Skip to main content

Early Enteral Feeding Improves Outcome

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 1997

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1997))

Abstract

The constant supply of nutrients to cells is essential for their optimal function and survival. Nutrients supply substrates required for the replication of cells, generation of second messengers, maintenance of cellular barriers, destruction of invading pathogens, and detoxification of oxidants. As such, nutrients are important for wound healing, immune response, muscle contraction, and many other organ functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodie TG, Cullis W, Halliburton W (1910) The gaseous metabolism of the small intestine. II. The gaseous exchanges during the absorption of Witte’s peptone. J Physiol (London) 40: 173–189

    Google Scholar 

  2. Vatner SF, Franklin D, Van Citters RL (1970) Mesenteric vasoactivity associated with eating and digestion in the conscious dog. Am J Physiol 219: 170–174

    PubMed  CAS  Google Scholar 

  3. Gallavan RH, Chou CC, Kvietys PR, sit SP (1980) Regional blood flow during digestion in the conscious dog. Am J Physiol 238: H220–H225

    PubMed  Google Scholar 

  4. Bond JH, Prentiss RA, Levitt MD, Schoenborn K (1979) The effects of feeding on blood flow to the stomach, small bowel, and colon ofthe conscious dog. J Lab Clin Med 93: 594–599

    PubMed  CAS  Google Scholar 

  5. Chou CC, Kvietys P, Post J, Sit SP (1978) Constituents of chyme responsible for postprandial intestinal hyperemia. Am J Physiol 235: H677–H682

    PubMed  CAS  Google Scholar 

  6. Gallavan RH, Chou CC (1985) Possible mechanisms for the institution and maintenance of postprandial intestinal hyperemia. Am J Physiol 249: G301–G308

    PubMed  CAS  Google Scholar 

  7. Kvietys PR, Gallavan RH, Chou CC (1980) Contribution of bile to postprandial intestinal hyperemia. Am J Physiol 238: G284–G288

    PubMed  CAS  Google Scholar 

  8. Chou CC, Kvietys P, Gallavan R, Nyhof R (1979) Blood flow, oxygen consumption and absorption of glucose and oleic acid in the canine jejunum. Gastroenterology 76: 1114–1117

    Google Scholar 

  9. Brandt J, Castleman L, Ruskin H, Greenwald J, Kelly J (1955) The effect of oral protein and glucose feeding on splanchnic blood flow and oxygen utilization in normal and cirrhotic subjects. J Clin Invest 34: 1017–1025

    Article  PubMed  CAS  Google Scholar 

  10. Siregar H, Chou CC (1982) Relative contribution of fat, protein, carbohydrate, and ethanol to intestinal hyperemia. Am J Physiol 242: G27–G31

    PubMed  CAS  Google Scholar 

  11. Wang P, Hauptman JG, Chaudry IH (1990) Hemorrhage produces depression in microvasoular blood flow which persists despite fluid resuscitation. Circ Shock 32: 307–318

    PubMed  CAS  Google Scholar 

  12. Oud L, Kruse JA (1996) Progressive gastric intramucosal acidosis follows resuscitation from hemorrhagic shock. Shock 6: 61–65

    Article  PubMed  CAS  Google Scholar 

  13. Van Lanschot JJB, Mealy K, Wilmore DW (1990) The effects of tumor necrosis factor on intestinal structure and metabolism. Ann Surg 212: 663–670

    Article  PubMed  Google Scholar 

  14. Gosche JR, Garrison N, Harris PD, Cryer HG (1990) Absorptive hyperemia restores intestinal blood flow during Escherichia coli sepsis in the rat. Arch Surg 125: 1573–1576

    Article  PubMed  CAS  Google Scholar 

  15. Flynn WJ, Gosche JR, Garrison RN (1992) Intestinal blood flow is restored with glutamine or glucose suffusion after hemorrhage. J Surg Res 52: 499–504

    Article  PubMed  CAS  Google Scholar 

  16. Inoue S, Lukes S, Alexander JW, Trocki O, Silberstein EB (1989) Increased gut blood flow with early enteral feeding in burned guinea pigs. J Burn Care Rehab 10: 300–308

    Article  CAS  Google Scholar 

  17. Purcell PN, Davis K, Branson RD, Johnson DJ (1993) Continuous duodenal feeding restores gut blood flow and increases gut oxygen utilization during PEEP ventilation for lung injury. Am J Surg 165: 188–194

    Article  PubMed  CAS  Google Scholar 

  18. Bortenschlager L, Roberts PR, Black KW, Zaloga GP (1994) Enteral feeding minimizes liver injury during hemorrhagic shock. Shock 2: 351–354

