Skip to main content

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1997))

  • 133 Accesses

Abstract

The mortality of the adult respiratory distress syndrome (ARDS) remains high and the role of mechanical ventilation in worsening the lung injury is assumed [1]. Conventional mode of ventilation aimed to obtain “normal” pulmonary function as reflected by arterial blood gases, and some lung injury was accepted as an inevitable consequence. This type of ventilatory support is frequently associated with high airway pressures and volumes for effective ventilation which, in turn, may worsen lung injury [2, 3]. Optimal ventilation would be the mode achieving adequate gas exchange without increasing the risk of ventilator-induced barotrauma [4, 5]. New strategies have been developed to prevent the lungs exposure to high pressures [6, 7]. These modes of ventilation lowering minute ventilation allows “abnormal” respiratory function with hypercapnia. Preliminary studies have reported improved survival with this new approach [6, 7]. However, there are no conclusive data indicating that any ventilatory mode is superior to the others for ARDS patients. Moreover, in patients with severe lung injury, total lung capacity may be so reduced that lung overinflation with excessive regional lung volumes may persist even when pressures and volumes are limited. Tolerance of hypercapnia is also still questionable, especially in patients that are not able to compensate for the respiratory acidosis because of coexistent acute renal failure or multiple organ failure or in those who have associated brain damage [8]. Low tidal volumes and pressures may also fail to achieve adequate arterial oxygenation needing increase in FiO2 with potential increase in oxygen toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pingleton SK (1988) Complications of acute respiratory failure. Am Rev Respir Dis 137: 1463–1493

    PubMed  CAS  Google Scholar 

  2. Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143: 1115–1120

    PubMed  CAS  Google Scholar 

  3. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Am Rev Respir Dis 137: 1159–1164

    PubMed  CAS  Google Scholar 

  4. Brunet F, Jeanbourquin D, Monchi M, et al (1995) Should mechanical ventilation be optimized to blood gases, lung mechanics or thoracic CT-scan? Am J Respir Crit Care Med 152: 524–530

    PubMed  CAS  Google Scholar 

  5. Marini J, Kelsen SG (1992) Re-targeting ventilatory objectives in adult respiratory distress syndrome. Am Rev Respir Dis 146: 2–3

    PubMed  CAS  Google Scholar 

  6. Hickling KG, Henderson SI, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16: 372–377

    Article  PubMed  CAS  Google Scholar 

  7. Amato MBP, Barbas CSV, Medeiros DM, et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome: A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med: 1835–1846

    Google Scholar 

  8. Pesenti A (1990) Target blood gases during ARDS ventilatory management. Intensive Care Med 16: 349–351

    Article  PubMed  CAS  Google Scholar 

  9. Hooke R (1667) Account of an experiment made by R. Hooke, of preserving animals alive by blowing through their lungs with bellows. Phil Trans R Soc (Lond) 2: 539–540

    Article  Google Scholar 

  10. Volhard F (1908) Über künstliche Atmung durch Ventilation der Trachea–eine einfache Vorrichtung zur rhythmischen künstlichen Atmung. München Med Wochenschr 55: 209–211

    Google Scholar 

  11. Draper WB, Whitehead RW (1944) Diffusion respiration in the dog anesthetized by penthotal sodium. Anesthesiology 5: 262–273

    Article  CAS  Google Scholar 

  12. Holmdahl MH (1956) Pulmonary uptake of oxygen, acid-base metabolism, and circulation during prolonged apnoea. Acta Chir Scand (Suppl) 212: 1–128

    CAS  Google Scholar 

  13. Slutsky AS, Watson J, Leith DE, Brown R (1985) Tracheal insufflation of 02 ( TRIO) at low flow rates sustains life for several hours. Anesthesiology 63: 278–286

    Google Scholar 

  14. Frumin J, Epstein R, Cohen G (1959) Apneic oxygenation in man. Anesthesiology 20: 789–798

    Article  PubMed  CAS  Google Scholar 

  15. Payne JP (1962) Apnoeic oxygenation in anaesthetized man.Acta Anaesthesiol Scand 6: 129–142

    Article  CAS  Google Scholar 

  16. Eger EI, Severinghaus JW (1961) The rate of rise of PaCO2 in the apneic anesthetized patient. Anesthesiology 22: 419–425

    Article  PubMed  CAS  Google Scholar 

  17. Babinski MF, Sierra OG, Smith RB, Leano E, Chavez A, Castellanos A (1985) Clinical application of continuous flow apneic ventilation. Acta Anaesthesiol Scand 29: 750–752

    Article  PubMed  CAS  Google Scholar 

  18. Smith RB (1987) Continuous-flow apneic ventilation. Respir Care 32: 458–465

    Google Scholar 

  19. Breen PH, Sznajder JI, Morisson P, Hatch D, Wood LDH, Craig DB (1986) Constant flow ventilation in anesthetized patients: Efficacy and safety. Anesth Analg 65: 1161–1169

    Google Scholar 

  20. Kolobow T, Gattinoni L, Tomlinson T, Pierce JE (1978) An alternative to breathing. J Thorac Cardiovasc Surg 75: 261–266

    PubMed  CAS  Google Scholar 

  21. Gattinoni L, Pesenti A, Mascheroni D, et al (1986) Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 256: 881–886

    Article  PubMed  CAS  Google Scholar 

  22. Brunet F, Mira JP, Belghith M, et al (1994) Extracorporeal CO2 removal technique improves oxygenation without causing overinflation. Am J Respir Crit Care Med 149: 1557–1562

    PubMed  CAS  Google Scholar 

  23. Christopher KL, Spofford BT, Brannin PK, Petty TL (1986) Transtracheal oxygen therapy for refractory hypoxemia. JAMA 256: 494–497

    Article  PubMed  CAS  Google Scholar 

  24. Benditt JO, Pollock M, Roa J, Celli B (1993)Transtracheal delivery of gas decreases the oxygen cost of breathing. Am Rev Respir Dis 147: 1207–1210

    Google Scholar 

  25. Couser JI Jr, Make BJ, Rassulo J (1989) Transtracheal oxygen decreases inspired minute ventilation. Am Rev Respir Dis 139: 627–631

    PubMed  Google Scholar 

  26. Hurewitz AN, Bergofsky EH, Vomero E (1991) Airway insufflation: Increasing flow rates progressively reduce dead space in respiratory failure. Am Rev Respir Dis 144: 1229–1233

    Google Scholar 

  27. Long SE, Menon AS, Kato H, Goldstein RS, Slutsky AS (1988) Constant oxygen insufflation ( COI) in a ventilatory failure model. Am Rev Respir Dis 138: 630–635

    Google Scholar 

  28. Bergofsky EH, Hurewitz AN (1989) Airway insufflation: Physiologic effects on acute and chronic gas exchange in humans. Am Rev Respir Dis 140: 885–890

    Google Scholar 

  29. Sznajder JI, Becker C, Crawford G, Wood I (1989) Combination of constant-flow and continuous positive-pressure ventilation in canine pulmonary edema. J Appl Physiol 67: 817–823

    PubMed  CAS  Google Scholar 

  30. Nahum A, Ravenscraft SA, Nakos G, et al (1992) Tracheal gas insufflation during pressure-control ventilation. Effect of catheter position, diameter, and flow rate. Am Rev Respir Dis 146: 1411–1418

    Google Scholar 

  31. Stresemann E, Votteri BA, Sattler FP (1969) Washout of anatomical dead space for alveolar hypoventilation. Respiration 26: 425–434

    Article  Google Scholar 

  32. Ravenscraft SA, Burke WC, Nahum A, et al (1993) Tracheal gas insufflation augments CO2 clearance during mechanical ventilation. Am Rev Respir Dis 148: 345–351

    PubMed  CAS  Google Scholar 

  33. Nakos G, Zakinthinos S, Kotanidou A, Tsagaris H, Roussos C (1994) Tracheal gas insufflation reduces the tidal volume while PaCO2 is maintained constant. Intensive Care Med 20: 407–413

    Article  PubMed  CAS  Google Scholar 

  34. Belghith M, Fierobe L, Brunet F, Monchi M, Mira JP (1995) Is tracheal gas insufflation an alternative to extrapulmonary gas exchangers in severe ARDS? Chest 107: 1416–1419

    Article  PubMed  CAS  Google Scholar 

  35. F. Brunet et al.: Tracheal Gas Insufflation in ARDS

    Google Scholar 

  36. Burke WC, Nahum A, Ravenscraft SA, et al (1993) Modes of tracheal gas insufflation: Comparison of continuous and phase-specific gas injection in normal dogs. Am Rev Respir Dis 148: 562–568

    Google Scholar 

  37. Ravenscraft SA, Shapiro RS, Nahum A, et al (1996) Tracheal gas insufflation: Catheter effectiveness determined by expiratory flush volume. Am J Respir Crit Care Med 153: 1817–1824

    Google Scholar 

  38. Nahum A, Burke C, Ravenscraft A, et al (1992) Lung mechanics and gas exchange during pressure-control ventilation in dogs: Augmentation of CO, elimination by an intratracheal catheter. Am Rev Respir Dis 146: 965–973

    Google Scholar 

  39. Slutsky AS, Menon A (1987) Catheter position and blood gases during constant flow ventilation. J Appl Physiol 62: 513–519

    Article  PubMed  CAS  Google Scholar 

  40. Nahum A, Sznajder JI, Solway J, Wood LDH, Schumacker PT (1988) Pressure, flow, and density relationship in airway models during constant-flow ventilation. J Appl Physiol 64: 2066–2073

    PubMed  CAS  Google Scholar 

  41. Nahum A, Ravenscraft SA, Nakos G, Adams AB, Burke WC, Marini JJ (1993) Effect of catheter flow direction on CO, removal during tracheal gas insufflation in dogs. J Appl Physiol 75: 1238–1246

    PubMed  CAS  Google Scholar 

  42. Isabey D, Boussignac G, Harf A (1989) Effect of air entrainment on airway pressure during endotracheal gas injection. J Appl Physiol 67: 771–779

    PubMed  CAS  Google Scholar 

  43. Eckmann DM, Gavriely N (1996) Chest vibration redistributes intra-airway CO2 during tracheal insufflation in ventilatory failure. Crit Care Med 24: 451–457

    Article  PubMed  CAS  Google Scholar 

  44. Slutsky AS (1981) Gas mixing by cardiogenic oscillations: A theoretical quantitative analysis. J Appl Physiol 51: 1287–1293

    PubMed  CAS  Google Scholar 

  45. Venegas J, Yamada Y, Hales C (1991) Contribution of diffusion jet flow and cardiac activity to regional ventilation in CFV. J Appl Physiol 71: 1540–1553

    PubMed  CAS  Google Scholar 

  46. Sznajder JI, Nahum A, Crawford G, Pollak E, Schumacker P, Wood I (1989) Alveolar pressure in-homogeneity and gas exchange during constant-flow ventilation in dogs. J Appl Physiol 67: 1489–1494

    PubMed  CAS  Google Scholar 

  47. Dolan S, Derdak S, Solomon D, et al (1996) Tracheal gas insufflation combined with high-frequency oscillatory ventilation. Crit Care Med 24: 458–465

    Article  PubMed  CAS  Google Scholar 

  48. Marini JJ, Crooke PS (1993) A general mathematical model for respiratory dynamics relevant to the clinical setting. Am Rev Respir Dis 147: 14–24

    Article  PubMed  CAS  Google Scholar 

  49. Trawoger R, Kolobow T, Giacomini M, Cereda M (1996) Mechanisms of mucus clearance from endotracheal tubes during intrapulmonary ventilation. Am J Respir Crit Care Med 153: A374 (Abst)

    Google Scholar 

  50. Brunet F, Boulesteix G, Brusset A, et al (1996) Two level flow-induced ventilation (FIV) allows decrease of PaCOZ and lung distension: An animal study. Am J Respir Crit Care Med 153: A378 (Abst)

    Google Scholar 

  51. Watson J, Kamm RD, Burwen DR, Brown R, Ingenito E, Slutsky AS (1987) Gas exchange during constant flow ventilation with different gases. Am Rev Respir Dis 136: 420–425

    Article  PubMed  CAS  Google Scholar 

  52. L’her E, Boulesteix G, Monchi M, et al (1996) Experimental study of two level flow-induced ventilation. Am J Respir Crit Care Med 153: A377 (Abst)

    Google Scholar 

  53. Gilbert J, Lasson A, Smith B, Bunegin (1991) Intermittent-flow expiratory ventilation (IFEV): Delivery technique and principles of action–A preliminary communication. Biomed Instrum Technol: 451–456

    Google Scholar 

  54. Dall’ava-Santucci J, Armaganidis A, Brunet F, et al (1990) Mechanical effects of PEEP in patients with adult respiratory distress syndrome. J Appl Physiol 68: 843–848

    PubMed  Google Scholar 

  55. Brochard L, Mion G, Isabey D, et al (1991) Constant-flow insufflation prevents arterial oxygen desaturation during endotracheal suctioning. Am Rev Respir Dis 144: 395–400

    Article  PubMed  CAS  Google Scholar 

  56. Beydon L, Isabey D, Boussignac G, Bonnet F, Duvaldestin P, Harf A (1991) Pressure support ventilation using a new tracheal gas injection tube. Br J Anaesth 67: 795–800

    Article  PubMed  CAS  Google Scholar 

  57. Pinquier D, Pavlovic D, Boussignac G, Aubier M, Beaufils F (1996) Benefits of the low pressure multichannel endotracheal ventilation. Am J Respir Crit Care Med 154: 82–90

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brunet, F., Monchi, M., Santucci, J.D. (1997). Tracheal Gas Insufflation in ARDS. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1997. Yearbook of Intensive Care and Emergency Medicine, vol 1997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13450-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13450-4_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13452-8

  • Online ISBN: 978-3-662-13450-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics