Advertisement

Inflammatory Responses During Human Endotoxemia

  • D. Pajkrt
  • T. van der Poll
  • S. J. H. van Deventer
Conference paper
  • 93 Downloads
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1997)

Abstract

Sepsis may be defined as a systemic inflammatory response to an infection, characterized by alterations in temperature, leukocytosis, hypotension, hypoperfusion with tissue injury and often organ failure, frequently resulting in death. The last 30 years, the incidence of sepsis and septic shock has continued to increase to almost half a million cases in the United States per year, with a mortality of 35% [1]. Although sepsis may be associated with infection by all classes of microorganisms, including Gram-positive bacteria, fungi, parasites, protozoa and viruses, it is most commonly caused by Gram-negative bacteria. Ample evidence indicates that endotoxin, the lipopolysaccharide part of the Gram-negative bacterial cell membrane, is importantly involved in the clinical syndrome of Gram-negative sepsis [2]. Administration of endotoxin to man elicits a systemic inflammatory response with many features of sepsis, including release of cytokines, and activation of leukocytes and the coagulation and fibrinolytic system [3].

Keywords

Tissue Factor Expression Lipopolysaccharide Binding Protein Endotoxin Tolerance Endotoxin Administration Experimental Endotoxemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kreger BE, Craven DE, McCabe WR (1980) Gram-negative bacteremia IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 68: 344–355PubMedCrossRefGoogle Scholar
  2. 2.
    Van Deventer SJH, Buller HR, ten Cate JW, Sturk A, Pauw W (1988) Endotoxaemia: An early predictor of septicaemia in febrile patients. Lancet 1: 605–608PubMedCrossRefGoogle Scholar
  3. 3.
    Van Deventer SJ, Buller HR, ten Cate JW, Aarden LA, Hack CE, Sturk A (1990) Experimental endotoxemia in humans: Analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76: 2520–2526PubMedGoogle Scholar
  4. 4.
    Westphal O, Westphal U, Sommer T (1975) The history of pyrogen research. In: Agarwal MK (ed) Bacterial Antigens and Host Response, pp 221–239Google Scholar
  5. 5.
    Billroth Th (1862) Beobachtungsstudien über das Wundfeber und accidentelle Wund-Krankheiten. Arch Klin Chir 2: 578–667Google Scholar
  6. 6.
    Billroth Th (1874) Untersuchungen über die Vegetationsformen von Cocco-bacteria und den Anteil, welchen sie an der Entstehung und Verbreitung der accidentellen Wundkrankheit heben. Arch Exp Pathol Pharmacol 1: 206–209Google Scholar
  7. 7.
    Brieger L, Fraenkel C (1890) Untersuchungen über Bakteriengifte (Studies on bacterial toxins). Berliner Klin Wochenschr 27: 241–246Google Scholar
  8. 8.
    Büchner H (1890) Die chemische Reizbarkeit der Leukocyten und deren Beziehung zur Entzündung und Eiterung (The chemical stimulation of leukocytes and their relation to inflammation and to pus formation). Berliner Klin Wochenschr 27: 1084–1089Google Scholar
  9. 9.
    Wagner von Jauregg J (1912) Über die Behandlung der progressiven Paralyse mit Bakterien-Toxinen. Wiener Klin Wochenschr 25: 61–63Google Scholar
  10. 10.
    Nauts HC, Fowler GA, Bogatko A (1953) A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man. Acta Med Scand 276 (Suppl): 5–102Google Scholar
  11. 11.
    Florman AL, Holzman RS (1975) Non-specific enhancers of resistance in man. J Pediatr 87: 1094–1102PubMedCrossRefGoogle Scholar
  12. 12.
    Heyman A (1945) The treatment of neurosyphilis by continuous infusion of typhoid fever. Vener Dis Inform 26: 51–57Google Scholar
  13. 13.
    Greisman SE, Woodward TE, Hornick RB, Snyder MJ (1961) Role of endotoxin in typoid fever. Bull NY Acad Med 37: 493Google Scholar
  14. 14.
    Greisman SE, Woodward WE (1965) Mechanisms of endotoxin tolerance. III. The refractory state during continuous infusions with endotoxin. J Exp Med 121: 911–933PubMedCrossRefGoogle Scholar
  15. 15.
    Greisman SE (1983) Induction of endotoxin tolerance. In: NowotnyA (ed) Beneficial effects of endotoxins. Plenum Press, New York, pp 149–178CrossRefGoogle Scholar
  16. 16.
    Wolf SM (1973) Biological effects of bacterial endotoxin in man. J Infect Dis 128: S265CrossRefGoogle Scholar
  17. 17.
    Rietschel ET, Brade L, Lindner, B, Zähringer (1992) Biochemistry of lipopolysaccharides. In: Morrison DC, Ryan JL (eds) Bacterial endotoxic lipopolysaccharides Vol 1: Molecular biochemistry and cellular biology. CRC Press, Boca Raton, pp 3–42Google Scholar
  18. 18.
    Westphal O, Luderitz O (1954) Chemische Erforschung von Lipopolysacchariden Gram-negativer Bakterien. Angew Chem 66: 407CrossRefGoogle Scholar
  19. 19.
    Freudenberg MA, Meier-Dieter U, Staehelin T, Galanos C (1991) Analysis of LPS released from Salmonella abortus equi in human serum. Microb Pathogen 10: 93–104CrossRefGoogle Scholar
  20. 20.
    Prins JM, van Deventer SJH, Kuijper EJ, Speelman P (1994) Clinical relevance of an antibiotic-induced endotoxin release. Antimicrob Agents Chemot 38: 1211–1218CrossRefGoogle Scholar
  21. 21.
    Sturk A, Joop K, ten Cate JW, Thomas LLM (1985) Optimalization of a chromogenic assay for endotoxin in blood. In: ten Cate JW, Buller HR, Sturk A, Levin J (eds) Bacterial endotoxins: Structure, biomedical significance, and detection with the Limulus Amebocyte Lysate test. Alan R. Liss, New York, pp 117–136Google Scholar
  22. 22.
    Levin J, Tomasulo PA, Oser RS (1970) Detection of endotoxin in human blood and demonstration of an inhibitor. J Lab Clin Med 75: 903–911PubMedGoogle Scholar
  23. 23.
    Thomas LLM, Sturk A, Kahlé LH, ten Cate JW (1981) Quantitative endotoxin determination in blood with a chromogenic substrate. Clin Chem Acta 116: 63–68CrossRefGoogle Scholar
  24. 24.
    Van Deventer SJH, Pauw W, ten Cate JW, Janssen M, Buller HR, Sturk A (1987) Clinical evaluation in febrile patients of an optimized endotoxin assay in blood. Prog Clin Biol Res 231: 489–499PubMedGoogle Scholar
  25. 25.
    Hurley JC (1994) Concordance of endotoxemia with Gram-negative bacteremia in patients with Gram-negative sepsis. A Meta-analysis. J Clin Microbiol 32: 2120–2127PubMedGoogle Scholar
  26. 26.
    Brandtzaeg P, Bryn K, Kierulf P, et al (1992) Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy. J Clin Invest 89: 816–823PubMedCrossRefGoogle Scholar
  27. 27.
    Brandtzaeg P, Ovstebo R, Kierulf P (1995) Bacteremia and compartmentalization of LPS in meningococcal disease. In: Levin J, Alving CR, Munford R, Redl H (eds) Lipopolysaccharides from genes to therapy. Wiley, New York, pp 219–233Google Scholar
  28. 28.
    Schumann RR, Leong SR, Flaggs GW, et al (1990) Structure and function of lipopolysaccharide binding protein. Science 249: 1429–1431PubMedCrossRefGoogle Scholar
  29. 29.
    Geller DA, Kispert PH, Su GL, et al (1993) Induction of hepatocyte lipopolysaccharide binding protein in models of sepsis and the acute phase response. Arch Surg 128: 22–28PubMedCrossRefGoogle Scholar
  30. 30.
    Su GL, Freeswick PD, Geller DA, et al (1994) Molecular cloning, characterization, and tissue distribution of rat lipopolysaccharide binding protein: Evidence for extrahepatic expression. J Immunol 153: 743–752PubMedGoogle Scholar
  31. 31.
    Gallay P, Heumann D, le Roy D, Barras C, Glauser MP (1994) Mode of action of anti-lipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Proc Natl Acad Sci USA 91: 7922–7926PubMedCrossRefGoogle Scholar
  32. 32.
    Tobias PS, Ulevitch RJ (1993) Lipopolysaccharide binding protein and CD14 in LPS-dependent macrophage activation. Immunobiol 187: 227–232CrossRefGoogle Scholar
  33. 33.
    Elsbach P, Weiss J (1993) The bactericidal/permeability-increasing protein (BPI), a potent element in host-defense against Gram-negative bacteria and lipopolysaccharide. Immunobiology 187: 417–429PubMedCrossRefGoogle Scholar
  34. 34.
    Marra MN, Wilde CG, Griffith JE, Snable JL, Scott RW (1990) Bactericidal/permeabilityincreasing protein has endotoxin neutralizing activity. J Immunol 144: 662–666PubMedGoogle Scholar
  35. 35.
    Marra MN, Wilde CG, Collins MS, Snable JL, Thornton MB, Scott RW (1992) The role of bactericidal/permeability-increasing protein as a natural inhibitor of bacterial endotoxin. J Immunol 148: 532–537PubMedGoogle Scholar
  36. 36.
    Morrison DC (1990) Diversity of mammalian macromolecules which bind to bacterial lipopolysaccharides. In: Nowotny A, Spitser JJ, Ziegler EJ (eds) Cellular and molecular aspects of endotoxin reactions. Elseviers, Amsterdam, pp 183–189Google Scholar
  37. 37.
    Tobias PS, Soldau K, Gegner JA, Mintz D, Ulevitch RJ (1995) Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem 270: 10482–10488PubMedCrossRefGoogle Scholar
  38. 38.
    Ulevitch RJ, Tobias PS (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13: 437–457PubMedCrossRefGoogle Scholar
  39. 39.
    Wurfel MW, Kunitake ST, Lichenstein H, Kane JP, Wright SD (1994) Lipopolysaccharide (LPS) binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J Exp Med 180: 1025–1035PubMedCrossRefGoogle Scholar
  40. 40.
    Wurfel MM, Hailman E, Wright SD (1995) Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein. J Exp Med 181: 1743–1754PubMedCrossRefGoogle Scholar
  41. 41.
    Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431–1433PubMedCrossRefGoogle Scholar
  42. 42.
    Haziot A, Chan S, Ferrero E, Low MG, Silber R, Goyer SM (1988) The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a glycerophosphatidylinositol linkage. J Immunol 141: 547–552PubMedGoogle Scholar
  43. 43.
    Liu MK, Velit PH, Brownsey RW, Reiner NE (1994) CD14-dependent activation of protein kinase C and mitogen-activated protein kinases (p42 and p44) in human monocytes treated with bacterial lipopolysaccharide. J Immunol 153: 2642–2652PubMedGoogle Scholar
  44. 44.
    Durieux JJ, Vita N, Popescu O, et al (1994) The two soluble forms of lipopolysaccharide receptor CD14: Characteriztion and release by normal human monocytes. Eur J Immunol 24: 2006–2012PubMedCrossRefGoogle Scholar
  45. 45.
    Pugin J, Schürer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharidebinding protein and soluble CD 14. Immunology 90: 2744–2748Google Scholar
  46. 46.
    Emancipator K, Csako G, Elin RJ (1992) In vitro inactivation of bacterial endotoxin by human lipoproteins and apo-lipoproteins. Infect Immun 60: 596–601PubMedGoogle Scholar
  47. 47.
    Read TE, Harris HW, Grunfeld C, Feingold KR, Kane JP, Rapp JH (1993) The protective effect of serum lipoproteins against bacterial lipolysaccharide. European Heart J 14 (Suppl): 125–129Google Scholar
  48. 48.
    Baumberger C, Ulevitch RJ, Dayer JM (1991) Modulation of endotoxin activity of lipopolysaccharide by high-density lipoprotein. Pathobiology 59: 378–383PubMedCrossRefGoogle Scholar
  49. 49.
    Harris HW, Grunfeld C, Feingold KR, Rapp JH (1990) Human VLDL and chylomicrons can protect against endotoxin-induced death in mice. J Clin Invest 86: 696–701PubMedCrossRefGoogle Scholar
  50. 50.
    Feingold KR, Funk JL, Moser AH, Shigenaga JK, Rapp JH, Grunfeld C (1995) Role of circulating lipoproteins in protection from endotoxin activity. Infect Immun 63: 2041–2046PubMedGoogle Scholar
  51. 51.
    Parker TS, Levine DM, Chuang JCC, Laxer J, Coffin CC, Rubin AL (1995) Reconstituted high-density lipoprotein neutralizes Gram-negative bacterial lipolysaccharides in human whole blood. Infect Immun 63: 253–258PubMedGoogle Scholar
  52. 52.
    Hubsch AP, Powell FS, Lerch PG, Doran JE (1993) A reconstituted, apo-lipoprotein A-1 containing lipoprotein reduces tumor necrosis factor release and attenuates shock in endotoxemic rabbits. Circulatory Shock 40: 14–23PubMedGoogle Scholar
  53. 53.
    Cué JI, Di Piro JT, Brunner LJ, et al (1994) Reconstituted high-density lipoprotein inhibits physiologic and tumor necrosis factor a responses to lipopolysaccharide in rabbits. Arch Surg 129: 193–197PubMedCrossRefGoogle Scholar
  54. 54.
    Pajkrt D, Doran JE, Koster F, et al (1997) Anti-inflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med (In press)Google Scholar
  55. 55.
    Suffredini AF, Fromm FE, Parker MM, et al (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321: 280–287PubMedCrossRefGoogle Scholar
  56. 56.
    De Winter R, von der Möhlen MAM, van Lieshout H, et al (1995) Protection of an endotoxin induced hyperdynamic circulatory state in humans by a recombinant endotoxin-binding protein (rBPI23). J Inflamm 45: 193–206PubMedGoogle Scholar
  57. 57.
    Taveira da Silva AM, Kaulbach HC, Chuidian FS, Lambert DR, Suffredini AF, Danner RL (1993) Brief report: Shock and multiple organ dysfunction after self-administration of Salmonella endotoxin. N Engl J Med 328: 1457–1460PubMedCrossRefGoogle Scholar
  58. 58.
    Suffredini AF, Shelhamer JH, Neumann RD, Brenner M, Baltaro RJ, Parillo JE (1992) Pulmonary and oxygen transport effects of intravenously administered endotoxin in normal humans. Am Rev Respir Dis 145: 1398–1403PubMedGoogle Scholar
  59. 59.
    Pajkrt D, Tiel-van Buul MMC, Jansen J, Lagerwaard A, van Deventer SJH (1996) G-CSF enhances TNF production and neutrophil activation but blocks granulocyte recruitment in lungs and liver in human endotoxemia. In: European Cytokine Network, Sixth International TNF Congress (Abst )Google Scholar
  60. 60.
    Pajkrt D, Cutler D, Affrime MB, Tiel-van Buul MMC, Van Deventer SJH (1996) Recombinant human IL-10 (rhulL-10) reduces cytokine release and granulocyte recruitment in lungs in human endotoxemia. Proceedings of 36th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) (In press) (Abst)Google Scholar
  61. 61.
    Fong Y, Lowry SF (1990) Tumor necrosis factor in the pathophysiology of infection and sepsis. Clin Immunol Immunopathol 55: 157–170PubMedCrossRefGoogle Scholar
  62. 62.
    Beutler B, Grau GE (1993) Tumor necrosis factor in the pathogenesis of infectious diseases. Crit Care Med 21: S423–5435PubMedCrossRefGoogle Scholar
  63. 63.
    Dinarello CA (1994) The biological properties of interleukin-1. Eur Cytokine Netw 5: 517–531PubMedGoogle Scholar
  64. 64.
    Chignard M, Renesto P (1994) Proteinases and cytokines in neutrophil and platelet interactions in vivo. Possible relevance to the adult respiratory distress syndrome. Ann NY Acad Sci 725: 309–322PubMedCrossRefGoogle Scholar
  65. 65.
    Fujishima S, Aikawa N (1995) Neutrophil-mediated tissue injury and its modulation. Intensive Care Med 21: 277–285PubMedCrossRefGoogle Scholar
  66. 66.
    Levi M, ten Cate H, van der Poll T, van Deventer SJH (1993) Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA 270: 975–979PubMedCrossRefGoogle Scholar
  67. 67.
    Gamble JR, Harlan JM, Klebanoff SJ, Vadas MA (1985) Stimulation of the adherence of neutrophils to umbilical vein endothelium by recombinant tumor necrosis factor. Proc Natl Acad Sci USA 82: 8667–8671PubMedCrossRefGoogle Scholar
  68. 68.
    Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178PubMedCrossRefGoogle Scholar
  69. 69.
    Beutler B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effects of endotoxin. Science 229: 869–871PubMedCrossRefGoogle Scholar
  70. 70.
    Michie HR, Manogue KR, Spriggs DR et al (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318: 1481–1486PubMedCrossRefGoogle Scholar
  71. 71.
    Martich GD, Danner RL, Ceska M, Suffredini AF (1991) Detection of interleukin-8 and tumor necrosis factor in normal humans after intravenous endotoxin: The effect of anti-inflammatory agents. J Exp Med 173: 1021–1024PubMedCrossRefGoogle Scholar
  72. 72.
    Sylvester I, Suffredini AF, Boujoukos AJ, et al (1993) Neutrophil attractant protein-1 and monocyte chemoattractant protein-1 in human serum. J Immunol 151: 3292–3298PubMedGoogle Scholar
  73. 73.
    Suffredini AF, Reda D, Banks SM, Tropea M, Agosti JM, Miller R (1995) Effects of recombinant dimeric TNF receptor on human inflammatory responses following intravenous endotoxin administration. J Immunol 155: 5038–5045PubMedGoogle Scholar
  74. 74.
    Van der Poll T, Levi M, van Deventer SJH, et al (1994) Differential effects of anti-tumor necrosis factor antibodies on systemic inflammatory responses in experimental endotoxemia in chimpanzees. Blood 83: 446–451PubMedGoogle Scholar
  75. 75.
    Van der Poll T, Levi M, Hack CE, et al (1994) Elimination of interleukin-6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. J Exp Med 179: 1253–1259PubMedCrossRefGoogle Scholar
  76. 76.
    Spinas GA, Bloesch D, Kaufmann MT, Keller U, Dayer JM (1990) Induction of plasma inhibitors of interleukin-1 and TNF-a activity by endotoxin administration to normal humans. Am J Physiol 259: R993PubMedGoogle Scholar
  77. 77.
    Van der Poll T, Jansen J, van Leenen D, et al (1993) Release of soluble receptors for tumor necrosis factor in clinical sepsis and experimental endotoxemia. J Infect Dis 168: 955–960PubMedCrossRefGoogle Scholar
  78. 78.
    Aderka D, Engelmann H, Maor Y, Brakebusch C, Wallach D (1992) Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med 175: 323–329PubMedCrossRefGoogle Scholar
  79. 79.
    Granowitz EV, Santos AA, Poutsiaka DD, et al (1991) Production of interleukin-1-receptor antagonist during experimental endotoxaemia. Lancet 338: 1423–1424PubMedCrossRefGoogle Scholar
  80. 80.
    Granowitz EV, Porat R, Mier JW, et al (1993) Hematologic and immunomodulatory effects of an interleukin-1 receptor antagonist coinfusion during low-dose endotoxemia in healthy humans. Blood 82: 2985–2990PubMedGoogle Scholar
  81. 81.
    Van Zee KJ, Coyle SM, Calvano SE, et al (1995) Influence of IL-1 receptor antagonist on the human response to endotoxemia. J Immunol 154: 1499–1507PubMedGoogle Scholar
  82. 82.
    Von der Möhlen MAM, Kimmings NA, Wedel N, et al (1995) Inhibition of endotoxin-induced cytokine release and neutrophil activation in humans using a recombinant endotoxin-binding protein (rBPI23). J Infect Dis 172: 144–151PubMedCrossRefGoogle Scholar
  83. 83.
    Kanazawa M, Ishizaka A, Hasegawa N, Suzuki Y, Yokoyama T (1992) Granulocyte colony-stimulating factor does not enhance endotoxin-induced acute lung injury in guinea pigs. Am Rev Respir Dis 145: 1030–1035PubMedCrossRefGoogle Scholar
  84. 84.
    Görgen I, Hartung T, Leist M, et al (1992) Granulocyte colony-stimulating factor treatment protects rodents against lipopolysaccharide-induced toxicity via suppression of systemic tumor necrosis factor-a. J Immunol 149: 918–924PubMedGoogle Scholar
  85. 85.
    Sartorelli KH, Silver GM, Gamelli RL (1991) The effect of granulocyte colony-stimulating factor (G-CSF) upon burn-induced defective neutrophil chemotaxis. J Trauma 31: 523–529PubMedCrossRefGoogle Scholar
  86. 86.
    Silver GM, Gamelli RL, O’Reilly M (1989) The beneficial effect of granulocyte colony-stimulating factor (G-CSF) in combination with gentamicin on survival after Pseudomonas burn wound infection. Surgery 106: 452–455PubMedGoogle Scholar
  87. 87.
    Wunderink RG, Leeper KV, Schein RMH, et al (1996) Clinical response to Filgrastim (r-methuGCSF) in pneumonia with severe sepsis. Am J Respir Crit Care Med 153 (Abst)Google Scholar
  88. 88.
    Nelson S, Farkas S, Fotheringham N, Ho H, Marrie T, Mohvahhed H (1996) Filgrastim in the treatment of hospitalized patients with community-acquired pneumonia. Am J Respir Crit Care Med 153 (Abst)Google Scholar
  89. 89.
    Hartung T, Döcke WD, Gartner F, et al (1995) Effect of G-CSF on ex vivo blood cytokine response in human volunteers. Blood 85: 2482–2489PubMedGoogle Scholar
  90. 90.
    Pollmächer T, Korth C, Mullington J, et al (1996) Effects of granulocyte-colony stimulating factor on plasma cytokine and cytokine receptor levels and on the in vivo host response to endotoxin in healthy men. Blood 87: 900–905PubMedGoogle Scholar
  91. 91.
    Pajkrt D, Tiel-van Buul MCM, Manten A, van der Poll T, van Deventer SJH (1996) Effect of GCSF on cytokine release and neutrophil function in human endotoxemia. Proceedings of the Fourth Conference of the International Endotoxin Society (In press) (Abst)Google Scholar
  92. 92.
    Marchant A, Devière J, Byl B, de Grootte D, Vincent JL, Goldman M (1994) Interleukin-l0 production during septicaemia. Lancet 343: 707–708PubMedCrossRefGoogle Scholar
  93. 93.
    Derkx B, Marchant A, Goldman M, Bijlmer R, van Deventer SJH (1995) High levels of interleukin10 during the initial phase of fulminant meningococcal septic shock. J Infect Dis 171: 229–232PubMedCrossRefGoogle Scholar
  94. 94.
    Ishida H, Hastings R, Thompson-Snipes L, Howard M (1993) Modified immunological status of anti-IL-10-treated mice. Cell Immunol 148: 371–384PubMedCrossRefGoogle Scholar
  95. 95.
    Howard M, Muchamuel T, Andrade S, Menon S (1993) Interleukin 10 protects mice from lethal endotoxemia. J Exp Med 177: 1205–1208PubMedCrossRefGoogle Scholar
  96. 96.
    Chernoff AE, Granowitz EV, Shapiro L, et al (1995) A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J Immunol 154: 5492–5499PubMedGoogle Scholar
  97. 97.
    Huhn RD, Radwanski E, O’Connell SM, et al (1996) Pharmacokinetics and immunomodulatory properties of intravenously administered recombinant human interleukin-10 in healthy volunteers. Blood 87: 699–705PubMedGoogle Scholar
  98. 98.
    Kato T, Murata A, Toda H, et al (1995) Interleukin-10 reduces mortality from severe peritonitis in mice. Antimicrob Agents Chemother 39: 1336–1340PubMedCrossRefGoogle Scholar
  99. 99.
    Van Laethem JL, Marchant A, Delvaux A, et al (1995) Interleukin 10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology 108: 1917–1922PubMedCrossRefGoogle Scholar
  100. 100.
    Mulligan MS, Jones ML, Vaporciyan AA, Howard MC, Ward PA (1993) Protective effects of IL-4 and IL-10 against immune complex-induced lung injury. J Immunol 151: 5666–5674PubMedGoogle Scholar
  101. 101.
    Shanley TP, Schmal H, Friedl HP, Jones ML, Ward PA (1995) Regulatory effects of intrinsic IL-10 in IgG immune complex-induced lung injury. J Immunol 154: 3454–3460PubMedGoogle Scholar
  102. 102.
    Ramani M, Ollivier V, Khechai F, et al (1993) Interleukin-10 inhibits endotoxin-induced tissue factor mRNA production by human monocytes. FEBS 334: 114–116CrossRefGoogle Scholar
  103. 103.
    Pradier O, Gérard C, Delvaux A, et al (1993) Interleukin-10 inhibits the induction of monocyte procoagulant activity by bacterial lipopolysaccharide. Eur J Immunol 23: 2700–2703PubMedCrossRefGoogle Scholar
  104. 104.
    Engelhardt R, Mackensen A, Galanos C, Andreesen R (1990) Biological response to intravenously administered endotoxin in patients with advanced cancer. J Biol Resp Mod 9: 480–491Google Scholar
  105. 105.
    Engelhardt R, Mackensen A, Galanos C (1991) Phase I trial of intravenously administered endotoxin (Salmonella abortus equi) in cancer patients. Cancer Res 51: 2524–2530PubMedGoogle Scholar
  106. 106.
    Grisham MB, Everse J, Janssen HF (1988) Endotoxemia and neutrophil activation in vivo. Am J Physiol 254: H1017 - H1022PubMedGoogle Scholar
  107. 107.
    Zimmerman GA, Renzette AD, Hill HR (1984) Granulocyte adherence in pulmonary and systemic arterial blood samples from patients with adult respiratory distress syndrome. Am Rev Respir Dis 129: 798–804PubMedGoogle Scholar
  108. 108.
    Tate RM, Repine JE (1983) Neutrophils and the adult respiratory distress syndrome. Am Rev Respir Dis 128: 552–559PubMedGoogle Scholar
  109. 109.
    Ley K, Tedder TF (1995) Interactions with vascular endothelium. New insights into selectinmediated attachment and rolling. J Immunol 155: 525–528PubMedGoogle Scholar
  110. 110.
    von Adrian UH, Chambers LD, Mc Evoy LM, Bargatze RF, Arfors KE, Butcher EC (1991) Two step model of leukocyte-endothelial cell interaction in inflammation: Distinct roles of LECAM-1 and the leukocyte 132 integrines in vivo. Proc Natl Acad Sci USA 88: 7538–7542CrossRefGoogle Scholar
  111. 111.
    Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules and inflammatory injury. FASEB J 8: 504–512PubMedGoogle Scholar
  112. 112.
    Spertini O, Kansas GS, Munro JM, Griffin JD, Tedder TF (1991) Regulation of leukocyte migration by activation of the leukocyte adhesion molecule-1 (LAM-1) selectin. Nature 349: 691–694PubMedCrossRefGoogle Scholar
  113. 113.
    Tedder TF, Steeber DA, Pizcueta P (1995) L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J Exp Med 181: 2259–2264PubMedCrossRefGoogle Scholar
  114. 114.
    Furie MB, Randolph GJ (1995) Chemokines and tissue injury. Am J Pathol 146: 1287–1301PubMedGoogle Scholar
  115. 115.
    Bussolino F, Camussi G (1995) Platelet-activating factor produced by endothelial cells. A molecule with autocrine and paracrine properties. Eur J Biochem 229: 327–337PubMedCrossRefGoogle Scholar
  116. 116.
    Windsor ACJ, Walsh CJ, Mullen PG, et al (1993) Tumor necrosis factor-a blockade prevents neutrophil CD18 receptor upregulation and attenuates acute lung injury in porcine sepsis without inhibition of neutrophil oxygen radical generation. J Clin Invest 91: 1459–1468PubMedCrossRefGoogle Scholar
  117. 117.
    Richardson RP, Rhyne CD, Fong Y, et al (1989) Peripheral blood leukocyte kinetics following in vivo lipopolysaccharide (LPS) administration to normal human subjects. Ann Surg 210: 239–245PubMedCrossRefGoogle Scholar
  118. 118.
    Van Deventer SJH, Hack CE, Wolbink GJ, et al (1991) Endotoxin-induced neutrophil activation. The role of complement revisited. Prog Clin Biol Res 367: 101–109PubMedGoogle Scholar
  119. 119.
    Von der Möhlen MAM, van der Poll T, Jansen J, Levi M, van Deventer SJH (1996) Release of bactericidal/permeability-increasing protein in experimental endotoxemia and clinical sepsis: Role of tumor necrosis factor. J Immunol 156: 4969–4973PubMedGoogle Scholar
  120. 120.
    Martich GD, van Dervort AL, Danner RL, Suffredini AF (1992) Intravenous endotoxin administration to normal humans primes neutrophils for an enhanced respiratory burst. Grit Care Med 20: S100Google Scholar
  121. 121.
    Alexander JW, Wixson D (1970) Neutrophil dysfunction and sepsis in burn injury. Surg Gynecol Obstet 130: 431–438PubMedGoogle Scholar
  122. 122.
    Fein AM, Grant MM, Niederman MS, Kantrowitz N (1991) Neutrophil-endothelial cell interaction in critical illness. Chest 99: 1456–1462PubMedCrossRefGoogle Scholar
  123. 123.
    Pixley RA, de la Cadena R, Page JD, et al (1993) The contact system contributes to hypotension but not to disseminated intravascular coagulation in lethal bacteremia. J Clin Invest 91: 61–68PubMedCrossRefGoogle Scholar
  124. 124.
    Nuijens JH, Huijbregtse CCM, Eerenberg-Belmer AJM, et al (1988) Quantification of plasma factor XII1–C1-inhibitor and kallikrein-C1-inhibitor complexes in sepsis. Blood 72: 184–188Google Scholar
  125. 125.
    Dela Cadena RA, Suffredini AF, Page JD, et al (1993) Activation of the kallikrein-kinin system after endotoxin administration to normal human volunteers. Blood 81: 3313–3317Google Scholar
  126. 126.
    Levi M, ten Cate H, Bauer KA, et al (1994) Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in a chimpanzee model. J Clin Invest 93: 114–120PubMedCrossRefGoogle Scholar
  127. 127.
    Biemond B, ten Cate H, Levi M, et al (1995) Complete inhibition of endotoxin-induced activation of coagulation in chimpanzees with a monoclonal antibody to factor VII/VIIa. Tromb Haemost 73: 223–230Google Scholar
  128. 128.
    Prydz H, Pettersen KS (1988) Synthesis of thromboplastin (tissue factor) by endothelial cells. Haemostasis 18: 215–223PubMedGoogle Scholar
  129. 129.
    Brox JH, Osterud B, Bjorklid E, Fenton JW II (1984) Production and availability of thromboplastin in endothelial cells: The effects of thrombin, endotoxin and platelets. Br J Haematol 57: 239–246PubMedGoogle Scholar
  130. 130.
    Bevilacqua MP, Pober JS, Majeau GR, Cotran RS, Gimbrone MA Jr (1984) Interleukin-1 (IL-1) induces biosynthesis and cell expression of procoagulant activity in human vascular endothelial cells. J Exp Med 160: 618–623PubMedCrossRefGoogle Scholar
  131. 131.
    Suffredini AF, Harpel PC, Parillo JE (1989) Promotion and subsequent inhibition of plasminogen activator after administration of intravenous endotoxin to normal subjects. N Engl J Med 320: 1165–1172PubMedCrossRefGoogle Scholar
  132. 132.
    Von der Möhlen MAM, van Deventer SJH, Levi M, et al (1995) Inhibition of endotoxin-induced activation of the coagulation and fibrinolytic pathways using a recombinant endotoxin-binding protein (rBPI23). Blood 85: 3437–3443PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • D. Pajkrt
  • T. van der Poll
  • S. J. H. van Deventer

There are no affiliations available

Personalised recommendations