New Modes of Ventilatory Support in Spontaneously Breathing Intubated Patients

  • R. Stocker
  • B. Fabry
  • C. Haberthür
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1997)


Controlled mechanical ventilation with/without positive end-expiratory pressure (PEEP) helps in many cases to overcome life-threatening respiratory failure. However, it has some important shortcomings which may lead to potentially deleterious side effects due to substantial differences between mechanical ventilation and spontaneous breathing. During spontaneous breathing, mean transpulmonary pressure is situated around atmospheric pressure whereas pleural pressure is always subatmospheric. Ventilatory pattern varies and tidal volumes are around 7 mL/kg BW. Inspiration is due to an active, dorsal enhanced contraction of the diaphragm and airway resistance is low and mainly situated in the area of the upper airways [1].


Continuous Positive Airway Pressure Airway Pressure Pressure Support Breathing Pattern Pressure Support Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cotes JE (1993) Structure, expansion and movement of the lung. In: Cotes JE (ed) Lung function. Fifth edn. Oxford Blackwell, pp 173–212Google Scholar
  2. 2.
    Estes RJ, Meduri GU (1995) The pathogenesis of ventilator-associated pneumonia: 1. Mechanisms of bacterial transcolonization and airway inoculation. Intensive Care Med 21: 365–383Google Scholar
  3. 3.
    Matalon S, Baker RR, Engstom PC (1993) Mechanisms and modifications of hyperoxic injury to the mammalian pulmonary surfactant system. In: Reinhard K, Eyrich K (eds) Clinical aspects of O2 transport and tissue oxygenation. Springer Verlag, New York, pp 115–132Google Scholar
  4. 4.
    Parker J, Hernandez L, Peevy K (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21: 131–143PubMedCrossRefGoogle Scholar
  5. 5.
    Pinsky MR (1990) The effects of mechanical ventilation on the cardiovascular system. Crit Care Clin 6: 663–678PubMedGoogle Scholar
  6. 6.
    Purcell PM, Branson RD, Hurst JM (1992) Gut feeding and hepatic hemo dynamics during PEEP ventilation for acute lung injury. J Surg Res 335–341Google Scholar
  7. 7.
    Love R, Choe E, Lippton H, Flint L, Steinberg S (1995) Positive end-expiratory pressure decreases mesenteric blood flow despite normalisation of cardiac output. J Trauma 39: 195–199PubMedCrossRefGoogle Scholar
  8. 8.
    Brochard L (1994) Pressure support ventilation. In: Tobin JT (ed) Principles and practice of mechanical ventilation. McGraw-Hill, New York, pp 239–257Google Scholar
  9. 9.
    Guttmann J, Eberhard L, Fabry B, Bertschmann W, Wolff G (1993) Continuous calculation of intratracheal pressure in tracheally intubated patients. Anesthesiology 79: 503–513PubMedCrossRefGoogle Scholar
  10. 10.
    Fabry B, Haberthür Ch, Eberhard L, et al (1995) Additional work of breathing (WOBaad) during inspiratory pressure support (IPS) and automatic tube compensation (ATC). In: Roussos Ch (ed) Proceedings of the 8th European congress of intensive care medicine. Monduzzi Bologna, pp. 591–595Google Scholar
  11. 11.
    Fabry B, Guttmann J, Eberhard L, Bauer T, Haberthür Ch, Wolff G (1995) An analysis of desynchronization between the spontaneously breathing patient and ventilator during inspiratory pressure support. Chest 107: 1387–1394PubMedCrossRefGoogle Scholar
  12. 12.
    Esteban A, Frutos F, Tobin MJ, et al (1995) A comparison of four methods of weaning patients from mechanical ventilation. N Engl J Med 332: 345–350PubMedCrossRefGoogle Scholar
  13. 13.
    Younes M, Puddy A, Roberts D, et al (1992) Proportional Assist Ventilation–Results of a clinical trial. Am Rev Respir Dis 145: 119–121Google Scholar
  14. 14.
    Younes M (1992) Proportional Assist Ventilation, a new approach to ventilator support: Part I. Theory. Am Rev Respir Dis 145: 114–120CrossRefGoogle Scholar
  15. 15.
    Tyler JM, Grape B (1992) The influence of mechanical assistance to respiration on the ventilatory response to carbon dioxide in emphysema. Am Rev Resp Dis 86: 29–36Google Scholar
  16. 16.
    Harries JR, Tylor JM (1964) Mechanical assistance to respiration in emphysema–Results with a patient-controlled servorespirator. Am J Med 36: 768–787CrossRefGoogle Scholar
  17. 17.
    Younes M, Bilan D, Jung D, Kroker H (1987) An apparatus for altering the mechanical load of the respiratory system. J Appl Physiol 62: 2491–2499PubMedGoogle Scholar
  18. 18.
    Schulze A, Schaller P, Gehrhard TB, Mädler HJ, Gmyrek D (1990) An infant ventilator technique for resistive unloading during spontaneous breathing. Results in a rabbit model of airway obstruction. Pediatr Res 28: 79–82Google Scholar
  19. 19.
    Schaller P, Schulze A (1991) A ventilator generating a positive or negative internal compliance. Upsala J Med Sci 96: 219–234PubMedCrossRefGoogle Scholar
  20. 20.
    Wolff G, Fabry B, Guttmann J, Eberhard L, Habicht J (1994) Automatische Tubus-Kompensation mit volumen-und flußproportionaler Druckunterstützung–“ATC with VPPS and FPPS”. In: Peter K, Lawin P, Briegel J (eds) Intensivmedizin 1994, Georg Thieme Verlag, Stuttgart, pp 79–99Google Scholar
  21. 21.
    Haberthür Ch, Fabry B, Zappe D, Eberhard L, Trüeb K, Stulz P (1996) Automatic tube compensation (ATC) und proportional assist ventilation (PAV): Klinische Erfahrungen mit einem neuen Modus zur Unterstützung von intubierten, spontanatmenden Patienten. Intensivmed 33: 282–292Google Scholar
  22. 22.
    Fabry B, Guttmann J, Eberhard L, Wolff G (1994) Automatic compensation of endotracheal tube resistance in spontaneously breathing patients. Technol Health Care 1: 281–291Google Scholar
  23. 23.
    Annat G, Viale JP (1990) Measuring the breathing work load in mechanically ventilated patients. Intensive Care Med 16: 418–421PubMedCrossRefGoogle Scholar
  24. 24.
    Rohrer F (1925) Physiologie der Atembewegung. In: Bethe A, von Bergmann G, Emden G, Ellinger A (eds) Handbuch der normalen und pathologischen Physiologie, Vol. 2. Springer Verlag, Berlin, pp 70–127CrossRefGoogle Scholar
  25. 25.
    Fiastro JF, Habib MP, Quan SF (1988) Pressure support compensation for inspiratory work due to endotracheal tubes and demand continuous positive airway pressure. Chest 93: 499–505PubMedCrossRefGoogle Scholar
  26. 26.
    Brochard L, Rua F, Lorino H, Lemaire F, Harf A (1991) Inspiratory pressure support compensates for the additional work of breathing caused by the endotracheal tube. Anesthesiology 75: 739–745PubMedCrossRefGoogle Scholar
  27. 27.
    Agostoni E, Mead J (1964) Statics of the respiratory system. In: Fenn WO, Rahn H (eds) Handbook of physiology, section 3, vol 1. American Physiology Society, Washington, pp 387–409Google Scholar
  28. 28.
    Katz JA, Kraemer RW, Gjerde GE (1985) Inspiratory work and airway pressure with continuous positive airway pressure delivery systems. Chest 88: 519–526PubMedCrossRefGoogle Scholar
  29. 29.
    Viale JP, Annat G, Bertrand O, Godard J, Motin J (1985) Additional inspiratory work in intubated patients breathing with continuous positive airway pressure systems. Anesthesiology 63: 536–539PubMedCrossRefGoogle Scholar
  30. 30.
    Banner MJ, Kirby RR, Blanch PB (1992) Site of pressure measurement during spontaneous breathing with continuous positive airway pressure: Effect on calculating imposed work of breathing. Crit Care Med 20: 528–533Google Scholar
  31. 31.
    Moran JL, Homan S, O’Fathartaigh M, Jackson M, Leppard P (1992) Inspiratory work imposed by continuous positive airway pressure ( CPAP) machines: The effect of CPAP level and endotracheal tube size. Intensive Care Med 18: 148–154Google Scholar
  32. 32.
    Alberti A, Gallo F, Fongaro A, Valenti S, Rossi A (1995) P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 21: 547–553PubMedCrossRefGoogle Scholar
  33. 33.
    Zappe D, Haberthür C, Fabry B (1997) Esophageal and transdiaphragmatic pressure-time product: Are there differences between “electronic extubation” and real extubation in patients? Intensive Care Med (In press) (Abst)Google Scholar
  34. 34.
    Stocker R, Fabry B, Stein S, Zappe D, Trentz O, Haberthür C (1997) Zusätzliche Atemarbeit, Atemmuster und Erkennbarkeit der Extubationsbereitschaft unter inspiratorischer Druckunterstützung (IPS) und automatischer Tubuskompensation (ATC). Unfallchirurg (In press)Google Scholar
  35. 35.
    Haberthür C, Fabry B, Zappe D (1997) Comparison of peak tracheal pressure under proportional assist ventilation with automatic tube compensation (ATC/PAV) and under inspiratory pressure support (IPS). Intensive Care Med (In press) (Abst)Google Scholar
  36. 36.
    Haberthür C, Fabry B, Eberhard L, et al (1995) Occurrence of periodic breathing in intubated patients and the influence of sedation. In: Roussos Ch (ed) Proceedings of the 8th European congress of intensive care medicine. Monduzzi Bologna, pp 609–613Google Scholar
  37. 37.
    Zappe D, Fabry B, Haberthür C, Bernhard H, Stulz P, Guttmann J (1995) In vivo determination of tube coefficients for complete automatic tube compensation. Intensive Care Med 21 (Suppl 1 ): 131 (Abst)Google Scholar
  38. 38.
    Fabry B, Haberthür Ch, Fiebelkorn D, et al (1995) Realisation of automatic tube compensation (ATC) with proportional assist ventilation (PAV) in an experimental and a commercial ventilator. In: Roussos Ch (ed) Proceedings of the 8th European congress of intensive care medicine. Monduzzi Bologna, pp 597–602Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • R. Stocker
  • B. Fabry
  • C. Haberthür

There are no affiliations available

Personalised recommendations