Advertisement

Focal Cerebral Ischemia

  • S. Kuroda
  • P. Siesjö
  • B. K. Siesjö
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1997)

Abstract

Recent studies suggest that oxidative stress, leading to the generation of reactive oxygen species (ROS), such as hydrogen peroxide and oxygen-derived free radicals, are involved in various neurologic disorders [1–3]. Reperfusion following transient forebrain or focal cerebral ischemia is believed to enhance the production of ROS, which in turn initiates a vicious cascade of tissue injury (for general review on oxidants in ischemic damage, see [4, 5]). Thus, the involvement of ROS in reperfusion injury has been reported in models of transient forebrain ischemia in gerbils and rats [6–9], although its importance seems to be different between the two species [10]. Also, reperfusion following 1 or 2 has of middle cerebral artery occlusion (MCAO) gives rise to the marked increase in ROS production during its early phase (20–60 min) [11, 12]. In spite of sustained normalization of blood flow [13, 14], mitochondrial function and bio energetic state recover only partially at 1 h of reperfusion, and both of them deteriorate secondarily after 4 h [15–17]. This secondary deterioration of cerebral metabolism correlates with secondary elevation of extra-cellular glutamate after 2–4 h of reperfusion [18], and of potassium alter 6 h [19]. Furthermore, the findings that a spin trapping agent, a-phenyl-N-tert-butyl nitrone (PBN) ameliorates infarct volume and improves both mitochondrial function and bioenergetic state, even when given after 1 h of reperfusion following 2 h of MCAO [15, 16, 20], strongly suggest that ROS play an important role in reperfusion damage due to transient foval ischemia. This raises the following questions: First, which reactions generate ROS during reperfusion? Second, which is the major target of ROS-mediated reperfusion injury?

Keywords

Nitric Oxide Middle Cerebral Artery Occlusion Reperfusion Injury Focal Cerebral Ischemia Permeability Transition Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Siesjö BK, Agardh CD, Bengtsson F (1989) Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1: 165–211PubMedGoogle Scholar
  2. 2.
    Coyle J, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689–695PubMedCrossRefGoogle Scholar
  3. 3.
    Beal M, Hyman B, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? TINS 16: 125–131PubMedGoogle Scholar
  4. 4.
    Bondy S, LeBel C (1993) The relationship between excitotoxivity and oxidative stress in the central nervous system. Free Rad Biol Med 14: 633–642PubMedCrossRefGoogle Scholar
  5. 5.
    Chan P H (1996) Role of oxidants in ischemic brain damage. Stroke 27: 1124–1129PubMedCrossRefGoogle Scholar
  6. 6.
    Carney J, Floyd R (1991) Protection against oxidative damage to CNS by a-phenyl-tert-butyl nitrone (PBN) and other spin trapping agents: A novel series of non-lipid tree radical scavengers. J Mol Neurosci 3: 47–57Google Scholar
  7. 7.
    Floyd RA, Carney JM (1992) Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32: S22–S27PubMedCrossRefGoogle Scholar
  8. 8.
    Dirnagl U, Lindauer U, Them A, et al (1995) Global cerebral ischemia in the rat: Online monitoring of oxygen free radical production using chemiluminescence in vivo. J Cereb Blood Flow Metab 15: 929–940Google Scholar
  9. 9.
    Yang CS, Lin NN, Tsai PJ, Liu L, Kuo JS (1996) In vivo evidence of hydroxyl radical formation induced by elevation of extracellular glutamate after cerebral ischemia in the cortex of anesthetized rats. Free Radical Biol Med 20: 245–250CrossRefGoogle Scholar
  10. 10.
    Pahlmark K, Siesjö BK (1997) Effects of the spin trap a-phenyl-N-tert-butyl nitrone (PBN) in transient forebrain ischaemia in the rat. Acta Physiol Scand (In press)Google Scholar
  11. 11.
    Matsuo Y, Kihara T, Ikeda M, Ninomiya M, Onodera H, Kogure K (1995) Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: Effect of neurtrophil depletion on extravellular ascorbyl radical formation. J Cereb Blood Flow Metab 15: 941–947Google Scholar
  12. 12.
    Morimoto T, Globus MT, Busto R, Martinez E, Ginsberg M (1996) Simultaneous measurement of salicylate hydroxylation and glutamate release in the penumbral cortex following transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 16: 92–99PubMedCrossRefGoogle Scholar
  13. 13.
    Nagasawa H, Kogure K (1990) Uncoupling of blood flow and glucose metabolism in the neighboring postischemic edematous brain area. In: Long D, et al (eds) Advances in Neurology Vol 52, Raven Press, pp 63–71Google Scholar
  14. 14.
    Buchan A, Xue D, Slivka A (1992) A new model of temporary focal neocortical ischemia in the rat. Stroke 23: 273–279PubMedCrossRefGoogle Scholar
  15. 15.
    Folbergrovâ J, Zhao Q, Katsura K, Siesjö B K (1995) N-tert-butyl-a-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc Natl Acad Sci USA 92: 5057–5061PubMedCrossRefGoogle Scholar
  16. 16.
    Kuroda S, Katsura K, Hillered L, Bates TE, Siesjö BK (1996) Delayed treatment with a-phenylN-tert-butyl nitrone ( PBN) attenuates secondary mitochondrial dysfunction after transient focal cerebral ischemia in the rat. Neurobiol Dis 3: 149–157Google Scholar
  17. 17.
    Kuroda S, Katsura K, Tsuchidate R, Siesjö BK (1996) Secondary bioenergetic failure alter transient focal ischemia is due to mitochondrial injury. Acta Physiol Scand 156: 149–150PubMedCrossRefGoogle Scholar
  18. 18.
    Matsumoto K, Lo E, Pierce A, Halpern E, Newcomb R (1996) Secondary elevation of extracellular neurotransmitter amino acids in the reperfusion phase following focal cerebral ischemia. J Cereb Blood Flow Metab 16: 114–124PubMedCrossRefGoogle Scholar
  19. 19.
    Kristian T, Gidö G, Siesjö BK (1995) Temporal profile of extracellular ion concentrations after transient middle cerebral artery occlusion in the rats. In: 25th, Annual Meeting of Society of Neuroscience, p 216 (Abst)Google Scholar
  20. 20.
    Zhao Q, Pahlmark K, Smith M, Siesjö BK (1994) Delayed treatment with the spin trap a-phenyl-N-tert-butyl nitrone ( PBN) reduced infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol Scand 152: 349–350Google Scholar
  21. 21.
    Kochanek PM, Hallenbeck JM (1992) Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 23: 1367–1379PubMedCrossRefGoogle Scholar
  22. 22.
    del Zoppo GJ (1994) Microvascular changes during cerebral ischaemia and reperfusion. Cerebrovasc Brain Metab Rev 6: 47–96PubMedGoogle Scholar
  23. 23.
    Garcia J, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo G (1994) Influx of leukocytes and platelets in an evolving brain infarct. Am J Pathol 144: 188–199PubMedGoogle Scholar
  24. 24.
    Chopp M, Zhang RL, Jiang N (1996) The role of adhesion molecules in reducing cerebal ischemic cell damage. In: Siesjö BK, Wieloch T (eds) Advances in Neurology Vol 71. Lippincott-Raven Press, Philadelphia, pp 315–327.Google Scholar
  25. 25.
    Smith CW (1990) Molecular determinants of neutrophil adhesion. Am J Respir Cell Mol Biol 2: 487–489PubMedGoogle Scholar
  26. 26.
    Okada Y, Copeland B, Mori E, Tung MM, Thomas W, del Zoppo G (1994) P-selectin and intracellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 25: 202–211PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang R, Chopp M, Zaloga C, et al (1995) The temporal profiles of ICAM-I protein and mRNA expression after transient MCA occlusion in the rat. Brain Res 682: 182–188PubMedCrossRefGoogle Scholar
  28. 28.
    Barone F, Schmidt B, Hillegass L, et al (1992) Reperfusion increases neutrophils and leukotriene B4 receptor binding in rat focal ischemia. Stroke 23: 1337–1348PubMedCrossRefGoogle Scholar
  29. 29.
    Matsuo Y, Onodera H, Shiga Y, et al (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 25: 1469–1475Google Scholar
  30. 30.
    Zhang RL, Chopp M, Chen H, Garcia JH (1994) Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125: 3–10PubMedCrossRefGoogle Scholar
  31. 31.
    Connolly EJ,Winfree C, Springer T, et al (1996) Cerebral protection in homozygous null ICAM1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 97: 209–216Google Scholar
  32. 32.
    Zhang Z, Chopp M, Tang W, Jiang N, Zhang R (1995) Postischemic treatment (2–4 h) with antiCD1 lb and anti-CD18 monoclonal antibodies are neuroprotective after transient (2 h) foval cerebral ischemia in the rat. Brain Res 698: 79–85PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang R, Chopp M, Jiang N, et al (1995) Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke 26: 1438–1443PubMedCrossRefGoogle Scholar
  34. 34.
    Beckman J (1991) The double-edge role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol 15: 53–59PubMedGoogle Scholar
  35. 35.
    Iadecola C, Pelligrino D, Moskowitz M, Lassen N (1994) Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 14: 175–192PubMedCrossRefGoogle Scholar
  36. 36.
    Nakashima M, Yamashita K, Kataoka Y, Yamashita Y, Niwa M (1995) Time course of nitric oxide synthase activity in neuronal, glial, and endothelial cells of rat striatum following foval cerebral ischemia. Cell Mol Neurobiol 15: 341–349PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang F, Casey RM, Ross E, Iadecola C (1996) Aminoguanidine ameliorates and L-arginie worsens brain damage from intraluminal middle cerebral artery occlusion. Stroke 27: 317–323PubMedCrossRefGoogle Scholar
  38. 38.
    Gehrmann J, Banati R, Wiessnert C, Hossmann KA, Kreutzberg G (1995) Reactive microglia in cerebral ischaemia: An early mediator of tissue damage? Neuropath Appl Neurobiol 21: 277–289CrossRefGoogle Scholar
  39. 39.
    Kim JS (1996) Cytokines and adhesion molecules in stroke and related diseases. J Neurol Sci 137: 69–78PubMedCrossRefGoogle Scholar
  40. 40.
    Liu T, McDonnell PC, Young PR, et al (1993) Interleukin-10 mRNA expression in ischemic rat cortex. Stroke 24: 1746–1752PubMedCrossRefGoogle Scholar
  41. 41.
    Minami M, Kuraishi Y, Yabuuchi K, Yamazaki K, Satoh M (1992) Induction of interleukin-lß mRNA in rat brain after transient forebrain ischaemia. J Neurochem 58: 390–392PubMedCrossRefGoogle Scholar
  42. 42.
    Relton J, Rothwell N (1992) Interleukin-1 receptor antagonist inhibits ischemic and excitotoxic neuronal damage in the rat. Brain Res Bull 29: 243–246PubMedCrossRefGoogle Scholar
  43. 43.
    Garcia JH, Liu KF, Relton JK (1995) Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion. Am J Pathol 147: 1477–1486PubMedGoogle Scholar
  44. 44.
    Loddick SA, MacKenzie A, Rothwell NJ (1996) An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the rat. Neuro Report 7: 1465–1468Google Scholar
  45. 45.
    Hayward NJ, Elliott PI, Sawyer SD, Bronson RT, Bartus RT (1996) Lack of evidence for neutrophil participation during infarct formation following focal cerebral ischemia in the rat. Exp Neurol 139: 188–202PubMedCrossRefGoogle Scholar
  46. 46.
    Dawson V, Dawson T, London E (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88: 6368–6371PubMedCrossRefGoogle Scholar
  47. 47.
    Lafon-Cazal M, Piety S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535–537PubMedCrossRefGoogle Scholar
  48. 48.
    Dawson V, Dawson T, Bartley D, Uhl G, Snyder S (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13: 2651–2661PubMedGoogle Scholar
  49. 49.
    Malinski T, Bailey F, Zhang Z, Chopp M (1993) Nitric oxide measured by a porphyrinic micro-sensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 13: 335–338CrossRefGoogle Scholar
  50. 50.
    Dawson D (1994) Nitric oxide and focal cerebral ischemia: Multiplicity of actions and diverse outcome. Cerebrovasc Brain Metab Rev 6: 299–324PubMedGoogle Scholar
  51. 51.
    Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA (1996) Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab 16: 605–611PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang ZG, Reif D, Macdonald J, et al (1996) ARL 17477, a potent and selective neuronal NOS inhibitor decreases inlarct volume after transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 16: 599–604PubMedCrossRefGoogle Scholar
  53. 53.
    Dawson T, Steiner J, Dawson V, Dinerman J, Uhl G, Snyder S (1993) Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci USA 90: 9808–9812PubMedCrossRefGoogle Scholar
  54. 54.
    Sharkey J, Butcher S (1994) Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature 371: 336–339PubMedCrossRefGoogle Scholar
  55. 55.
    Kuroda S, Siesjö BK (1997) Postischemic administration of FK506 reduces infarct volume following transient focal brain ischemia. Neurosci Res Com (In press)Google Scholar
  56. 56.
    Wakabayashi H, Karasawa Y, Tanaka S, Kokudo Y, Maeba T (1994) The effect of FK506 on warm ischemia and reperfusion injury in the rat liver. Surg Today 24: 994–1002PubMedCrossRefGoogle Scholar
  57. 57.
    Dhar D, Takemoto Y, Nagasue N, Uchida M, Ono T, Nakamura T (1996) FK506 maintains cellular calcium homeostasis in ischemia/reperfusion injury of the canine liver. J Surg Res 60: 142–146PubMedCrossRefGoogle Scholar
  58. 58.
    Ambrosio G, Zweier J, Duilio C, et al (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen tree radicals in intact rabbit heart subjected to ischemia and reflow. J Biol Chem 25: 18532–18541Google Scholar
  59. 59.
    Dyken J (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. J Neurochem 63: 584–591CrossRefGoogle Scholar
  60. 60.
    Dugan L, Sensi S, Canzoniero L, et al (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 15: 6377–6388PubMedGoogle Scholar
  61. 61.
    Reynolds I, Hastings T (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 15: 3318–3327PubMedGoogle Scholar
  62. 62.
    Piantadosi C, Zhang J (1996) Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27: 327–332PubMedCrossRefGoogle Scholar
  63. 63.
    Floyd R (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4: 2587–2597PubMedGoogle Scholar
  64. 64.
    Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623PubMedCrossRefGoogle Scholar
  65. 65.
    Hillered L, Ernster L (1983) Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicals. J Cereb Blood Flow Metab 3: 207–214PubMedCrossRefGoogle Scholar
  66. 66.
    Vlessis A, Widener L, Bartos D (1990) Effect of peroxide, sodium, and calcium on brain mitochondrial respiration in vitro: Potential role in cerebral ischemia and reperfusion. J Neurochem 54: 1412–1418Google Scholar
  67. 67.
    Richter C, Gogvadze V, Laffranchi R, et al (1995) Oxidants in mitochondria: From physiology to disease. Biochim Biophys Acta 1271: 67–74Google Scholar
  68. 68.
    Zamzami N, Susin SA, Marchetti P, et al (1996) Mitochondrial control of nuclear apoptosis. J Exp Med 183: 1533–1544PubMedCrossRefGoogle Scholar
  69. 69.
    Ankarcrona M, Dypbukt J, Boncoffo E, et al (1995) Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15: 961–973Google Scholar
  70. 70.
    Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton S (1995) Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insulas with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell culture. Proc Natl Acad Sci USA 92: 7162–7166Google Scholar
  71. 71.
    Sims N, Pulsinelli W (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J Neurochem 49: 1367–1374PubMedCrossRefGoogle Scholar
  72. 72.
    Almeida A, Allen K, Bates T, Clark J (1995) Effects of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory-chain in the gerbil brain. J Neurochem 65: 1698–1703PubMedCrossRefGoogle Scholar
  73. 73.
    Rordorf G, Uemura Y, Bonventre J (1991) Characterization of phospholipase A2 (PLA2) activity in gerbil brain: Enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J Neurosci 11: 1829–1836Google Scholar
  74. 74.
    Nakahara I, Kikuchi H, Taki W, et al (1992) Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. J Neurosurg 76: 244–250PubMedCrossRefGoogle Scholar
  75. 75.
    Sun D, Gilboe DD (1994) Ischemia-induced changes in cerebral mitochondrial free fatty acids, phospholipids, and respiration in the rat. J Neurochem 62: 1921–1928PubMedCrossRefGoogle Scholar
  76. 76.
    Daum G (1985) Lipids of mitochondria. Biochim Biophys Acta 822: 1–42PubMedCrossRefGoogle Scholar
  77. 77.
    Soussi B, Idstrom JP, Schersten T, Bylund-Fellenius A (1990) Cytochrome c oxidase and cardiolipin alterations in response to skeletal muscle ischemia and reperfusion. Acta Physiol Scand 138: 107–114PubMedCrossRefGoogle Scholar
  78. 78.
    Nepomuceno MF, Pereira-da-Silva L (1993) Effect of cyclosporin A and trifluoperazine on rat liver mitochondria swelling and lipid peroxidation. Brazilian J Med Biol Res 26: 1019–1023Google Scholar
  79. 79.
    Nieminen AL, Saylor AK, Tesfai SA, Herman B, Lemasters JJ (1995) Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J 307: 99–106PubMedGoogle Scholar
  80. 80.
    Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies K (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265: 16330–16336PubMedGoogle Scholar
  81. 81.
    Bogaert Y, Rosenthal R, Fiskum G (1994) Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Radical Biol Med 6: 811–820CrossRefGoogle Scholar
  82. 82.
    Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308: 89–95PubMedCrossRefGoogle Scholar
  83. 83.
    Cleeter M, Cooper J, Darley-Usmar V, Moncada S, Schapira A (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. FEBS Letters 345: 50–54PubMedCrossRefGoogle Scholar
  84. 84.
    Wagner K, Kleinholz M, Myers R (1990) Delayed decrease in specific brain mitochondrial electron transfer complex activities and cytochrome concentrations following anoxia/ischemia. J Neurol Sci 100: 142–151PubMedCrossRefGoogle Scholar
  85. 85.
    Zaidan E, Sims N (1993) Selective reductions in the activity of the pyruvate dehydrogenase complex in mitochondria isolated from brain subregions following forebrain ischemia in rats. J Cereb Blood Flow Metab 13: 98–104PubMedCrossRefGoogle Scholar
  86. 86.
    Canevari L, Kuroda S, Bates T, Clark J, Siesjö BK (1997) Mitochondrial dysfunction after transient focal ischemia in the rat is not related to decreased activity of respiratory chain enzymes. J Cereb Blood Flow Metab (In press)Google Scholar
  87. 87.
    Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241: 139–176PubMedCrossRefGoogle Scholar
  88. 88.
    Gunter T, Pfeiffer D (1990) Mechanisms by which mitochondria transports calcium. Am J Physiol 258: C755–C786PubMedGoogle Scholar
  89. 89.
    White RJ, Reynolds IJ (1995) Mitochondria and Na /Ca’ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci 15: 1318–1328PubMedGoogle Scholar
  90. 90.
    Dux E, Mies G, Hossmann KA, Siklos L (1987) Calcium in the mitochondria following brief ischemia of gerbil brain. Neurosci Lett 78: 295–300PubMedCrossRefGoogle Scholar
  91. 91.
    Zaidan E, Sims N (1994) The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. J Neurochem 63: 1812–1819PubMedCrossRefGoogle Scholar
  92. 92.
    Sims N (1991) Selective impairment of respiration in mitochondria isolated from brain subregions following transient forebrain ischemia in the rat. J Neurochem 56: 1836–1844PubMedCrossRefGoogle Scholar
  93. 93.
    Ferrari R, Pedersini P, Bongrazio M, et al (1993) Mitochondrial energy production and cation control in myocardial ischaemia and reperfusion. Basic Res Cardiol 88: 495–512PubMedCrossRefGoogle Scholar
  94. 94.
    Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal. J Bioenerg Biomemb 28: 129–136Google Scholar
  95. 95.
    Bernardi P, Broekemeier KM, Pfeiffer DR (1994) Recent progress on regulation of the mitochondrial permeability transition pore: A cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomemb 26: 509–517Google Scholar
  96. 96.
    Bernardi P (1996) The permeability transition pore. Contro points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. BBABIO 44339: 1–5Google Scholar
  97. 97.
    Crompton M, Costi A (1988) Kinetic evidence for a heart mitochondrial pore activated by Ca’, inorganic phosphate and oxidative stress. Eur J Biochem 178: 489–501PubMedCrossRefGoogle Scholar
  98. 98.
    Packer M, Murphy M (1995) Peroxynitrite formed by simultaneous nitric oxide and superoxide generation causes cyclosporin-A-sensitive mitochondrial calcium efflux and depolarisation. Eur J Biochem 234: 231–239PubMedCrossRefGoogle Scholar
  99. 99.
    Griffiths E, Halestrap A (1995) Mitochondrial non-specific pores remain closed during ischemia, but open upon reperfusion. Biochem J 307: 93–98PubMedGoogle Scholar
  100. 100.
    Duchen M, McGuinness O, Brown L, Crompton M (1993) On the involvement of a cyclosporin A-sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 27: 1790–1794PubMedCrossRefGoogle Scholar
  101. 101.
    Crompton M, Andreeva L (1993) On the involvement of a mitochondrial pore in reperfusion injury. Basic Res Cardiol 88: 513–523PubMedCrossRefGoogle Scholar
  102. 102.
    Schinder AF, Olson EC, Spitzer NC, Montal M (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16: 6125–6133PubMedGoogle Scholar
  103. 103.
    Kristian T, Kuroda S, Siesjö BK (1997) Mechanism of ischemic brain damage: The mitochondria hypothesis revisited. In: Cerebrovascular Diseases. Twentieth Princeton Stroke Conference, Raven Press (In press )Google Scholar
  104. 104.
    Gogvadze V, Richter C (1993) Cyclosporin A protects mitochondria in an in vitro model of hypoxia/reperfusion injury. FIBS 333: 334–338Google Scholar
  105. 105.
    Griffiths E, Halestrap A (1993) Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25: 1461–1469PubMedCrossRefGoogle Scholar
  106. 106.
    Uchino H, Elmer E, Uchino K, Siesjo BS (1995) Cyclosporin A dramatically ameliorates CAl hippocampal damage following transient forebrain ischaemia in the rat. Acta Physiol Scand 155: 469–471PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • S. Kuroda
  • P. Siesjö
  • B. K. Siesjö

There are no affiliations available

Personalised recommendations