    Article  PubMed  CAS  Google Scholar 

  19. Roberts PR, Black KW, Zaloga GP (1995) Early enteral feeding improves survival and renal function following muscle injury. Anesthesiology 83: A241 (Abst)

    Google Scholar 

  20. Spitz J, Yuhan R, Koutsouris A, Blatt C, Alverdy J, Hecht G (1995) Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. Am J Physiol 268: G374–G379

    PubMed  CAS  Google Scholar 

  21. Alverdy JC, Spitz J, Hecht G, Ghandi S (1994) Causes and consequences of bacterial adherence to mucosal epithelia during critical illness. New Horizons 2: 264–272

    PubMed  CAS  Google Scholar 

  22. Jacobs S, Chang RWS, Lee B, Bartlett FW (1990) Continuous enteral feeding: A major cause of pneumonia among ventilated intensive care unit patients. J Parent Ent Nutr 14: 353–356

    Google Scholar 

  23. Pingleton SK, Hinthom DR, Lui C (1986) Enteral nutrition in patients receiving mechanical ventilation. Am J Med 80: 827–832

    Article  PubMed  CAS  Google Scholar 

  24. Nelson JL, Alexander JW, Gianotti L, Chalk CL, Pyles T (1994) Influence of dietary fiber on microbial growth in vitro and bacterial translocation after burn injury in mice. Nutrition 10: 32–36

    PubMed  CAS  Google Scholar 

  25. Oh-Harra T, Sakagame H, Kawazoe, et al (1990) Lignified materials as potential medicinal resources II. Prevention of pathogenic bacterial infection in mice. In Vivo 4: 221–226

    Google Scholar 

  26. Weisse ME, Eberly B, Person DA (1995) Wine as a digestive aid: Comparative antimicrobial effects of bismuth salicylate and red and white wine. Brit Med J 311: 1657–1660

    Google Scholar 

  27. Sobota AE (1984) Inhibition of bacterial adherence by cranberry juice: Potential use for the treatment of urinary tract infections. J Urol 131: 1013–1016

    PubMed  CAS  Google Scholar 

  28. Dworkin LD, Levine GM, Farber NJ, Spector MH (1976) Small intestinal mass of the rat is partially determined by indirect effects of intraluminal nutrition. Gastroenterology 71: 626–630

    PubMed  CAS  Google Scholar 

  29. Morin CL, Ling V, Bourassa D (1980) Small intestinal and colonic changes induced by a chemically defined diet. Dig Dis Sci 25: 123–128

    Article  PubMed  CAS  Google Scholar 

  30. Steiner M, Bourges HR, Freedman LS, et al (1968) Effect of starvation on the tissue composition of the small intestine in the rat. Am J Physiol 215: 75–77

    PubMed  CAS  Google Scholar 

  31. Brown OH, Levine ML, Lipkin JP (1963) Inhibition of intestinal epithelium cell renewal and migration induced by starvation. Am J Physiol 205: 868–875

    PubMed  CAS  Google Scholar 

  32. Hosoda N, Nishi M, Nakagawa M, et al (1989) Structural and functional alteration in the gut of parenterally and enterally fed rats. J Surg Res 47: 129–133

    Article  PubMed  CAS  Google Scholar 

  33. Saito H, Trocki O, Alexander JW et al (1987) The effect of route of nutrient administration on the nutritional state, catabolic hormone secretion, and gut mucosal integrity after burn injury. J Parent Ent Nutr 11: 1–7

    Article  CAS  Google Scholar 

  34. Dominioni L, Trocki O, Mochizuki H, et al (1984) Prevention of severe postburn hypermetabolism and catabolism by immediate intragastric feeding. J Burn Care Rehab 5: 106–112

    Article  Google Scholar 

  35. Mochizuki H, Trocki O, Dominioni L, et al (1984) Mechanism of prevention of postburn hyper-metabolism and catabolism by early enteral feeding. Ann Surg 200: 297–310

    Article  PubMed  CAS  Google Scholar 

  36. Alexander JW (1990) Nutrition and translocation. J Parent Ent Nutr 14: S 170–S174

    Article  Google Scholar 

  37. Gianotti L, Alexander JW, Nelson JL, Fukushima R, Pyles T, Chalk CL (1994) Role of early enteral feeding and acute starvation on postburn bacterial translocation and host defense: Prospective and randomized trials. Crit Care Med 22: 265–272

    Google Scholar 

  38. Inoue S, Epstein MD, Alexander JW, et al (1989) Prevention of yeast translocation across the gut by a single enteral feeding after burn injury. J Parent Ent Nutr 13: 565–571

    Article  CAS  Google Scholar 

  39. Alexander JW (1994) New data on enteral feeding, selected nutrients, microbial translocation, and postsurgical sepsis. J Crit Care Nutr 2: 14–19

    Google Scholar 

  40. Gianotti L, Nelson JL, Alexander JW, Chalk CL, Pyles T (1994) Post-injury hypermetabolic response and magnitude of translocation: Prevention by early enteral nutrition. Nutrition 10: 225–231

    Google Scholar 

  41. Bark T, Katouli M, Svenberg T, Ljungqvist 0 (1995) Food deprivation increases bacterial translocation after nonlethal hemorrhage in rats. Eur J Surg 161: 67–71

    CAS  Google Scholar 

  42. Deitch EA, Winterton J, Berg R (1987) The gut as a portal of entry for bacteremia: Role of protein malnutrition. Ann Surg 205: 681–692

    Google Scholar 

  43. Deitch EA, Ma WJ, Ma L, Berg RD, Specian RD (1990) Protein malnutrition predisposes to inflammatory-induced gut-origin septic states. Ann Surg 211: 560–568

    Article  PubMed  CAS  Google Scholar 

  44. Gianotti L, Alexander JW, Fukushima R, et al (1993) Translocation of Candida albicans is related to the blood flow of individual intestinal villi. Circ Shock 40: 250–257

    PubMed  CAS  Google Scholar 

  45. Alverdy JC, Aoys E, Moss GS (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104: 185–190

    PubMed  CAS  Google Scholar 

  46. Zaloga GP, Roberts P, Black KW, Prielipp R (1993) Gut bacterial translocation/dissemination explains the increased mortality produced by parenteral nutrition following methotrexate. Circ Shock 39: 263–268

    PubMed  CAS  Google Scholar 

  47. Shou J, Lappin J, Minnard EA, et al (1994) Total parenteral nutrition, bacterial translocation, and host immune function. Am J Surg 167: 145–150

    Article  PubMed  CAS  Google Scholar 

  48. Spaeth G, Berg RD, Specian RD, et al (1990) Food without fiber promotes bacterial translocation from the gut. Surgery 108: 240–247

    PubMed  CAS  Google Scholar 

  49. Kudsk KA, Carpenter G, Petersen S, et al (1981) Effect of enteral and parenteral feeding in malnourished rats with E. coli hemoglobin peritonitis. J Surg Res 31: 105–110

    CAS  Google Scholar 

  50. Kudsk KA, Stone JM, Carpenter G, et al (1983) Enteral and parenteral feeding influences mortality after hemoglobin E. cbli peritonitis in normal rats. J Trauma 23: 605–609

    CAS  Google Scholar 

  51. Petersen SR, Kudsk KA, Carpenter G, et al (1981) Malnutrition and immunocompetence: Increased mortality following an infectious challenge during hyperalimentation J Trauma 21: 528–533

    CAS  Google Scholar 

  52. Zaloga GP, Knowles R, Ward K, Prielipp R (1991) Total parenteral nutrition ( TPN) increases mortality following hemorrhage. Crit Care Med 19: 54–59

    Google Scholar 

  53. Ljungqvist O, Jansson E, Ware J (1987) Effect of food deprivation on survival after hemorrhage in the rat. Circ Shock 22: 251–260

    PubMed  CAS  Google Scholar 

  54. Ljungqvist O, Boya PO, Esahili H, Larsson M, Ware J (1990) Food deprivation alters glycogen metabolism and endocrine responses to hemorrhage. Am J Physiol 259: E692–E698

    PubMed  CAS  Google Scholar 

  55. Peck MD, Alexander JW (1992) Interaction of protein and zinc malnutrition with the Imurine response to infection. J Parent Ent Nutr 16: 232–235

    Article  CAS  Google Scholar 

  56. Peck MD, Babcock GF, Alexander JW (1992) The role of protein and calorie restriction in outcome from Salmonella infection in mice. J Parent Ent Nutr 16: 561–565

    Article  CAS  Google Scholar 

  57. Esahili AH, Boya PO, Ljungqvist O, Rubio C, Ware J (1991) Twenty four hour fasting increases endotoxin lethality in the rat. Eur J Surg 157: 89–95

    PubMed  CAS  Google Scholar 

  58. Price P, Bell RG (1975) The toxicity of inactivated bacteria and endotoxin in mice suffering from protein malnutrition. JRE Soc 18: 230–243

    CAS  Google Scholar 

  59. Sobrado J, Maiz A, Kawamure I, et al (1983) Effect of dietary protein depletion on nonspecific immune responses and survival in the guinea pig. Am J Clin Nutr 37: 795–801

    PubMed  CAS  Google Scholar 

  60. Yoshioka T, Goto M, Gottschalk ME, Anderson CL, Zeller WP (1994) Plasma endotoxin concentration after an intraperitoneal injection of endotoxin in fed and fasted suckling rats. Shock 1: 362–365

    Article  PubMed  CAS  Google Scholar 

  61. McArdle AH, Palmason C, Brown RA, Brown HC, Williams HB (1984) Early enteral feeding of patients with major burns: Prevention of catabolism. Ann Plastic Surg 13: 396

    Google Scholar 

  62. Jenkins M, Gottschlich M, Alexander JW, et al (1989) Effect of immediate enteral feeding on the hypermetabolic response following severe burn injury. J Parent Ent Nutr 13 (Suppl): 12 (Abst)

    Google Scholar 

  63. Garlick PJ, Millward DJ, James WPT, Waterlow JC (1975) The effect of protein deprivation and starvation on the rate of protein synthesis in tissues of the rat. Biochim Biophys Acta 414: 71–84

    Article  PubMed  CAS  Google Scholar 

  64. Rothschild MA, Oratz M, Mongelli J, Schreiber SS (1968) Effects of a short-term fast on albumin synthesis studied in vivo, in the perfused liver, and on amino acid incorporation by hepatic microsimes. J Clin Invest 47: 2591–2599

    Article  PubMed  CAS  Google Scholar 

  65. Hanking BM, Roberts S (1965) Influence of alterations in intracellular levels of amino acids on protein synthesizing activity of isolated ribosomes. Nature 207: 862–864

    Article  PubMed  CAS  Google Scholar 

  66. Baliga BS, Pronczuk AW, Munro HN (1968) Regulation of polysome aggregation in a cell-free system through amino acid supply. J Mol Biol 34: 199–218

    Article  PubMed  CAS  Google Scholar 

  67. Kobayashi S, Venkatachalam MA (1992) Differential effects of calorie restriction on glomeruli and tubules of the remnant kidney. Kid Int 42: 710–717

    Article  CAS  Google Scholar 

  68. Zaloga GP, Bortenschlager L, Black KW, Prielipp RC (1992) Immediate postoperative enteral feeding decreases weight loss and improves wound healing after abdominal surgery in rats. Crit Care Med 20: 115–118

    Article  PubMed  CAS  Google Scholar 

  69. Moss G, Greenstein A, Levy S, et al (1980) Maintenance of GI function after bowel surgery and immediate enteral full nutrition. I. Doubling of canine colorectal anastomotic bursting pressure and intestinal wound mature collagen content. J Parent Ent Nutr 4: 535–538

    Google Scholar 

  70. Law NW, Ellis H (1990) The effect of parenteral nutrition on the healing of abdominal wall wounds and colonic anastomoses in protein-malnourished rats. Surgery 107: 449–454

    PubMed  CAS  Google Scholar 

  71. Schroeder D, Gillanders L, Mahr K, et al (1991) Effects of immediate postoperative enteral nutrition on body composition, muscle function, and wound healing. J Parent Ent Nutr 15: 376–383

    Article  CAS  Google Scholar 

  72. Haydock DA, Hill GL (1987) Impaired wound healing response in surgical patients receiving intravenous nutrition. Br J Surg 74: 320–323

    Article  PubMed  CAS  Google Scholar 

  73. Hill GL (1992) Body composition research–Implications for the practice of clinical nutrition. J Parent Ent Nutr 16: 197–218

    Article  CAS  Google Scholar 

  74. Windsor JA, Hill GL (1988) Weight loss with physiologic impairment: A basic indicator of surgical risk. Ann Surg 207: 290–296

    Google Scholar 

  75. Windsor JA, Hill GL (1988) Risk factors for postoperative pneumonia: The importance of protein depletion. Ann Surg 208: 209–214

    Google Scholar 

  76. Carr CS, Ling KDE, Boulos P, Singer M (1996) Randomized trial of safety and efficacy of immediate postoperative enteral feeding in patients undergoing gastrointestinal resection. Br Med J 312: 869–871

    Article  CAS  Google Scholar 

  77. Sagar S, Harland P, Shields R (1979) Early postoperative feeding with elemental diet. Br Med J 1: 293–295

    Article  PubMed  CAS  Google Scholar 

  78. Hasse JM, Blue LS, Liepa GU, et al (1995) Early enteral nutrition support in patients undergoing liver transplantation. J Parent Ent Nutr 19: 437–443

    Article  CAS  Google Scholar 

  79. Alexander W, MacMillan BG, Stinnett JD, et al (1980) Beneficial effects of aggressive protein feeding in severely burned children. Ann Surg 192: 505–517

    Article  PubMed  CAS  Google Scholar 

  80. Chiarelli A, Enzi G, Casadei A, Baggio B, Valerio A, Mazzoleni F (1990) Very early nutrition supplementation in burned patients. Am J Clin Nutr 51: 1035–1039

    PubMed  CAS  Google Scholar 

  81. Jenkins ME, Gottschlich MM, Warden GD (1994) Enteral feeding during operative procedures in thermal injuries. J Burn Care Rehab 15: 199–205

    Article  CAS  Google Scholar 

  82. Moore EE, Jones TN (1986) Benefits of immediate jejunostomy feeding after major abdominal trauma–a prospective randomized study. J Trauma 26: 874–880

    Article  PubMed  CAS  Google Scholar 

  83. Grahm TW, Zadrozsky NY, Harrington T (1989) The benefits of early jejunal hyperalimentation in head injury patients. Neurosurg 25: 729–735

    Article  CAS  Google Scholar 

  84. Eyer SD, Micon LT, Konstantinides FN, et al (1993) Early enteral feeding does not attenuate metabolic response after blunt trauma. J Trauma 34: 639–644

    Article  PubMed  CAS  Google Scholar 

  85. Ryan JA, Page CP, Babcock L (1981) Early postoperative jejunal feeding of elemental diet in gastrointestinal surgery. Am Surgeon 47: 393–403

    PubMed  Google Scholar 

  86. Delmi M, Rapin CH, Bengoa JM, Delmas PD, Vasey H, Bonjour JP (1990) Dietary supplementation in elderly patients with fractured neck of the femur. Lancet 335: 1013–1016

    Article  PubMed  CAS  Google Scholar 

  87. Bastow MD, Rawlings J, Allison SP (1983) Benefits of supplementary tube feeding after fractured neck of femur: A randomized controlled trial. Br Med J 287: 1589–1592

    Google Scholar 

  88. Tkatch L, Rapin CH, Rizzoli R, et al (1992) Benefits of oral protein supplementation in elderly patients with fracture of the proximal femur. J Am Coll Nutr 11: 519–525

    PubMed  CAS  Google Scholar 

  89. Gottschlich MM, Jenkins M, Warden GD, et al (1990) Differential effects of three enteral dietary regimens on selected outcome variables in burn patients. J Parent Ent Nutr 14: 225–236

    Article  CAS  Google Scholar 

  90. Cerra FB, Lehmann S, Konstantinides N, et al (1991) Improvement in immune function in ICU patients by enteral nutrition supplemented with arginine, RNA, and menhaden oil is independent of nitrogen balance. Nutrition 7: 193–199

    Google Scholar 

  91. Daly JM, Lieberman MD, Goldfine J, et al (1992) Enteral nutrition with supplemental arginine, RNA, and omega-3 fatty acids in patients after operation: Immunologic, metabolic, and clinical outcome. Surgery 112: 56–67

    Google Scholar 

  92. Moore FA, Moore EE, Kudsk KA, et al (1994) Clinical benefits of an immune-enhancing diet for early postinjury enteral feeding. J Trauma 37: 607–615

    Article  PubMed  CAS  Google Scholar 

  93. Chlebowski RT, Beall G, Grosvenor M, et al (1993) Long-term effects of early nutritional support with new enterotropic peptide-based formula vs standard enteral formula in HIV-infected patients: Randomized prospective trial. Nutrition 9: 507–512

    Google Scholar 

  94. Bower RH, Cerra FB, Bershadsky B, et al (1995) Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: Results of a multicenter, prospective, randomized, clinical trial. Crit Care Med 23: 436–449

    Google Scholar 

  95. Kernen M (1995) European multicenter study in postoperative cancer patients. J Crit Care Nutr 3: 22–23

    Google Scholar 

  96. Daly JM, Weintraub FN, Shou J, Rosato EF, Lucia M (1995) Enteral nutrition during multimodality therapy in upper gastrointestinal cancer patients. Ann Surg 221: 327–338

    Article  PubMed  CAS  Google Scholar 

  97. Brown RO, Hunt H, Mowatt-Larssen, et al (1994) Comparison of specialized and standard enteral formulas in trauma patients. Pharmacology 14: 314–320

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zaloga, G.P., Roberts, P.R. (1997). Early Enteral Feeding Improves Outcome. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1997. Yearbook of Intensive Care and Emergency Medicine, vol 1997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13450-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13450-4_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13452-8

  • Online ISBN: 978-3-662-13450-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics