMed  CAS  Google Scholar 

  28. Wang P, Ba ZF, Chaudry IH (1995) Endothelium-dependent relaxation is depressed at the macro-and microcirculatory levels during sepsis. Am J Physiol 269:R988–R994.

    PubMed  CAS  Google Scholar 

  29. Zhou M, Wang P, Chaudry IH (1997) Endothelial nitric oxide synthase is downregulated during hyperdynamic sepsis. Biochim Biophys Acta 1335:182–190.

    Article  PubMed  CAS  Google Scholar 

  30. DeCaterina R, Libby P, Peng H, et al (1995) Nitric oxide decreases cytokine-induced endothelial activation: NO selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68.

    Article  CAS  Google Scholar 

  31. Gauthier TW, Davenpeck KL, Lefer AM (1994) Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. Am J Physiol 267:G562–G568.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nevière, R., Guery, B. (1999). Protective Role of Inhaled Nitric Oxide in Ischemia/Reperfusion and Endotoxin-Induced Inflammation. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1999. Yearbook of Intensive Care and Emergency Medicine, vol 1999. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13453-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13453-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65288-5

  • Online ISBN: 978-3-662-13453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics