Skip to main content

Clinical Effects of Cell-Free Hemoglobin, a Scavenger of Nitric Oxide, in Septic Shock

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 1997

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1997))

Abstract

Septic shock is characterized by fever, metabolic abnormalities, cardiovascular instability and multiple organ failure. The predominant physiological change that occurs in all septic shock patients is the loss of vascular tone. This in turn leads to hypotension and alterations in microvascular blood flow resulting in major organ dysfunction. It is important that alternatives be found to currently available vasopressor therapy for septic shock. Recent studies [1–3] have shown that doses of norepinephrine needed to achieve recommended physiological endpoints lead to increased mortality presumably through non-specific excessive vasoconstriction of critical vascular beds resulting in secondary organ failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shoemaker WC, Appel PL, Kram HB, Waxman K, Tai-Shion L (1988) Prospective trial of supra-normal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1186

    Article  PubMed  CAS  Google Scholar 

  2. Boyd O, Grounds R, Bennett E. (1993) A randomized clinical trial of the effect of deliberate periopative increase of oxygen delivery on mortality in high risk surgical patients. J Am Med Assoc 270: 2699–2707

    Article  CAS  Google Scholar 

  3. Hayes M, Timmins A, Yau E (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330: 1717–1722.

    Article  PubMed  CAS  Google Scholar 

  4. Furchgott R, Zawadzki J (1980) The Obligatory role of endothelial cells in the relaxation of arterial smooth muscle by Acetylcholine. Nature 288: 373–376

    Article  PubMed  CAS  Google Scholar 

  5. Palmer R, Ferrige A, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    Article  PubMed  CAS  Google Scholar 

  6. Stuehr D, Griffith OW (1991) Mammalian nitric oxide synthases. Adv Enzymol 65: 287–346

    Google Scholar 

  7. Kilbourn RG, Belloni P (1990) Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst 82: 772–776

    Article  PubMed  CAS  Google Scholar 

  8. Ochoa J, Udekwu A, Billiar T (1991) Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214: 621–626

    Article  PubMed  CAS  Google Scholar 

  9. Ochoa J, Curti B, Peitzman A, et al (1992) Increased circulating nitrogen oxides after human tumor immunotherapy correlate with toxic hemodynamic changes. J Natl Cancer Inst 84: 864–867

    Article  PubMed  CAS  Google Scholar 

  10. Hibbs J, Westenfelder C, Taintor R, et al (1992) Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy. J Clin Invest 89: 867–877

    Article  PubMed  Google Scholar 

  11. Lee R, Lotze M, Skibber J, et al (1989) Cardiorespiratory effects of immunotherapy with interleukin-2. J Clin Oncol 7: 7–20

    PubMed  CAS  Google Scholar 

  12. Ognibene F, Rosenberg S, Skibber J, Shelhamer J, Lotze M, Parrillo J (1986) Interleukin-2 hemo-dynamics mimic septic shock. Clin Res 34: 413A (Abst)

    Google Scholar 

  13. Rosenberg SA, Lotze MT, Yang JC, et al (1989) Experience with the use of high-dose interleukin2 in the treatment of 652 cancer patients. Ann Surg, 210: 474–484.

    Article  PubMed  CAS  Google Scholar 

  14. Calandra T, Baumgartner J, Grau G, et al (1990) Prognostic values of tumor necrosis factor/ cachectin, interleukin-1, interferon-a, and interferon-y in the serum of patients with septic shock. J Infect Dis 161: 982–987

    Article  PubMed  CAS  Google Scholar 

  15. Boccoli G, Masciulli E, Ruggeri E, et al (1990) Adoptive immunotherapy of human cancer: The cytokine cascade and monocyte activation following high-dose interleukin-2 bolus treatment. Cancer Res 50: 5795–5800

    PubMed  CAS  Google Scholar 

  16. Lorente JA, Landin LL, De Pablo R, Renes E, Liste D (1993) L-arginine pathway in the sepsis syndrome. Crit Care Med. 21: 1287–1295

    Article  PubMed  CAS  Google Scholar 

  17. Sharma V, Ranney T (1978) The dissociation of NO from nitrosyhemoglobin. J Biol Chem 18: 6467–6472

    Google Scholar 

  18. Sharma V, Traylor T, Gardiner R, Mizukami H (1987) Reaction of nitric oxide with heme proteins and model compounds of hemoglobin. Biochem 26: 3837–3843

    Article  CAS  Google Scholar 

  19. Addison A, Stephanos J (1986) Nitrosyliron (III) hemoglobin: Autoreduction and spectroscopy. Biochem 25: 4104–4113

    Article  CAS  Google Scholar 

  20. Ignarro LJ, Porenta G, Brunken R, Tillisch J (1991) Pharmacology of endothelium-derived nitric oxide and nitrovasodilators. West J Med 154: 51–62

    PubMed  CAS  Google Scholar 

  21. Kosaka H, Watanabe M, Yoshihara H (1992) Detection of nitric oxide production in lipopolysaccharide-treated rats by ESR using carbon monoxide hemoglobin. Biochem Biophys Res Comm 184: 1119–1124

    Article  PubMed  CAS  Google Scholar 

  22. Westenberger U, Thanner S, Ruf H (1990) Formation of free radicals and nitric oxide derivative of hemoglobin in rats during septic shock. Free Rad, Res Comm 11: 167–178

    Article  CAS  Google Scholar 

  23. Jia L, Bonaventura C, Bonaventura J, Stamler J (1996) S-nitrosohemoglobin: A dynamic activity of blood involved in vascular control. Nature 380: 221–237

    Article  PubMed  CAS  Google Scholar 

  24. Fleming I, Gray G, Julou-Schaeffer G, Parratt J, Schott C, Stoclet J (1990) Impaired vascular reactivity in the rat following endotoxin treatment can be endothelium independent, yet involves the L-arginine pathway. J Physiol 423: 18 P

    Google Scholar 

  25. Gray G, Julou-Schaeffer G, Oury K, Fleming I, Parratt J, Stoclet J (1990) An L-arginine derived factor mediates endotoxin-induced vascular hyposensitivity to calcium. Eur J Pharmacol 191: 89–92

    Article  PubMed  CAS  Google Scholar 

  26. Julou-Schaeffer G, Gray G, Fleming I, Schott C, Parratt J, Stoclet J (1990) Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 259: H1038 - H1043

    PubMed  CAS  Google Scholar 

  27. Petros A, Bennett D, Valiance P (1991) Effects of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 338: 1557–1558

    Article  PubMed  CAS  Google Scholar 

  28. Kilbourn RG, Joly G, Cashon B, DeAngelo J, Bonaventura J (1994) Cell-free hemoglobin reverses the endotoxin-mediated hyporesponsivity of rat aortic rings to a-adrenergic agents. Biochem Biophys Research Comm 199: 155–162

    Article  CAS  Google Scholar 

  29. Hibbs J, Taintor R, Vavrin Z (1987) Macrophage cytotoxicity: Role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235: 473–476

    Article  PubMed  CAS  Google Scholar 

  30. Kilbourn R, Gross S, Levi R, Lodato R (1990) Tumor necrosis factor-induced hypotension is caused by endothelium-derived relaxing factor. Proc Am Assoc Cancer Res 31: 298 (Abst)

    Google Scholar 

  31. Kilbourn R, Owen-Schaub L, Griffith O, Logothetis C (1992) Interleukin-2 mediated hypotension in dogs is reversed by N“-monomethyl-L-arginine (NMA), an inhibitor of nitric oxide (NO) formation. Am Assoc Cancer Res, 33: 328 (Abst)

    Google Scholar 

  32. Kilbourn RG, Jubran A, Gross SS, et al (1990) Reversal of endotoxin-mediated shock by NGmethyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophys Res Commun 172: 1132–1138

    Article  PubMed  CAS  Google Scholar 

  33. Bone H, Traber L, Schenarts P, Spauding T, Traber D (1995) Hemodynamic effects of pyridoxylated hemoglobin polyoxyethylene conjungate (PHP) in conscious sheep during septic shock. Anesthesiology 83: A232 (Abst)

    Google Scholar 

  34. Malcolm D, Hamilton I, Schultz S, Cole F, Burhop K (1994) Characterization of the hemodynamic response to intravenous diaspirin cross-linked hemoglobin solution in rats. Artif Cells Blood Sustit Immobil Biotechnol 22: 91–107

    Article  CAS  Google Scholar 

  35. Iwashita V (1995) Hemoglobin conjurgated with polyoxyethylene. In artificial red cells. In: Tsuchida E (ed) John Wiley and Sons, pp 151–176

    Google Scholar 

  36. Kida Y, Iwata S, Gyoutoku Y, Yamakawa T, Nishi K (1991) Vascular responsiveness to various vasoactive substances after exchange transfusion with pyridoxylated hemoglobin polyoxyethylene conjurgate (PHP) solution in anesthetized rats. Artif Organs 15: 5–14

    Article  PubMed  CAS  Google Scholar 

  37. Malchesky P, Takahashi T, Iwaski K, Harasaki H, Nose Y (1990) Conjurgated human hemoglobin as a physiological oxygen carrier-pyridoxylated hemoglobin polyoxyethylene conjugate (PHP). Artif. Organs 13: 442–450

    CAS  Google Scholar 

  38. Yabuki A, Yamaji K, Ohki H, Iwashita Y (1990) Characterization of pyridoxylated hemoglobin polyoxyethylene conjurgate as a physiological oxygen carrier. Transfusion 30: 516–520

    Article  PubMed  CAS  Google Scholar 

  39. Kilbourn R, Fonseca G, Griffith O, et al (1995) NG-methyl-L-arginine, an inhibitor of nitric oxide synthase that reverses interleukin-2 induced hypotension. Crit Care Med 23: 1018–1024

    Article  PubMed  CAS  Google Scholar 

  40. Rhea G, Bodenham A, Mallick A, Prebelski R, Daily E (1996) Vasopressor effects of diaspirin cross-linked hemoglobin in critically ill patients. Crit Care Med 26: A64 (Abst)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kilbourn, R.G., DeAngelo, J., Bonaventura, J. (1997). Clinical Effects of Cell-Free Hemoglobin, a Scavenger of Nitric Oxide, in Septic Shock. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1997. Yearbook of Intensive Care and Emergency Medicine, vol 1997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13450-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13450-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13452-8

  • Online ISBN: 978-3-662-13450-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics