Extracorporal Techniques to Accelerate Clearance of TNF-α and IL-1β in Septic Patients

  • M. van Deuren
  • J. W. van der Meer
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1997)


The initial phase of septic shock is characterized by a generalized production of proinflammatory humoral mediators, which belong to the cytokine network, complement-system, contact- and fibrinolytic system. At the same time there is activation of neutrophils, mononuclear cells, endothelial cells, and other cells of the host defense system.


Septic Shock Septic Patient Plasma Exchange Meningococcal Disease Meningococcal Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waage A, Halstensen A, Espevik T (1987) Association between tumour necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet I: 355–357Google Scholar
  2. 2.
    Girardin E, Grau GE, Dayer J-M, et al and the J5 Study Group (1988) Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Eng J Med 319: 397–400Google Scholar
  3. 3.
    Calandra T, Baumgartner J-D, Grau GE, et al (1990) Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-a, and interferon-i in the serum of patients with septic shock. J Infect Dis 161: 982–987PubMedCrossRefGoogle Scholar
  4. 4.
    Casey LC, Balk RA, Bone RC (1993) Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119: 771–778PubMedGoogle Scholar
  5. 5.
    Engelberts I, Stephens S, Francot GJM, van der Linden CJ, Buurman WA (1991) Evidence for different effects of soluble TNF-receptors on various TNF measurements in human biological fluids. Lancet 338: 515–516PubMedCrossRefGoogle Scholar
  6. 6.
    Cannon JG, Nerad JL, Poutsiaka DD, Dinarello CA (1993) Measuring cytokines. J Appl Physiol 75: 1897–1902PubMedGoogle Scholar
  7. 7.
    Raqib R, Lindberg AA, Wretland B, Bardhan PK, Andersson U, Andersson J (1995) Persistence of local cytokine production in shigellosis in acute and convalescent stages. Infect Immun 63: 289–296PubMedGoogle Scholar
  8. 8.
    Marks JD, Marks CB, Luce JM, et al (1990) Plasma tumor necrosis factor in patients with septic shock. Mortality rate, incidence of adult respiratory distress syndrome, and effects of methylprednisolone administration. Am Rev Respir Dis 141: 94–97Google Scholar
  9. 9.
    Kornelisse RF, Hazelzet JA, Savelkoul HFJ, et al (1996) The relationship between plasminogen activator inhibitor-1 and pro-inflammatory and counter-inflammatory mediators in children with meningococcal septic shock. J Infect Dis 173: 1148–1156PubMedCrossRefGoogle Scholar
  10. 10.
    Waage A, Aasen AO (1992) Different role of tumor necrosis factor in septic shock in relation to meningococcal disease and surgery/polytrauma. Immunol Rev 127: 221–230PubMedCrossRefGoogle Scholar
  11. 11.
    Granowitz EV, Santos AA, Poutsiaka DD, et al (1991) Production of interleukin- 1-receptor antagonist during experimental endotoxaemia. Lancet 338: 1423–1424PubMedCrossRefGoogle Scholar
  12. 12.
    Kuhns DB, Alvord WG, Gallin J (1995) Increased circulating cytokines, cytokine antagonists, and E-selectin after intravenous administration of endotoxin in humans. J Infect Dis 171: 145–152PubMedCrossRefGoogle Scholar
  13. 13.
    Rogy MA, Coyle SM, Oldenburg HS, et al (1994) Persistently elevated soluble tumor necrosis factor receptor and interleukin-1 receptor antagonist levels in critically ill patients. J Am Coll Surg 178: 132–138PubMedGoogle Scholar
  14. 14.
    Van Deuren M, Van der Ven-Jongekrijg J, Bartelink AKM, Van Dalen R, Sauerwein RW, Van der Meer JWM (1995) Correlation between pro-inflammatory cytokines and anti-inflammatory mediators and the severity of disease in meningococcal infections. J Infect Dis 172: 433–439Google Scholar
  15. 15.
    Smith RA, Baglioni C (1987) The active form of tumor necrosis factor is a trimer. J Biol Chem 262: 6951–6954PubMedGoogle Scholar
  16. 16.
    Olsson I, Gatanaga T, Gullberg U, Lantz M, Granger GA (1993) Tumour necrosis factor ( TNF) binding proteins (soluble TNF receptor forms) with possible roles in inflammation and malignancy. Eur Cytokine Netw 4: 169–180Google Scholar
  17. 17.
    Tennesen E, Hansen MB, Höhndorf K, et al (1993) Cytokines in plasma and ultrafiltrate during continuous arteriovenous haemofiltration. Anesth Intensive Care 21: 752–758Google Scholar
  18. 18.
    Bellomo R, Tipping P, Boyce N (1993) Continuous veno-venous hemofiltration with dialysis removes cytokines from the circulation of septic patients. Crit Care Med 21: 522–526PubMedCrossRefGoogle Scholar
  19. 19.
    Goldfarb S, Golper TA (1994) Proinflammatory cytokines and hemofiltration membrane. J Am Soc Nephrol 5: 228–232PubMedGoogle Scholar
  20. 20.
    Bellomo R, Tipping P, Boyce N (1995) Interleukin-6 and interleukin-8 extraction during continuous venovenous hemodiafiltration in septic acute renal failure. Renal Failure 17: 457–466PubMedCrossRefGoogle Scholar
  21. 21.
    Best C, Walsh J, Sinclair J, Beattle J (1996) Early haemo-diafiltration in meningococcal septicaemia. Lancet 347: 202–205PubMedCrossRefGoogle Scholar
  22. 22.
    Chapman PB, Lester TJ, Casper ES, et al (1987) Clinical pharmacology of recombinant human tumor necrosis factor in patients with advanced cancer. J Clin Oncology 5: 1942–1951Google Scholar
  23. 23.
    Blick M, Sherwin SA, Rosenblum M, Guttermen J (1987) Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res 47: 2986–2989PubMedGoogle Scholar
  24. 24.
    Gamm H, Lindemann A, Mertelsmann R, Herrmann F (1991) Phase I trial of recombinant human tumor necrosis factor alpha in patients with advanced malignancy. Eur J Cancer 27: 856–863PubMedCrossRefGoogle Scholar
  25. 25.
    Poole S, Bird TA, Selkirk S, et al (1990) Fate of injected interleukin 1 in rats: Sequestration and degradation in the kidney. Cytokine 2: 416–422Google Scholar
  26. 26.
    Reimers J, Wogensen LD, Welinder B, et al (1991) The pharmacokinetics, distribution and degradation of human recombinant interleukin 1 beta in rats. Scan J Immunol 34: 597–610CrossRefGoogle Scholar
  27. 27.
    Gray JE, Peterman V, Neweton R, King SY, Pieniaszek HJ Jr (1993) ELISA determination and preliminary pharmacokinetics of modified rIL-1 beta in dogs. Res Commun Chem Pathol Pharmacol 81: 233–241PubMedGoogle Scholar
  28. 28.
    Nerad JL, Griffiths JK, Van der Meer JWM, et al (1992) Interleukin-lß (IL-1ß), IL-1 receptor antagonist, and TNF-a production in whole blood. J Leukocyte Biol 52: 687–692PubMedGoogle Scholar
  29. 29.
    Van Deuren M, Van der Ven-Jongekrijg J, Keuter M, Demacker PNM, Van der Meer JWM (1993) Cytokine production in whole blood cultures. J Int Fed Clin Chem 5: 216–221Google Scholar
  30. 30.
    Netea MG, Drenth JPH, De Bont N, et al (1997) A quantitative reverse transcriptase polymerase chain reaction method for measurement of mRNA tor TNF-a and IL-1ß in whole blood cultures. Cytokine (In press)Google Scholar
  31. 31.
    Van Deuren M, Van der Ven-Jongekrijg J, Demacker PNM, et al (1994) Differential expression of proinflammatory cytokines and their inhibitors during the course of meningococcal infections. J Infect Dis 169: 157–161PubMedCrossRefGoogle Scholar
  32. 32.
    Granowitz EV, Porat R, Mier JW, et al (1993) Intravenous endotoxin suppresses the cytokine response of peripheral blood mononuclear cells of healthy humans. J Immunol 151: 1637–1645PubMedGoogle Scholar
  33. 33.
    Ertel W, Kremer JP, Kenney J, et al (1995) Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood 85: 1341–1347PubMedGoogle Scholar
  34. 34.
    Schetz M, Ferdinande P, Van den Berghe G, Verwaest C, Lauwers P (1995) Removal of pro-inflammatory cytokines with renal replacement therapy: Sense or nonsense? Intensive Care Med 21: 169–176PubMedCrossRefGoogle Scholar
  35. 35.
    Staubauch KH, Rau HG, Kooistra A, Shardey HM, Hohlbach G, Schildberg FW (1989) Can hemofiltration increase survival in acute endotoxemia–A porcine shock model. Prog Clin Biol Res 308: 821–826Google Scholar
  36. 36.
    Stein B, Pfenninger E, Grunert A, Schmitz JE, Hudde M (1990) Influence of continuous haemofiltration on haemodynamics and central blood volume in experimental endotoxic shock. Intensive Care Med 16: 494–499PubMedCrossRefGoogle Scholar
  37. 37.
    Gomez A, Wang R, Unruh H, et al (1990) Hemofiltration reverses left ventricular dysfunction in dogs. Anesthesiology 73: 671–685PubMedCrossRefGoogle Scholar
  38. 38.
    Stein B, Pfenninger E, Grünert A, Schmitz JE, Deller A, Kocher F (1991) The consequences of continuous hemofiltration on lung mechanics and extravascular lung water in a porcine endotoxic shock model. Intensive Care Med 17: 293–298PubMedCrossRefGoogle Scholar
  39. 39.
    Grootendorst AF, Van Bommel EFH, Van der Hoven B, Van Leengoed LA, Van Osta ALM (1992) High volume hemofiltration improves right ventricular function in endotoxin-induced shock in the pig. Intensive Care Med 18: 235–240PubMedCrossRefGoogle Scholar
  40. 40.
    Lee PA, Matson JR, Pryor RW, Hinshaw LB (1993) Continuous arteriovenous hemofiltration therapy for Staphylococcus aureus-induced septicaemia in immature swine. Crit Care Med 21: 914–924PubMedCrossRefGoogle Scholar
  41. 41.
    Freeman BD, Yatsiv I, Natanson C, et al (1994) Continuous arteriovenous hemofiltration does not improve survival in a canine model of septic shock. J Am Coll Surg 180: 286–292Google Scholar
  42. 42.
    Kumar A, Thota V, Dee L, Olson J, Uretz E, Parillo JE (1996) Tumor necrosis factor-a and interleukin-1 ß are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183: 949–958PubMedCrossRefGoogle Scholar
  43. 43.
    Byrick RJ, Goldstein MB, Wong PY (1992) Increased plasma tumor necrosis factor concentration in severe rhabdomyolysis is not reduced by continuous arterioveneous hemodialysis. Crit Care Med 20: 1483–1486PubMedCrossRefGoogle Scholar
  44. 44.
    Reeves JH, Butt WW (1995) Blood filtration in children with severe sepsis: Safe adjunctive therapy. Intensive Care Med 21: 500–504Google Scholar
  45. 45.
    Barrera P, Janssen EM, Demacker PNM, Wetzels JFM, Van der Meer JWM (1992) Removal of interleukin-1(3 and tumor necrosis factor from human plasma by in vitro dialysis with poly-acrylonitrile membranes. Lymphokine Cytokine Res 11: 99–104PubMedGoogle Scholar
  46. 46.
    Vain NE, Mazlumian, Swarner W, Cha CC (1980) Role of exchange transfusion in the treatment of severe septicaemia. Pediatrics 66: 693–697PubMedGoogle Scholar
  47. 47.
    Togari H, Mikawa M, Iwanaga T, et al (1983) Endotoxin clearance by exchange blood transfusion in septic shock neonates. Acta Paediatr Scand 72: 87–91PubMedCrossRefGoogle Scholar
  48. 48.
    Muraji T, Okamoto E, Hogue S, Toyosaka A (1986) Plasma exchange therapy for endotoxin shock in puppies. J Pediatr Surg 21: 1092–1095PubMedCrossRefGoogle Scholar
  49. 49.
    Natanson C, Hoffman WD, Danner RL, et al (1989) A controlled trial of plasmapheresis fails to improve outcome in an antibiotic treated canine model of septic shock. Crit Care Med 17: S57 (Abst)Google Scholar
  50. 50.
    Rokke 0, Lundgren TI, Revhaug A, Giercksky KE, f sterud B, Rekvig OP (1989) Plasma exchange performed during severe Gram-negative septicemia: The influence on circulatory performance, plasma levels of endotoxin and bacterial counts in blood. Surg Res Comm 5: 59–73Google Scholar
  51. 51.
    Rokke O, Rasmussen L, Giercksky KE, Seljelid R, Rekvig OP, Revhaug A (1990) The influence of plasma exchange on shock mediators in septicemia. Surg Res Comm 8: 173–182Google Scholar
  52. 52.
    Rokke O, Rekvig OP, Revhaug A (1990) Continuous removal of leucocytes during early Gram-negative septicemia reduces plasma levels of endotoxin and improves cardiac performance. Scand J Infect Dis 22: 79–86PubMedCrossRefGoogle Scholar
  53. 53.
    Rokke O, Rekvig OP, Lundgren TI, Revhaug A (1990) The treatment of severe Gram-negative septicemia with plasma exchange: Effects mediated by extracorporal circulation. Surg Res Comm 8: 183–194Google Scholar
  54. 54.
    Busund R, Lindsetmo RO, Rasmussen LT, Rokke O, Rekvig OP, Revhaug A (1991) Tumor necrosis factor and interleukin-1 appearance in experimental Gram-negative septic shock. Arch Surg 126: 591–597PubMedCrossRefGoogle Scholar
  55. 55.
    Rokke O, Rolf S, Revhaug A, Rekvig OP (1993) Plasma exchange, but not extra-corporeal recirculation nor removal of white blood cells, depresses plasma levels of IL-1 during severe Gram-negative septicemia. Transfus Sci 14: 173–182CrossRefGoogle Scholar
  56. 56.
    Scharfman WB, Tillotson JR, Taft EG, Wright E (1979) Plasmapheresis for meningococcemia with disseminated intravascular coagulation. N Engl J Med 300: 1277–1280PubMedGoogle Scholar
  57. 57.
    Bjorvatn B, Bjertnaes L, Fadnes HO, et al (1984) Meningococal septicaemia treated with combined plasmapheresis and leucapheresis or with blood exchange. Br Med J 288: 439–441CrossRefGoogle Scholar
  58. 58.
    Osterud B (1985) Meningococcal septicemia: The use of plasmapheresis or blood exchange and how to detect severe endotoxin white cell activation. Scand J Clin Lab Invest 45 (Suppl 178): 47–51Google Scholar
  59. 59.
    Brandtzaeg P, Sirnes K, Folsland B, et al (1985) Plasmapheresis in the treatment of severe meningococcal or pneumococcal septicaemia with DIC and fibrinolysis. Preliminary data on eight patients. Scand J Clin Lab Invest 45 (Suppl 178): 53–55Google Scholar
  60. 60.
    Vesely H, Mauritz W, Ammann G, Herold S, Marczell A (1987) Plasma exchange in a patient with acute abdomen complicated by multiple organ failure. Anaesth Intensivther Notfallmed 22: 198–200CrossRefGoogle Scholar
  61. 61.
    Drapkin MS, Wisch JS, Gelfand JA, Cannon JG, Dinarello CA (1989) Plasmapheresis for fulminant meningococcemia. Pediatr Infect Dis J 6: 399–400Google Scholar
  62. 62.
    Janbon B, Vuillez J-P, Carpentier F, et al (1992) Removal of circulating tumor necrosis factor. Its role in septic shock treatment. Ann Intern Med 143 (Suppl 1): 13–16Google Scholar
  63. 63.
    Westendorp RGJ, Brand A, Haanen J, et al (1992) Leukaplasmapheresis in meningococcal septic shock. Am J Med 92: 577–578PubMedCrossRefGoogle Scholar
  64. 64.
    Van Deuren M, Santman FW, Van Dalen R, et al (1992) Plasma and whole blood exchange in meningococcal sepsis. Clin Infect Dis 15: 424–430PubMedCrossRefGoogle Scholar
  65. 65.
    Pollack M (1992) Blood exchange and plasmapheresis in sepsis and septic shock. Clin Infect Dis 15: 431–433PubMedCrossRefGoogle Scholar
  66. 66.
    Gârdlund B, Sjölin J, Nilsson A, et al (1993) Plasmapheresis in the treatment of primary septic shock in humans. Scand J Infect Dis 25: 757–761PubMedCrossRefGoogle Scholar
  67. 67.
    Mok Q, Butt W (1996) The outcome of children admitted to intensive care with meningococcal septicaemia. Intensive Care Med 22: 259–263PubMedCrossRefGoogle Scholar
  68. 68.
    Cohen J, Aslam M, Pusey CD, Ryan CJ (1987) Protection from endotoxemia: A rat model of plasmapheresis and specific adsorbtion with polymyxin B. J Intect Dis 155: 690–695Google Scholar
  69. 69.
    Frieling JTM, Van Deuren M, Wijdenes J, Sauerwein R, Van der Linden CJ (1997) Patterns of interleukin-6 and its soluble receptor during acute meningococcal infections and the effect of plasma or whole blood exchange. Crit Care Med (In press)Google Scholar
  70. 70.
    Schedel I, Dreikhausen U, Nentwig B, et al (1991) Treatment of Gram-negative septic shock with an immunoglobulin preparation: A prospective, randomized clinical trial. Crit Care Med 19: 1104–1113Google Scholar
  71. 71.
    Brandtzaeg P, Sandset PM, Joo GB, Ovstebo R, Abildgaard U, Kierulf P (1989) The quantitative association of plasma endotoxin, antithrombin, protein C, extrinsic pathway inhibitor and fibrinopeptide A in systemic meningococcal disease. Tromb Res 55: 459–470CrossRefGoogle Scholar
  72. 72.
    Leclerc F, Hazelhet J, Jude B, et al (1992) Protein C and S deficiency in severe infectious purpura of children: A collaborative study of 40 cases. Intensive Care Med 18: 202–205PubMedCrossRefGoogle Scholar
  73. 73.
    Fijnvandraat K, Derkx HHF, Peters M, et al (1995) Coagulation activation and tissue necrosis in meningococcal septic shock: Severely reduced protein C levels predict a high mortality. Thromb Haemost 73: 15–20Google Scholar
  74. 74.
    Rivard GE, David M, Farell C, Schwarz P (1995) Treatment of purpura fulminans in meningococcemia with protein C concentrate. J Pediatr 126: 646–652PubMedCrossRefGoogle Scholar
  75. 75.
    Von Uppenkamp M, Hoensch HP, Lögering HJ, Paar D, Ohnhaus EE (1986) Antithrombin-III Substitution bei akuter bakterieller Meningitis. Fortschr Med 104: 121–125PubMedGoogle Scholar
  76. 76.
    Nuijens JH, Eerenberg-Belmer AJM, Huijbregts CCM, et al (1989) Proteolytic inactivation of plasma Cl inhibitor in sepsis. J Clin Invest 84: 443–450PubMedCrossRefGoogle Scholar
  77. 77.
    Schott U, Bjorsell-Ostling E (1995) Sonoclot coagulation analysis and plasma exchange in a case of meningococcal septicaemia. Can J Anaesth 42: 64–68PubMedCrossRefGoogle Scholar
  78. 78.
    Fourrier F, Jourdain M, Tournois A, Caron C, Goudemand J, Chopin C (1995) Coagulation inhibitor substitution during sepsis. Intensive Care Med 21: S264 - S268PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. van Deuren
  • J. W. van der Meer

There are no affiliations available

Personalised recommendations