Skip to main content

Importance of Cell Wall Components of Gram-Positive Bacteria in Gram-Positive Septic Shock

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 1997

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1997))

Abstract

Over the past few years, there has been an increase in the incidence of bacteremia, sepsis and septic shock caused by Gram-positive organisms including Staphylococcus epidermis, Staphylococcus aureus and Streptococcus pyogenes [1, 2]. The bacteria most commonly implicated to be the cause of Gram-positive sepsis are (in descending order of frequency) Staphylococcus aureus, Streptococcus pneumonae, coagulasenegative Staphylococci, β-haemolytic Streptococci and Enterococci [1]. In patients with life-threatening Gram-positive shock, the events leading to septic shock may be triggered by cell wall components of these bacteria and/or by exotoxins released by these bacteria [3]. The fact that endotoxin (a component of Gram-negative bacteria) is not a prerequisite for causing septic shock is highlighted by the fact that in a canine model — in the absence of endotoxemia — Staphylococcus aureus causes cardiovascular abnormalities comparable to that caused by Escherichia coli [4]. Similarly, two other studies have concluded that there are no clinically important differences in the hemodynamic responses in patients with Gram-positive and Gram-negative sepsis [5, 6]. In contrast, however, Stewart et al. [7] have demonstrated differences in the alterations in pH, glucose, arterial oxygen pressure (PaO2), heart rate, systemic vascular resistance and cardiac output in conscious rats receiving either Staphylococcus aureus or Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bone RC (1993) How Gram-positive organisms cause sepsis. J Crit Care 8: 51–59

    Article  PubMed  CAS  Google Scholar 

  2. Bone RC (1994) Gram-positive organisms and sepsis. Arch Intern Med 154: 26–34

    Article  PubMed  CAS  Google Scholar 

  3. Verhoef J, Mattsson E (1995) The role of cytokines in Gram-positive bacterial shock. Trends Microbiol 3: 136–140

    Article  PubMed  CAS  Google Scholar 

  4. Natanson C, Danner RL, Elin RI, et al (1989) Role of endotoxemia in cardiovascular dysfunction and mortality Escherichia coli and Staphylococcus aureus challenges in a canine model of human septic shock. J Clin Invest 83: 243–251

    Article  PubMed  CAS  Google Scholar 

  5. Wiles JB, Cerra FB, Siegel JH, Border JR (1980) The systemic septic response: Does the organism matter? Crit Care Med 8: 55–60

    Article  PubMed  CAS  Google Scholar 

  6. Ahmed AJ, Kruse JA, Haupt MT, Chandrasekar PH, Carlson RW (1991) Hemodynamic responses to Gram-positive versus Gram-negative sepsis in critically ill patients with and without circulatory shock. Crit Care Med 19: 1520–1525

    Article  PubMed  CAS  Google Scholar 

  7. Stewart KD, Brackett DJ, Lerner MR, Archer LT, Wilson MF (1994) Comparison of Staphylococcus aureus and Escherichia coli infusion in conscious rats. J Surg Res 56: 60–66

    Article  PubMed  CAS  Google Scholar 

  8. Glauser MP, Zanetti G, Baumgartner JD, Cohen J (1991) Septic shock: Pathogenesis. Lancet 338: 732–736

    Article  PubMed  CAS  Google Scholar 

  9. Freudenberg MA, Galanos C (1991) Tumor-necrosis-factor-alpha mediates lethal activity of killed Gram-negative and Gram-positive bacteria in D-galactosamine-treated mice. Infect Immun 59: 2110–2115

    PubMed  CAS  Google Scholar 

  10. Roder BL, Eriksen NHR, Nielsen LP, Slotsbjerg T, Rosdahl VT, Espersen F (1995) No difference in enterotoxin production among Staphylococcus aureus strains isolated from blood compared with strains isolated from healthy carriers. J Med Microbiol 42: 43–47

    Article  PubMed  CAS  Google Scholar 

  11. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric-oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142

    PubMed  CAS  Google Scholar 

  12. Moncada S, Higgs A (1993) Mechanisms of disease. The L-arginine nitric-oxide pathway. N Engl J Med 329: 2002–2012

    Article  PubMed  CAS  Google Scholar 

  13. Dinerman JL, Lowenstein CJ, Snyder SH (1993) Molecular mechanisms of nitric oxide regulation: Potential relevance to cardiovascular disease. Circ Res 73: 217–222

    Article  PubMed  CAS  Google Scholar 

  14. Cho HJ, Xie QW, Calaycay J, et al (1992) Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med 176: 599–604

    Article  PubMed  CAS  Google Scholar 

  15. Dekimpe SJ, Kengatharan M, Thiemermann C, Vane JR (1995) The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc Natl Acad Sci (USA) 92: 10359–10363

    Article  CAS  Google Scholar 

  16. Kengatharan M, Dekimpe SJ, Thiemermann C (1996) Pre-treatment with dexamethasone or delayed treatment with aminoguanidine ameliorates the circulatory failure and organ injury in a rat model of Gram-positive shock. Br J Pharmacol 118: P2 (Abst)

    Google Scholar 

  17. Ruetten H, Southan GJ, Abate A, Thiemermann C (1996) Attenuation of endotoxin-induced multiple organ dysfunction by 1-amino-2-hydroxy-guanidine, a potent inhibitor of inducible nitric oxide synthase. Br J Pharmacol 118: 261–270

    Article  PubMed  CAS  Google Scholar 

  18. Baue AE (1994) Multiple organ failure, multiple organ dysfunction syndrome, and the systemic inflammatory response syndrome: Where do we stand. Shock 2: 385–397

    Article  PubMed  CAS  Google Scholar 

  19. Clarke AJ, Dupont C (1992) 0-acetylated peptidoglycan: Its occurrence, pathobiological significance, and biosynthesis. Can J Microbiol 38: 85–91

    Google Scholar 

  20. Hamada S, Torii M, Kotani S, et al (1978) Lysis of Streptococcus mutans cells with mutanolysin, a lytic enzyme prepared from a culture liquor of Streptomyces globisporus 1829. Arch Oral Biol 23: 543–549

    Article  PubMed  CAS  Google Scholar 

  21. Fischer W (1980) Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol 29: 293–302

    Google Scholar 

  22. Wicken AJ, Gibbens JW, Knox KW (1973) Comparative studies on the isolation of membrane lipoteichoic acid from Lactobacillus fermenti. J Bacteriol 113: 365–372

    PubMed  CAS  Google Scholar 

  23. Fischer W, Koch HU, Haas R (1983) Improved preparation of lipoteichoic acids. Eur J Biochem 133: 523–530

    Article  PubMed  CAS  Google Scholar 

  24. Koch HU, Haas R, Fischer W (1984) The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur J Biochem 138: 357–363

    Article  PubMed  CAS  Google Scholar 

  25. Kengatharan M, Dekimpe SJ, Thiemermann C, Vane JR (1996) A peptidoglycan fragment synergises with lipoteichoic acid to induce nitrite formation in macrophages. Br J Pharmacol 118: P5 (Abst)

    Google Scholar 

  26. Hamada S, Torii M, Okahashi N, et al (1983) Isolation and characterization of the serotype g carbohydrate moiety from an enzyme lysate of Streptococcus mutons 6715 cell walls. Microbiol Immunol 27: 237–249

    PubMed  CAS  Google Scholar 

  27. Timmerman CP, Mattsson E, Martinez-Martinez L, et al (1993) Induction of release of tumor necrosis factor from human monocytes by staphylococci and staphylococcal peptidoglycans. Infect Immun 61: 4167–4172

    PubMed  CAS  Google Scholar 

  28. Chang YH, Pearson CM, Chedid L (1981) Adjuvant polyarthritis. V. Induction by N-acetylmuramyl-L-alanyl-D-isoglutamine, the smallest peptide subunit of bacterial peptidoglycan. J Exp Med 153: 1021–1026

    Article  PubMed  CAS  Google Scholar 

  29. Pristovsek P, Kidric J, Hadzi D (1995) Bioactive conformations of small peptides: A method for selection of candidates based on conformations of active and inactive analogs and its application to muramyl dipeptide. J Chem Infect Compl Sci 35: 633–639

    Article  CAS  Google Scholar 

  30. Glauner B (1988) Separation and quantification of muropeptides with high-performance liquid-chromatography. Anal Biochem 172: 451–464

    Article  PubMed  CAS  Google Scholar 

  31. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477

    PubMed  CAS  Google Scholar 

  32. Takada H, Kawabata Y, Arakaki R, et al (1995) Molecular and structural requirements of a lipoteichoic acid from Enterococcus hirae ATCC-9790 for cytokine-inducing, antitumor, and antigenic activities. Infect Immun 63: 57–65

    PubMed  CAS  Google Scholar 

  33. Ginsburg I (1988) The biochemistry of bacteriolysis: Paradoxes, facts and myths. Microbiol Sci 5: 137–142

    PubMed  CAS  Google Scholar 

  34. Johannsen L (1993) Biological properties of bacterial peptidoglycan. APMIS 101: 337–344

    Article  PubMed  CAS  Google Scholar 

  35. Himanen JP, Pyhala L, Olander RM, et al (1993) Biological activities of lipoteichoic acid and peptidoglycan teichoic acid of Bacillus subtilis 168 (marburg). J Gen Microbiol 139: 2659–2665

    PubMed  CAS  Google Scholar 

  36. Kengatharan M, Robson CL, Foster SJ, Thiemermann C (1997) Lipoteichoic acid from S. aureus,but not from B. subtilis,synergises with B. subtilis peptidoglycan to cause vascular hyporeactivity to noradrenaline and organ injury in rats. Br J Pharmacol (In press) (Abst)

    Google Scholar 

  37. Hurley JC (1992) Antibiotic-induced release of endotoxin: A reappraisal. Clin Infect Dis 15: 840–854

    Article  PubMed  CAS  Google Scholar 

  38. Nealon TJ, Beachey EH, Courtney HS, Simpson WA (1986) Release of fibronectin-lipoteichoic acid complexes from Group-a streptococci with penicillin. Infect Immun 51: 529–535

    PubMed  CAS  Google Scholar 

  39. Ziegler AR (1986) Soluble peptidoglycans: Lymphocyte-activating bacterial products found in man. In: Seidel A, Schleifer KH (eds) Biological properties of peptidoglycan. Walter de Gruyter, New York, p 217

    Google Scholar 

  40. Parant MA, Pouillart P, Lecontel C, Parant FJ, Chedid LA, Bahr GM (1995) Selective modulation of lipopolysaccharide-induced death and cytokine production by various muramyl peptides. Infect Immun 63: 110–115

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kengatharan, K.M., Thiemermann, C. (1997). Importance of Cell Wall Components of Gram-Positive Bacteria in Gram-Positive Septic Shock. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1997. Yearbook of Intensive Care and Emergency Medicine, vol 1997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13450-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13450-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13452-8

  • Online ISBN: 978-3-662-13450-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics