Advertisement

Trees III pp 111-141 | Cite as

Horse Chestnut (Aesculus spp.)

  • L. Radojević
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 16)

Abstract

The genus Aesculus is best known for its ornamental trees, notably the horse chestnut (Aesculus hippocastanum), which is grown for its winter buds, large leaves, and striking inflorescence. Horse chestnut can rarely be found in the woods as a cultured species, although it grows under different ecological conditions. It can be grown in the warmer habitats of the beech (Fagetum montanum) forests. Because of its beautiful and dense crown, horse chestnut is frequently planted either as a solitary tree or in avenues. Ae. X carnea represents an artificial hybrid of A. hippocastanum L. and A. pavia L., and because of its beautiful red inflorescence it is widely used as an ornamental tree.

Keywords

Somatic Embryo Somatic Embryogenesis Embryogenic Callus Anther Culture Immature Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammirato PV (1986) Control and expression of morphogenesis in culture. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 23–45Google Scholar
  2. Anonymous (1975) Induction of haploid poplar plants from anther culture in vitro. Sci Sin 18: 769–777Google Scholar
  3. Bajaj YPS (1986) Biotechnology of tree improvement for rapid propagation and biomass energy production. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 1: Trees I. Springer, Berlin Heidelberg New York, pp 1–23Google Scholar
  4. BradbeerJW, Pinfield NJ (1967) Studies in seed dormancy III. The effect of gibberellin on dormant seeds of Corylus avellana. New Phytol 66: 515–523CrossRefGoogle Scholar
  5. Button J, Bornman CH (1971) Development of nucellar plants from unpollinated and unfertilised ovules of the Washington navel orange in vitro. J S Afr Bot 37: 127–134Google Scholar
  6. Chen Z, Quian C, Qin M, Xu X, Xiao Y (1982) Recent advances in anther culture of Hevea brasiliensis ( Mull.-Agr. ). Theor Appl Genet 62: 103–108Google Scholar
  7. Dameri RM, Caffaro L, Castaldo P, Profumo P (1986) Callus formation and embryogenesis with leaf explants of Aesculus hippocastanum L. J Plant Physiol 126: 93–96CrossRefGoogle Scholar
  8. Dale PJ, Humphreys MW (1974) Tissue culture. In: Rep Welsh Plant Breed Stn 88Google Scholar
  9. Druart P (1981) Technique de regeneration de plantules sur racines de ligneux cultivés in vitro. In: IUFRO Conf, Fontainbleau, Aug 31-Sept 4, pp 251–253Google Scholar
  10. Druart P, Boxus P, Liard O, Delaite B (1981) La micropropagation du merisier à partir de la culture de méristème. In: IUFRO Conf, Fontainebleau, Aug 31-Sept 4, pp 101–108Google Scholar
  11. Duhoux E, Norreel B (1974) Sur l’isolement de colonies tissulaires d’origine pollinique à partir de cônes males de Juniperus chinensis L., du Juniperus communis L. et du Cupressus arizonica G. cultivé in vitro. C R Acad Sci Paris Ser D 279: 651–654Google Scholar
  12. DunwellJM (1986) Pollen, ovule and embryo culture as tools in plant breeding. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 375–404Google Scholar
  13. Gunn RE, Day PR (1986) In vitro culture in plant breeding. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 313–336Google Scholar
  14. Haccius B, Bhandari NN (1975) Zür Frage der Befestigung junger, Pollen-Embryonen von Nicotiana tabacum aus der Antheren. Wand Beitr Biol Pflanzenkd 51: 53–56Google Scholar
  15. Heslop-Harrison J, Heslop-Harrison Y (1970) Evolution of pollen viability by enzymatically induced fluorescence: intracellular hydrolysis of fluorescein diacetate. Stain Technol 45: 115–120PubMedGoogle Scholar
  16. Kavathekar AK, Ganapathy PS, John BM (1977) Chilling induced development of embryoids into plantlets in Eschscholtzia. Z Pflanzenphysiol 81: 358–363Google Scholar
  17. Kochba j, Button J, Spigel-Roy P, Bornman CH, Kochba M (1974) Stimulation of rooting Citrus by gibberellic acid and adenine sulfate. Ann Bot (London) 38: 795–802Google Scholar
  18. Larkin PJ, Scowcroft WR (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60: 197–214CrossRefGoogle Scholar
  19. List AJR, Steward FC (1965) The nucellus, embryo sac, endosperm and embryo of Aesculus and their interdependence during growth. Ann Bot (London) 29: 1–17Google Scholar
  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497CrossRefGoogle Scholar
  21. Nitsch C, Norreel B (1973) Effet d’un choc thermique sur le pouvoir embryogéne du pollen de Datura innoxia cultivé danas l’anthère, ou isolé de l’anthère. C R Acad Sci Paris 276: 303–306Google Scholar
  22. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163: 85–87PubMedCrossRefGoogle Scholar
  23. Pax F (1886) Hippocastanaceae. In: Engler A, Prantel K (eds) Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere der Nutzpflanzen, unter Mitwirkung zahlreicher hervorragender Fachgelehrter. Engelmann, Leipzig, pp 272–276Google Scholar
  24. Picard E, de Buyser J (1975) Nouveaux résultats concernant la culture d’anthères in vitro de blé tendre (Triticum aestivum L.), effects d’un choc thermique et de la position de l’anthère dans l’epi. C R Acad Sci Paris 281: 127–130Google Scholar
  25. Procter R (1977) Trees of the world. Hamlyn, London, pp 42–43Google Scholar
  26. Profumo PR, Dameri M, Orsino IC (1976) Trammeluti cotiledonari di Aesculus hippocastanum L. coltivari in vitro. Primi dati sul compartemento dell’amido e dell’escina. Giorn Bot It 110: 155–171Google Scholar
  27. Quoirin M, Lepoivre P (1977) Etude de milieux adaptés aux cultures in vitro de Prunus. Acta Hortic 78: 437–442Google Scholar
  28. Radojevié Lj (1977) Physiological and cytological investigations of embryogenesis in tissue culture of Corylus avellana L., Paulownia tomentosa Steud. and Aesculus hippocastanum L. Ph.D Thesis, Univ Belgrade, Yug, pp 1–120 (in Serbo-Croatian)Google Scholar
  29. Radojevié Lj (1978) In vitro induction of androgenic plantlets in Aesculus hippocastanum L. Protoplasma 96: 369–374CrossRefGoogle Scholar
  30. Radojevié Lj (1979) Somatic embryos and plantlets from callus cultures of Paulownia tomentosa Steud. Z Pflanzenphysiol 91: 57–62Google Scholar
  31. Radojevié Lj (1980a) Embryogenèse somatique et androgenèse chez certaines espèces ligneuses. Bull Soc Bot Fr 127, Actual Bot 3,4: 99–107Google Scholar
  32. Radojevié Lj (1980b) Haploid embryos, plantlets and callus formation in woody species. In: Davies DR, Hopwood DA (eds) The plant genome. Innes Charity, Norwich, p 259Google Scholar
  33. Radojevié Lj (1985) Tissue culture of Zea mays “Cudu” I. Somatic embryogenesis in callus tissue. J Plant Physiol 119: 435–441CrossRefGoogle Scholar
  34. Radojevié Lj (1988) Plant regeneration of Aesculus hippocastanum L. (horse chestnut) through somatic embryogenesis. J Plant Physiol 322–326Google Scholar
  35. Radojevié Lj (1989) Pollen Dimorphism in Aesculus hippocastanum and Ae. carnea. Arh Biol Nauka, Beograd 41: 137–143Google Scholar
  36. Radojevié Lj, Trajkovié D (1983) A study of albinism in the androgenic embryos of Aesculus hippocastanum L. Period Biol 85: 172–174Google Scholar
  37. Radojevié Lj, Kovoor A (1985) Induction of haploids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 1: Trees I. Springer, Berlin Heidelberg New York, pp 65–86Google Scholar
  38. Radojevié Lj, Nesskovié M, Vujieie R (1975) Embryogenesis in tissue culture of Corylus avellana L. Z Pflanzenphysiol 77: 33–41Google Scholar
  39. Radojevié Lj, Landré P, Nes-kovié M (1980a) Isolement de trois souches tissulaires à partir d’embryons immature d’Acer negundo L. Z Pflanzenphysiol 99: 191–198Google Scholar
  40. Radojevié Lj, Zylberberg L, Kovoor J (1980b) Etude ultrastructurale des embryons androgénétiques d’Aesculus hippocastanum L. Z Pflanzenphysiol 98: 255–261Google Scholar
  41. Radojevié Lj, Trajkovié D, Petrovie J, Kidrie M (1983) Comparative studies of green and albino embryos of Aesculus hippocastanum L. in vitro. In: 5th Balkan Biochem Biophys Days, Tessaloniki, Greece, p 36Google Scholar
  42. Radojevié Lj, Trajkovie D, Petrovie J, Kidric M (1985) Physiological and biochemical studies of horse chestnut Aesculus hippocastanum L. androgenesis. In 7th Symp Yug Soc Plant Physiol, Arandjelovac, Yug, June 1985, p 114Google Scholar
  43. Radojevié Lj, Druart P, Boxus P (1987) Vegetative propagation of androgenous embryos of horse chestnut by meristem culture in vitro. Acta Hortic 212: 531–537Google Scholar
  44. Radojevié Lj, Djordjevié N, Tucie B (1989) In vitro induction of pollen embryos and plantlets in Aesculus carnea Hayne through anther culture. Plant Cell Tissue Organ Cult 17: 21–26Google Scholar
  45. Ranga Swamy NS (1961) Experimental studies on female reproductive structures of Citrus microspore Bunge. Phytomorphology 11: 101–127Google Scholar
  46. Richardson IBK (1978) In: Heywood VH (ed) Flowering plants of the world. Univ Press, Oxford, pp 194–195Google Scholar
  47. Shimada T, Tabata M (1967) Chromosome number in cultured pith tissue of tobacco. Jpn J Genet 12: 195–201CrossRefGoogle Scholar
  48. Söndahl MR, Sharp WR (1977) High frequency induction of somatic embryos in culture of leafexplants of Coffea arabica L. Z Pflanzenphysiol 81: 395–408Google Scholar
  49. Street HE (1976) Experimental embryogenesis — the totipotency of cultured plant cells. In: Graham CF, Wareing PF (eds) The developmental biology of plants and animals. Blackwell, Oxford, pp 73–90Google Scholar
  50. Sun C-S, Wang C-C, Chu C-C (1974a) Cell division and differentiation of pollen grains in Triticale anthers cultured in vitro. Sci Sin 17: 47–51Google Scholar
  51. Sun C-S, Wang C-C, Chu C-C (1974b) The ultrastructure of plastids in the albino pollen-plants of rice. Sci Sin 17: 793–797Google Scholar
  52. Sunderland N (1973) Pollen and anther culture. In: Street HE (ed) Plant tissue and cell culture. Blackwell, Oxford, pp 205–239Google Scholar
  53. Sunderland N (1974) Anther culture as a means of haploid induction. In: Kasha KJ (ed) Haploids in higher plants: advances and potential. Univ Press, Guelph, pp 91–122Google Scholar
  54. Sunderland N, Wicks FM (1971) Embryoid formation in pollen grains of Nicotiana tabacum. J Exp Bot 22: 213–226CrossRefGoogle Scholar
  55. Tachtadzhyana AL (1980) Flowering plants. Prosveshchenie, Moscow, p 161 (in Russian) Tucovié A (1973) Fam. Hippocastanaceae. Flora Srbie 5: 103–110Google Scholar
  56. Walkey DGA (1972) Production of apple plantlets from axillary-bud meristem. Can J Plant Sci 52: 1082–1085CrossRefGoogle Scholar
  57. Widholm JM (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47, 4: 189–194PubMedGoogle Scholar
  58. Yeoman MN (1986) The present development and future of plant cell and tissue culture in agriculture, forestry and horticulture. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 489–500Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • L. Radojević
    • 1
  1. 1.“Siniša Stankovie” Department for Plant PhysiologyInstitute for Biological ResearchBelgradeYugoslavia

Personalised recommendations