Septic Myocardial Dysfunction: Role of Cytokines and Nitric Oxide

  • A. Kumar
  • J. E. Parrillo
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1997)


In the physiologic state, nitric oxide (NO) appears to be integral to a variety of essential biological functions including neurotransmission, platelet-vessel wall interactions, vasomotor regulation, and immune cell function. In pathophysiologic conditions, however, NO contributes to inflammation caused by neutrophils and macrophages in local infection and to the severe vasodilatation of septic shock. The known role of NO in the heart is evolving. Recent evidence suggests that NO may play a substantial part in physiologic regulation of cardiac contractility. In sepsis and other forms of inflammatory myocardial injury (including reperfusion injury and myocarditis), physiologic control of NO generation in the heart appears to give way to pathophysiologic NO production with concomitant abnormalities of cardiac metabolism and function.


Nitric Oxide Nitric Oxide Septic Shock Septic Shock Patient Endotoxic Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weil MH, MacLean LD,Visscher MD, Spink W (1956) Studies on the circulatory changes in the dog produced by endotoxin from Gram-negative microorganisms. J Clin Invest 35: 1191–1198Google Scholar
  2. 2.
    Solis RT, Downing SE (1966) Effects of E. coli endotoxemia on ventricular performance. Am J Physiol 211: 307–313Google Scholar
  3. 3.
    Parker MM, Shelhamer JH, Bacharach SL, et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100: 483–490PubMedGoogle Scholar
  4. 4.
    Sibbald WJ, Paterson NAM, Holliday RL, Anderson RA, Lobb TR, Duff JH (1978) Pulmonary hypertension in sepsis: Measurement by the pulmonary artery diastolic-pulmonary wedge pressure gradient and the influence of passive and active factors. Chest 73: 583–591PubMedCrossRefGoogle Scholar
  5. 5.
    Peyton MD, Hinshaw LB, Greenfield LJ, Elkins RC (1976) The effects of coronary vasodilatation on cardiac performance during endotoxin shock. Surg Gynecol Obstet 143: 533–538PubMedGoogle Scholar
  6. 6.
    Wiggers CJ (1947) Myocardial depression in shock. A survey of cardiodynamic studies. Am Heart J 33: 633–650PubMedCrossRefGoogle Scholar
  7. 7.
    Lefer AM, Martin J (1970) Origin of myocardial depressant factor in shock. Am J Physiol 218: 1423–1427PubMedGoogle Scholar
  8. 8.
    Wangensteen SL, Geissenger WT, Lovett WL, Glenn TM, Lefer AM (1971) Relationship between splanchnic blood flow and a myocardial depressant factor in endotoxin shock. Surgery 69: 410–418PubMedGoogle Scholar
  9. 9.
    Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73: 637–644PubMedCrossRefGoogle Scholar
  10. 10.
    Dhainaut JF, Huyghebaert MF, Monsallier JF, et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75: 533–541PubMedCrossRefGoogle Scholar
  11. 11.
    Goldfarb RD, Nightingale LM, Kish P, Weber PB, Loegering DJ (1986) Left ventricular function during lethal and sublethal endotoxemia in swine. Am J Physiol 251: H364 - H373PubMedGoogle Scholar
  12. 12.
    Lee K, van der Zee H, Dziuban SW Jr, Goldfarb RD (1988) Left ventricular function during chronic endotoxemia in swine. Am J Physiol 254: H324 - H330PubMedGoogle Scholar
  13. 13.
    Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267: 1503–1510PubMedCrossRefGoogle Scholar
  14. 14.
    Solomon MA, Correa R, Alexander HR, et al (1994) Myocardial energy metabolism and morphology in a canine model of sepsis. Am J Physiol 266: H757 - H768PubMedGoogle Scholar
  15. 15.
    McConn R, Greineder JK, Wasserman F, Clowes GHA (1979) Is there a humoral factor that depresses ventricular function in sepsis? Circ Shock 1: 9–22Google Scholar
  16. 16.
    Gomez A, Wang R, Unruh H, et al (1990) Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 73: 671–685PubMedCrossRefGoogle Scholar
  17. 17.
    Jha P, Jacobs H, Bose D, et al (1993) Effects of E. coli sepsis and myocarclial depressant factor on interval-force relations in dog ventricle. Am J Physiol 264: H1402 - H1410Google Scholar
  18. 18.
    Carli A, Auclair MC, Vernimmen C, Jourdon P (1979) Reversal by calcium of rat heart cell dysfunction induced by human sera in septic shock. Circ Shock 6: 147–157PubMedGoogle Scholar
  19. 19.
    Reilly JM, Cunnion RE, Burch-Whitman C, Parker MM, Shelhamer JH, Parrillo JE (1989) A circulating myocardial depressant substance is associated with cardiac dysfunction and peripheral hypoperfusion (lactic acidemia) in patients with septic shock. Chest 95: 1072–1080PubMedCrossRefGoogle Scholar
  20. 20.
    Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76: 1539–1553PubMedCrossRefGoogle Scholar
  21. 21.
    Harary I, Farley B (1960) In vitro studies of single isolated beating rat heart cells. Science 131: 1674–1675PubMedCrossRefGoogle Scholar
  22. 22.
    Suffredini AF, Fromm RE, Parker MM, et al (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321: 280–287PubMedCrossRefGoogle Scholar
  23. 23.
    Danner RL, Elin RJ, Hosseini JM, Wesley RA, Reilly JM, Parrillo JE (1991) Endotoxemia in human septic shock. Chest 99: 169–175PubMedCrossRefGoogle Scholar
  24. 24.
    Parker JL, Adams HR (1979) Myocardial effects of endotoxin shock: Characterization of an isolated heart muscle model. Adv Shock Res 2: 163–175PubMedGoogle Scholar
  25. 25.
    Parker JL, Adams HR (1981) Contractile dysfunction of atrial myocardium from endotoxinshocked pigs. Am J Physiol 240: H954 - H962PubMedGoogle Scholar
  26. 26.
    Parker JL, Adams HR (1985) Development of myocardial dysfunction in endotoxin shock. Am J Physiol 248: H818 - H826PubMedGoogle Scholar
  27. 27.
    Kumar A, Kosuri R, Ginsburg B, et al (1994) Myocardial cell contractility is depressed by supernatants of endotoxin stimulated THP-1 cells. Grit Care Med 22: A118 (Abst)Google Scholar
  28. 28.
    Natanson C, Fink MP, Ballantyne HK, MacVittie TJ, Conklin JJ, Parrillo JE (1986) Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest 78: 259–270PubMedCrossRefGoogle Scholar
  29. 29.
    Natanson C, Eichenholz PW, Danner RL, et al (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169: 823–832PubMedCrossRefGoogle Scholar
  30. 30.
    Michie HR, Manogue KR, Spriggs DR, et al (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318: 1481–1486PubMedCrossRefGoogle Scholar
  31. 31.
    Girardin E, Grau GE, Dayer JM, Roux-Lombard P, Lambert PH (1989) Plasma tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med 319: 397–400CrossRefGoogle Scholar
  32. 32.
    Beutler B, Cerami A (1986) Cachectin and tumor necrosis factor as two sides of the same biological coin. Nature 320: 584–586PubMedCrossRefGoogle Scholar
  33. 33.
    Eichenholz PW, Eichacker PQ, Hoffman WD, et al (1992) Tumor necrosis factor challenges in canines: Patterns of cardiovascular dysfunction. Am J Physiol 263: H668 - H675PubMedGoogle Scholar
  34. 34.
    Walley KR, Hebert PC, Wakai Y, Wilcox PG, Road JD, Cooper DJ (1994) Decrease in left ventricular contractility after tumor necrosis factor-alpha infusion in dogs. J Appl Physiol 76: 1060–1067PubMedGoogle Scholar
  35. 35.
    Beutler B, Milsark IW, Cerami A (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from the lethal effect of endotoxin. Science 229: 869–871PubMedCrossRefGoogle Scholar
  36. 36.
    Mathison JC, Wolfson E, Ulevitch RJ (1988) Participation of tumor necrosis factor in the mediation of Gram-negative bacterial lipopolysaccharide-induced injury in rabbits. J Clin Invest 81: 1925–1937PubMedCrossRefGoogle Scholar
  37. 37.
    Tracey KJ, Fong Y, Hesse DG, et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 330: 662–664PubMedCrossRefGoogle Scholar
  38. 38.
    Vincent JL, Bakker J, Marecaux G, Schandene L, Kahn RJ, Dupont E (1992) Administration of anti-TNF antibody improves left ventricular function in septic shock patients: Results of a pilot study. Chest 101: 810–815PubMedCrossRefGoogle Scholar
  39. 39.
    Abraham E, Wunderink R, Silverman H, et al (1995) Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. JAMA 273: 934–941PubMedCrossRefGoogle Scholar
  40. 40.
    Wakabayashi G, Gelfand JA, Jung WK, Connolly RJ, Burke JF, Dinarello CA (1991) Staphylococcus epidermidis induces complement activation, tumor necrosis factor and interleukin-1, a shock-like state and tissue injury in rabbits without endotoxemia. Comparison to Escherichia coli. J Chin Invest 87: 1925–1935CrossRefGoogle Scholar
  41. 41.
    Hesse DG, Tracey KJ, Fong Y, et al (1988) Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 166: 147–153PubMedGoogle Scholar
  42. 42.
    Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. J Exp Med 169: 333–338PubMedCrossRefGoogle Scholar
  43. 43.
    Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA (1988) Interleukin-1 induces a shock-like state in rabbits. J Clin Invest 81: 1162–1172PubMedCrossRefGoogle Scholar
  44. 44.
    Fisher CJ Jr, Dhainaut JF, Opal SM, et al (1994) Recombinant human interleukin-1 receptor antagonist in the treatment of patients with the sepsis syndrome: Results from a randomized, double-blind, placebo-controlled trial. JAMA 271: 1836–1843PubMedCrossRefGoogle Scholar
  45. 45.
    Ohlsson K, Bjork P, Bergenfeldt M, Hageman R, Thompson RC (1990) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348: 550–552PubMedCrossRefGoogle Scholar
  46. 46.
    Fischer E, Marano MA, Van Zee KJ, et al (1992) Interleukin-1 receptor blockade improves survival and hemodynamic performance in Escherichia coli septic shock but fails to alter host responses to sublethal endotoxemia. J Clin Invest 89: 1551–1557PubMedCrossRefGoogle Scholar
  47. 47.
    Fisher CJ Jr, Slotner GJ, Opal SM, et al (1994) Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: A randomized, open-label, placebo-controlled multicenter trial. Grit Care Med 22: 12–21Google Scholar
  48. 48.
    Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor-alpha and interleukin-1 beta are responsible for depression of in vitro myocardial cell contractility induced by serum from humans with septic shock. J Exp Med 183: 949–958PubMedCrossRefGoogle Scholar
  49. 49.
    Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative isotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 92: 2303–2312PubMedCrossRefGoogle Scholar
  50. 50.
    Finked MS, Oddis CV, Jacobs TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257: 387–389CrossRefGoogle Scholar
  51. 51.
    Sobotka PA, McMannis J, Fisher RI, Stein DG, Thomas JX (1990) Effects of interleukin-2 on cardiac function in the isolated rat heart. J Clin Invest 86: 845–850PubMedCrossRefGoogle Scholar
  52. 52.
    Weisensee D, Bereiter-Hahn J, Low-Friedrich I (1993) Effects of cytokines on the contractility of cultured cardiac myocytes. Int J Immunopharmacol 15: 581–587PubMedCrossRefGoogle Scholar
  53. 53.
    Kinugawa K, Takahashi T, Kohmoto O, et al (1994) Nitric oxide-mediated effects of interleukin6 on [Ca2], and cell contraction in cultured chick ventricular myocytes. Circ Res 75: 285–295PubMedCrossRefGoogle Scholar
  54. 54.
    Waage A, Espevik T (1988) Interleukin-1 potentiates the lethal effect of tumor necrosis factor alpha/cachectin in mice. J Exp Med 167: 1987–1992PubMedCrossRefGoogle Scholar
  55. 55.
    Weinberg JR, Boyle P, Meager A, Guz A (1992) Lipopolysaccharide, tumor necrosis factor, and interleukin-1 interact to cause hypotension. J Lab Clin Med 120: 205–211PubMedGoogle Scholar
  56. 56.
    Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF (1989) Interleukin-1 and tumor necrosis factor inhibit cardiac myocyte adrenergic responsiveness. Proc Natl Acad Sci 86 6753–6757PubMedCrossRefGoogle Scholar
  57. 57.
    Balligand JL, Ungureanu D, Kelly RA, et al (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91: 2314–2319PubMedCrossRefGoogle Scholar
  58. 58.
    Evans HG, Lewis MJ, Shah AM (1993) Interleukin-1 beta modulates myocardial contraction via dexamethasone sensitive production of nitric oxide. Cardiovasc Res 27: 1486–1490PubMedCrossRefGoogle Scholar
  59. 59.
    Hosenpud JD, Campbell SM, Mendelson DJ (1989) Interleukin-l-induced myocardial depression in an isolated beating heart preparation. J Heart Transplant 8: 460–464PubMedGoogle Scholar
  60. 60.
    DeMeules JE, Pigula FA, Mueller M, Raymond SJ, Gamelli RL (1992) Tumor necrosis factor and cardiac function. J Trauma 32: 686–692PubMedCrossRefGoogle Scholar
  61. 61.
    Vane JR, Anggard EE, Botting RM (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323: 27–36PubMedCrossRefGoogle Scholar
  62. 62.
    Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064PubMedGoogle Scholar
  63. 63.
    Lincoln TM, Cornwell TL (1991) Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels 28: 129–137PubMedGoogle Scholar
  64. 64.
    Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: Physiology, pathophysiology and pharmacology. Pharmacol Rev 43: 109–142PubMedGoogle Scholar
  65. 65.
    Fort S, Lewis MJ (1991) Regulation of myocardial contractile performance by sodium nitroprusside in the isolated perfused heart of the ferret. Br J Pharmacol 102: 351P (Abst)Google Scholar
  66. 66.
    Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE (1993) Nitric myocyte attenuates cardiac myocyte contraction. Am J Physiol 265: H176 - H182PubMedGoogle Scholar
  67. 67.
    Levi RC,Alloatti G, Penna C, Gallo MP (1994) Guanylate-cyclase-mediated inhibition of cardiac ICa by carbachol and sodium nitroprusside. Pflugers Arch 426: 419–426CrossRefGoogle Scholar
  68. 68.
    Grocott-Mason R, Fort S, Lewis MJ, Shah AM (1994) Myocardial relaxant effect of exogenous nitric oxide in isolated ejecting hearts. Am J Physiol 266: H1699 - H1705PubMedGoogle Scholar
  69. 69.
    Wahler GM, Dollinger SJ (1995) Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol 268: C45–054PubMedGoogle Scholar
  70. 70.
    Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensability in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation 89: 2070–2078PubMedCrossRefGoogle Scholar
  71. 71.
    Hare JM, Keaney JF, Balligand JL, Loscalzo J, Smith TW, Colucci WS (1995) Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest 95: 360–366PubMedCrossRefGoogle Scholar
  72. 72.
    Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T (1993) Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci 90: 347–351PubMedCrossRefGoogle Scholar
  73. 73.
    Schulz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a Ca’ -independent nitric oxide synthase in the myocardium. Br J Pharmacol 105: 575–580PubMedCrossRefGoogle Scholar
  74. 74.
    Smith JA, Radomski MW, Schulz R, Moncada S, Lewis MJ (1993) Porcine ventricular endocardial cells in culture express the inducible form of nitric oxide synthase. Br J Pharmacol 108: 1107–1110PubMedCrossRefGoogle Scholar
  75. 75.
    De Beider AJ, Radomski MW, Why HJF, et al (1993) Nitric oxide synthase activities in the human myocardium. Lancet 341: 84–85CrossRefGoogle Scholar
  76. 76.
    Balligand JL, Kobzik L, Han X, et al (1995) Nitric oxide-dependent parasympathetic signalling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biological Chem 270: 14582–14586CrossRefGoogle Scholar
  77. 77.
    Nawrath H (1977) Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart? Nature 267: 72–74PubMedCrossRefGoogle Scholar
  78. 78.
    George WJ, Poison JB, O’Toole AG, Goldberg ND (1970) Elevation of guanosine 3,5-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci 66: 398–403PubMedCrossRefGoogle Scholar
  79. 79.
    Han X, Shimoni Y, Giles WR (1994) An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol 476: 309–314PubMedGoogle Scholar
  80. 80.
    Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG (1994) 8-bromo-cGMP reduces the myofilament response to Ca’ in intact cardiac myocytes. Circ Res 74: 970–978Google Scholar
  81. 81.
    Levi RC, Alloatti G, Fischmeister R (1989) Cyclic GMP regulates Ca-channel current in guinea pig ventricular myocytes. Pflugers Arch 413: 685–687PubMedCrossRefGoogle Scholar
  82. 82.
    Tohse N, Sperelakis N (1991) cGMP inhibits the activity of single calcium channels in embryonic chick heart cells. Circ Res 69: 325–331Google Scholar
  83. 83.
    Mery PF, Pavoine C, Belhassen L, Pecker F, Fischmeister R (1994) Nitric oxide regulates cardiac Ca’ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylate cyclase activation. J Biological Chem 268: 26286–26295Google Scholar
  84. 84.
    Fischmeister R, Hartzell HC (1987) Cyclic guanosine 3’,5’-monophosphate regulates the calcium current in single cells from frog ventricle. J Physiol 387: 453–472PubMedGoogle Scholar
  85. 85.
    Mery P, Lohmann SM, Walter U, Fischmeister R (1991) Ca’ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci 88: 1197–1201PubMedCrossRefGoogle Scholar
  86. 86.
    Ochoa JB, Udekwu AO, Billiar TR, et al (1991) Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214: 621–626PubMedCrossRefGoogle Scholar
  87. 87.
    Rosenberg RB, Broner CW, O’Dorisio MS (1994) Modulation of cyclic guanosine monophosphate production during Escherichia coli septic shock. Biochem Med Metab Biol 51: 149–155PubMedCrossRefGoogle Scholar
  88. 88.
    Salvemini D, Korbut R, Anggard E, Vane JR (1990) Immediate release of a nitric oxide-like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci 87: 2593–2597PubMedCrossRefGoogle Scholar
  89. 89.
    Rees DD, Cellek S, Palmer RMJ, Moncada S (1990) Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: An insight into endotoxic shock. Biochem Biophys Res Commun 173: 541–547PubMedCrossRefGoogle Scholar
  90. 90.
    Julou-Schaeffer G, Grey GA, Fleming I, Schott C, Parratt JR, Stoclet JC (1990) Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 259: H1038 - H1043PubMedGoogle Scholar
  91. 91.
    Bernard C, Szekely B, Philip I, Wollman E, Payen D, Tedgui A (1992) Activated macrophages depress the contractility of rabbit carotids via a L-arginine/nitric oxide-dependent effector mechanism. J Clin Invest 89: 851–860PubMedCrossRefGoogle Scholar
  92. 92.
    Kilbourn RG, Gross SS, Jubran A, et al (1990) N-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: Implications for the involvement of nitric oxide. Proc Natl Acad Sci 87: 3629–3633PubMedCrossRefGoogle Scholar
  93. 93.
    Busse R, Mulsch A (1990) Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS 275: 87–90CrossRefGoogle Scholar
  94. 94.
    Radomski MW, Palmer RMJ, Moncada S (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci 87: 10043–10047PubMedCrossRefGoogle Scholar
  95. 95.
    French JF, Lambert LE, Dage RC (1991) Nitric oxide synthase inhibitors inhibit interleukin-1 beta-induced depression of vascular smooth muscle. J Pharm Exp Therap 259: 260–262Google Scholar
  96. 96.
    Kilbourn RG, Griffith OW (1992) Overproduction of nitric oxide in cytokine-mediated and septic shock. J Natl Cancer Inst 84: 827–831PubMedCrossRefGoogle Scholar
  97. 97.
    Lorente JA, Landin L, Renes E, et al (1993) Role of nitric oxide in the hemodynamic changes of sepsis. Crit Care Med 21: 759–767PubMedCrossRefGoogle Scholar
  98. 98.
    Petros A, Bennett D, Vallance P (1991) Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 383: 1557–1558CrossRefGoogle Scholar
  99. 99.
    Hollenberg SM, Cunnion RE, Zimmerberg J (1993) Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. Am J Physiol 33: H660 - H663Google Scholar
  100. 100.
    Schneider F, Lutun P, Hasselmann M, Stoclet JC, Tempe JD (1992) Methylene blue increases systemic vascular resistance in human septic shock. Preliminary observations. Intensive Care Med 18: 309–311PubMedCrossRefGoogle Scholar
  101. 101.
    Petros A, Lamb G, Leone A, Moncada S, Bennett D, Valiance P (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28: 34–39PubMedCrossRefGoogle Scholar
  102. 102.
    Kumar A, Kosuri R, Thota V, et al (1993) Nitric oxide and cyclic GMP generation mediates human septic serum-induced in vitro cardiomyocyte depression. Chest 104: 12S (Abst)Google Scholar
  103. 103.
    Kumar A, Kosuri R, Thota V, et al (1993) Tumor necrosis factor-induced myocardial cell depression is mediated by nitric oxide and cyclic GMP generation. Circulation 883: I617 (Abst)Google Scholar
  104. 104.
    Kumar A, Kosuri R, Kandula P, et al (1995) Interleukin-1-beta-induced myocardial cell depression is mediated by nitric oxide and cyclic GMP generation. Crit Care Med 23: A149 (Abst)Google Scholar
  105. 105.
    Rozanski GJ, Witt RC (1994) IL-1 inhibits beta-adrenergic control of cardiac calcium current: Role of L-arginine/nitric oxide pathway. Am J Physiol 267: H1753 - H1758PubMedGoogle Scholar
  106. 106.
    Brady AJ, Poole-Wilson PA, Harding SE, Warren JB (1992) Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263: H1963 - H1966PubMedGoogle Scholar
  107. 107.
    Shindo T, Ikeda U, Ohkawa F, et al (1994) Nitric oxide synthesis in rat cardiac myocytes and fibroblasts. Life Sci 55: 1101–1108PubMedCrossRefGoogle Scholar
  108. 108.
    Tsujino M, Hirata Y, Imai T, et al (1994) Induction of nitric oxide synthetase gene by interleukin-1 beta in cultured rat cardiocytes. Circulation 90: 375–383PubMedCrossRefGoogle Scholar
  109. 109.
    Kumar A, Thota V, Kosuri R, et al (1995) Tumor necrosis factor impairs epinephrine-stimulated cardiomyocyte contractility and cyclic AMP response through a nitric oxide-independent mechanism. Crit Care Med 23: A148 (Abst)Google Scholar
  110. 110.
    Kumar A, Brar R, Sun E, Olson J, Parrillo JE (1996) Tumor necrosis factor (TNF) impairs isoproterenol-stimulated cardiac myocyte contractility and cyclic AMP producton via a nitric oxide-independent mechanism. Crit Care Med 24: A95 (Abst)Google Scholar
  111. 111.
    Kumar A, Kosuri R, Kandula P, et al (1993) Tumor necrosis factor-induced myocardial cell depression is not a cyclic AMP-dependent process. Clin Res 41: 198A (Abst)Google Scholar
  112. 112.
    Chung MK, Gulick TS, Rotondo RE, Schreiner GF, Lange LG (1990) Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myoctyes: Impairment of signal transduction. Circ Res 67: 753–763PubMedCrossRefGoogle Scholar
  113. 113.
    Ungureanu-Longrois D, Balligand JL, Simmons WW, et al (1995) Induction of nitric oxide synthase activity by cytokines in ventricular myocytes is necessary but not sufficient to decrease contractile responsiveness to beta adrenergic agonists. Circ Res 77: 494–502PubMedCrossRefGoogle Scholar
  114. 114.
    Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH (1994) Role of nitric oxide in regulation of oxygen consumption in conscious dogs. Circ Res 75: 1086–1095PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • A. Kumar
  • J. E. Parrillo

There are no affiliations available

Personalised recommendations