Advertisement

Determinants of Outcome from Sepsis and Septic Shock

  • G. M. Wray
  • C. J. Hinds
Conference paper
  • 91 Downloads
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1997)

Abstract

Septic shock is the most common cause of death in intensive care units (ICU) [1]. Between 1979 and 1987, “septicemia” was the 13th most frequent cause of all deaths in North America [2] and the incidence of sepsis continues to rise. Despite the strenuous efforts of scientists and clinical investigators neither improved resuscitation and supportive treatment, nor adjunctive therapy aimed at modulating the inflammatory response, has significantly influenced mortality, which has changed little since the 1970’s [3]. A greater understanding of the physiological variables which influence outcome from sepsis and septic shock may assist in attempts to improve survival by providing further insights into the underlying pathophysiology, guiding the development of new experimental models, indicating potentially valuable areas for further research and suggesting new therapies. Such information might also enable the clinician to identify those patients at greatest risk who may need early or more aggressive intervention and could be used to guide treatment at the bedside.

Keywords

Septic Shock Mean Arterial Pressure Multiple Organ Dysfunction Syndrome Blood Lactate Level Sepsis Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parrillo JE, Parker MM, Natanson C, et al (1990) Septic shock in humans, advances in the understanding of pathogenesis, cardiovascular dysfunction and therapy. Ann Int Med 113: 227–240PubMedGoogle Scholar
  2. 2.
    Increase in National Hospital Discharge Survey rates for septicaemia–United States, 1979–1987 (1990) MMWR Morb Mortal Wkly Rep 39: 31–34Google Scholar
  3. 3.
    Parillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 330: 1471–1477Google Scholar
  4. 4.
    Groenveld ABJ, Bronsveld W, Thijs LG (1985) Hemodynamic determinants of mortality in human septic shock. Surgery 99: 140–153Google Scholar
  5. 5.
    Bernadin G, Pradier C, Tiger F, Deloffre P, Mattei (1996) Blood pressure and arterial lactate level are early indicators of short-term survival in human septic shock. Intensive Care Med 22: 17–25Google Scholar
  6. 6.
    Metrangolo L, Fiorillo M, Friedman G, et al (1995) Early hemodynamic course of septic shock. Crit Care Med 23: 1971–1975PubMedCrossRefGoogle Scholar
  7. 7.
    Parker MM, Shelhammer JH, Natanson C, Alling DW, Parillo JE (1987) Serial cardiovascular variables in survivors and non-survivors of human septic shock: Heart rate as an early predictor of prognosis. Crit Care Med 15: 923–929Google Scholar
  8. 8.
    D’Orio V, Mendes P, Saad G, Marcelle R (1990) Accuracy in early prediction of prognosis of patients with septic shock by analysis or simple indices: Prospective study. Crit Care Med 18: 1339–1345Google Scholar
  9. 9.
    Abraham E, Bland RD, Cobo JC, Shoemaker WC (1984) Sequential cardiorespiratory patterns associated with outcome in septic shock. Chest 85: 75–80PubMedCrossRefGoogle Scholar
  10. 10.
    Shoemaker WC, Montgomery ES, Kaplan E, Elwyn DH (1973) Physiologic patterns in surviving and non-surviving shock patients: Use of sequential cardiorespiratory variables in defining criteria for therapeutic goals and early warning of death. Arch Surg 106: 630–636Google Scholar
  11. 11.
    Shoemaker WC, Appel PL, Kram HB (1993) Hemodynamic and oxygen transport responses in survivors and non-survivors of high risk surgey. Crit Care Med 21: 977–990PubMedCrossRefGoogle Scholar
  12. 12.
    Shoemaker WC, Appel PL, Kram HB, Waxman, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high risk surgical patients. Chest 94: 1176–1186PubMedCrossRefGoogle Scholar
  13. 13.
    Edwards JD, Brown GCS, Nightingale P, Slater RM, Faragher EB (1989) Use of survivors’ cardiorespiratory values as therapeutic goals in septic shock. Crit Care Med 17: 1098–1103PubMedCrossRefGoogle Scholar
  14. 14.
    Tuchschmidt J, Fried J, Astiz M, Rackow E (1992) Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 102: 216–220PubMedCrossRefGoogle Scholar
  15. 15.
    Timmins AC, Hayes M, Yau E, Watson JD, Hinds CJ (1992) The relationship between cardiac reserve and survival in critically ill patients receiving treatment aimed at achieving supranormal oxygen delivery and consumption. Postgrad Med J 68: S34 - S40PubMedGoogle Scholar
  16. 16.
    Parker MM, Shelhamer JH, Bacharach SL, et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100: 483–490PubMedGoogle Scholar
  17. 17.
    Cunnion RE, Schaer GL, Parker MM, Natanson C, Parillo JE (1986) The coronary circulation in human septic shock. Circulation 73: 637–644PubMedCrossRefGoogle Scholar
  18. 18.
    Ognibene FP, Parker MM, Natanson C, Shelhammer JH, Parrillo JE (1988) Depressed left ventricular performance: Response to volume infusion in patients with sepsis and septic shock. Chest 93: 903–910Google Scholar
  19. 19.
    Parker MM, McCarthy KE, Ognibene FP, Parillo JE (1990) Right ventricular dysfunction and dilation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 93: 126–131CrossRefGoogle Scholar
  20. 20.
    Parker MM, Suffredini AF, Natanson C, Ognibene FP, Shelhammer JH, Parillo JE (1989) Responses of left ventricular function in survivors and non-survivors of septic shock. J Crit Care 4: 19–25CrossRefGoogle Scholar
  21. 21.
    Vincent JL, Gris P, Coffernils M, et al (1992) Myocardial depression characterizes the fatal course of septic shock. Surgery 111: 660–667PubMedGoogle Scholar
  22. 22.
    Tan LB, Littler WA (1990) Measurement of cardiac reserve in cardiogenic shock: Implications for prognosis and management. Br Heart J 64: 121–128Google Scholar
  23. 23.
    Yu M, Levy M, Smith P, et al (1993) Effect of maximising oxygen delivery on morbidity and mortality rates in critically ill patients: A prospective, randomised, controlled study. Crit Care Med 21: 830–838Google Scholar
  24. 24.
    Hinds CJ, Watson D (1995) Manipulating haemodynamics and oxygen transport in critically ill patients. N Engl J Med 333: 1074–1075PubMedCrossRefGoogle Scholar
  25. 25.
    Bishop MH, Shoemaker WC, Appel PL, et al (1995) Prospective randomised trial of survivor values of cardiac index, oxygen delivery and oxygen consumption as resuscitation endpoints in severe trauma. J Trauma 38: 780–787PubMedCrossRefGoogle Scholar
  26. 26.
    Boyd O, Grounds M, Bennet D (1993) A randomised clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high risk surgical patients. JAMA 270: 2699–2707CrossRefGoogle Scholar
  27. 27.
    Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330: 1717–1722PubMedCrossRefGoogle Scholar
  28. 28.
    Gattinoni L, Brazzi L, Pelosi P, et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333: 1025–1032PubMedCrossRefGoogle Scholar
  29. 29.
    Hayes, MA Yau EH, Timmins AC, Hinds CJ, Watson D (1993) Response of critically ill patients to treatment aimed at achieving supranormal oxygen delivery and consumption. Relationship to outcome. Chest 103: 886–895Google Scholar
  30. 30.
    Hayes MA, Timmins AC, Yau EH, Palazzo M, Watson D, Hinds CJ (1997) Oxygen transport patterns in patients with sepsis syndrome or septic shock: Influence of treatment and relationship to outcome. Crit Care Med (In press)Google Scholar
  31. 31.
    Wilson RF, Christenson C, LeBlanc LP (1972) Oxygen consumption in critically ill patients. Ann Surg 176: 801–804PubMedCrossRefGoogle Scholar
  32. 32.
    Hankeln K, Senker R, Schwarten J, et al (1987) Evaluation of prognostic indices based on hemodynamic and oxygen transport variables in shock patients with adult respiratory distress syndrome. Crit Care Med 15: 1–7PubMedCrossRefGoogle Scholar
  33. 33.
    Moore F, Haenal J, Moore E, et al (1992) Incommensurate oxygen consumption in response to maximal oxygen availability predicts post-injury multiple organ failure. J Trauma 33: 58–67PubMedCrossRefGoogle Scholar
  34. Vallet B, Chopin C, Curtis JE, et al (1993) Prognostic value of the dobutamine test in patients with sepsis syndrome and normal lactate values: A prospective, multicenter study. Crit Care Med 21: 1868–1875Google Scholar
  35. 35.
    Rhodes A, Malagon I, Lamb FJ, Newman P, Grounds RM, Bennet ED (1996) Failure to increase oxygen consumption is a predictor of mortality in septic patients. Intensive Care Med 22: 5274 (Abst)Google Scholar
  36. 36.
    Bihari D, Smithies M, Gimson A, et al (1987) The effect of vasodilation with prostacyclin on oxygen delivery and uptake in critically ill patients. N Engl J Med 317: 397–403PubMedCrossRefGoogle Scholar
  37. 37.
    Palazzo MG, Suter PM (1991) Delivery-dependent oxygen consumption in patients with septic shock: Daily variations, relationship with outcome and the sick-euthyroid syndrome. Intensive Care Med 17: 325–332Google Scholar
  38. 38.
    Gutierrez G, Pohil R (1986) Oxygen consumption is linearly related to oxygen supply in critically ill patients. J Crit Care 1: 45–53CrossRefGoogle Scholar
  39. 39.
    Archie JP (1981) Mathematical coupling of data. Ann Surg 193: 296–303PubMedCrossRefGoogle Scholar
  40. 40.
    Villar J, Slutsky A, Hew E, et al (1990) Oxygen transport and oxygen consumption in critically ill patients. Chest 98: 687–692PubMedCrossRefGoogle Scholar
  41. 41.
    Bakker J, Coffernils M, Leon M, Gris P, Vincent JL (1991) Blood lactate levels are superior to oxygen-derived variables in predicting outcome in septic shock. Chest 99: 956–962PubMedCrossRefGoogle Scholar
  42. 42.
    Marik PE (1993) Gastric intramucosal pH. A better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest 104: 225–229PubMedCrossRefGoogle Scholar
  43. 43.
    Gutierrez G, Wulf ME (1996) Lactic acidosis in sepsis: A commentary. Intensive Care Med 22: 6–16Google Scholar
  44. 44.
    Marecaux G, Pinsky MR, Dupont E, Kahn RJ, Vincent JL (1996) Blood lactate levels are better prognostic indicators than TNF and IL-6 levels in patients with septic shock. Intensive Care Med 22: 404–408PubMedCrossRefGoogle Scholar
  45. 45.
    Friedman G, Berlot G, Kahn RJ, Vincent JL (1995) Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23: 1184–1193PubMedCrossRefGoogle Scholar
  46. 46.
    Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surgery 171: 221–226CrossRefGoogle Scholar
  47. 47.
    Fiddian-Green RG, Mc Cough E, Pittenger G, Rothman ED (1983) Predictive value of intramural pH and other risk factors for massive bleeding from stress ulceration. Gastroenterology 85: 613–620PubMedGoogle Scholar
  48. 48.
    Gys T, Hubens A, Neels H, Lauwers LF, Peeters R (1988) Prognostic value of gastric intramucosal pH in surgical intensive care patients. Crit Care Med 16: 1222–1224PubMedCrossRefGoogle Scholar
  49. 49.
    Gutierrez G, Bismar H, Dantzker DR, Silva N (1992) Comparison of gastric intramucosal pH with measures of oxygen transport and consumption in critically ill patients. Crit Care Med 20: 451–457PubMedCrossRefGoogle Scholar
  50. 50.
    Maynard N, Bihari D, Beale R, et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270: 1203–1210CrossRefGoogle Scholar
  51. 51.
    Doglio G, Pusajo JF, Egurrola MA, et al (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19: 1037–1040PubMedCrossRefGoogle Scholar
  52. 52.
    Blackwell TS, Christman JW (1996) Sepsis and cytokines: A current status. Br J Anaesth 77: 110–117Google Scholar
  53. 53.
    Girardin E, Grau GE, Dayer JM, et al and the J5 Study Group (1988) Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med 319: 397–400Google Scholar
  54. 54.
    Waage A, Halstensen A, Espevik T (1987) Association between tumor necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet 1: 335–337Google Scholar
  55. 55.
    Martin C, Saux P, Mege JL, Perrin G, Papazian L, Gouin F (1994) Prognostic values of serum cytokines in septic shock. Intensive Care Med 20: 272–277PubMedCrossRefGoogle Scholar
  56. 56.
    Pinsky MR, Vincent JL, Alegre M, Khan RJ, Dupont E (1993) Serum cytokine levels in human septic shock. Chest 103: 565–575PubMedCrossRefGoogle Scholar
  57. 57.
    Casey L, Balk R, Bone R (1993) Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119: 771–778PubMedGoogle Scholar
  58. 58.
    Calandra T, Baumgartner JD, Grau GE, et al (1990) Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-a, and interferon-y in the serum of patients with septic shock. J Infect Dis 161: 982–987PubMedCrossRefGoogle Scholar
  59. 59.
    Pilz G, Fraunberger P, Appel R, et al (1996) Early prediction of outcome in score-identified post-cardiac surgical patients at high risk for developing sepsis, using soluble tumor necrosis factor receptor-p55 concentrations. Crit Care Med 24: 596–599PubMedCrossRefGoogle Scholar
  60. 60.
    Froon AHM, Bemelmans MHA, Greve JW, van der Linden CJ, Buurman WA (1994) Increased plasma concentrations of soluble tumor necrosis factor receptors in sepsis syndrome: Correlation with plasma creatinine values. Crit Care Med 22: 803–809Google Scholar
  61. 61.
    Calvano SE, van der Poll T, Coyle SM, Barie PS, Moldawer LL, Lowry SF (1996) Monocyte tumor necrosis factor receptor levels as a predictor of risk in human sepsis. Arch Surg 131: 434–437PubMedCrossRefGoogle Scholar
  62. 62.
    Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in serum from patients with meningoccocal septic shock. J Exp Med 169: 333–338PubMedCrossRefGoogle Scholar
  63. 63.
    Hack CE, De Groot ER, Felt-Bersma RI, et al (1989) Increased plasma levels of interleukin-6 in sepsis. Blood 74: 1704–1710PubMedGoogle Scholar
  64. 64.
    Damas P, Ledoux D,Nys M, et al (1992) Cytokine serum level during severe sepsis human IL-6 as a marker of severity. Ann Surg 215: 356–362CrossRefGoogle Scholar
  65. 65.
    Hack CE, Hart M, Strack von Schijndel RJM, et al (1992) Interleukin-8 in sepsis: Relation to shock and inflammatory mediators. Infection Immunity 60: 2835–2842Google Scholar
  66. 66.
    Marty C, Misset B, Tamion F, Fitting C, Carlet J, Cavaillon JM (1994) Circulating interleukin-8 concentrations in patients with multiple organ failure of septic and non-septic origin. Crit Care Med 22: 673–679PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • G. M. Wray
  • C. J. Hinds

There are no affiliations available

Personalised recommendations